【高考第一轮复习数学】三角函数专题
- 格式:doc
- 大小:339.00 KB
- 文档页数:4
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题 1.函数tan2x y =是 A .周期为2π的奇函数 B .周期为2π的奇函数 C .周期为π的偶函数D .周期为2π的偶函数2.有一块矩形花圃ABCD 如图所示,其中10AB cm =,6BC cm =,现引进了新品种需将其扩大成矩形区域EFGH ,点A ,B ,C ,D 均落在矩形EFGH 的边上(不包括顶点),则扩大后的花圃的最大面积为( )A .2100mB .2128mC .2144mD .2196m3.已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><,其部分图象如图所示,则()f x 的解析式为( )A .1()3sin 26f x x π⎛⎫=+ ⎪⎝⎭B .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭C .15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭D .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭或15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭ 4.若α是第四象限角,则π-α是第( )象限角.A .一B .二C .三D .四5.若一个底面半径为1的圆锥侧面展开图是一个顶角为23π的扇形,则该圆锥的体积为( )A .353π B .223πC .35πD .22π 6.已知函数()()sin 0,2f x x A πωϕϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则tan ϕ=( )A 3B .1C 3D .37.下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+8.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若()f x m =在[0,)π上有两个实根a ,b ,且||3a b π->,则实数m 的取值范围是( ) A .1,02⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭二、多选题9.设0θπ<<,非零向量()sin 2,cos a θθ=,()cos ,1b θ=,则( ) A .若1tan 2θ=,则//a b B .若34πθ=,则a b ⊥ C .存在θ,使2a b =D .若//a b ,则1tan 2θ=10.关于函数()cos 23cos f x x x x =+,下列结论正确的有( ) A .函数()f x 有最小值2-B .存在12,x x 有12x x π-=时,()()12f x f x =成立C .函数()f x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭成中心对称11.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若AB >,则sin sin A B >B .若cos cos a B b A c -=,则ABC 为直角三角形 C .若cos cos a A b B =,则ABC 为等腰三角形D .若2cos 22A c b c+=,则ABC 为直角三角形 12.已知函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列说法正确的是( )A .若函数()f x 的最小正周期为π,则其图象关于直线8x π=对称B .若函数()f x 的最小正周期为π,则其图象关于点,08π⎛⎫⎪⎝⎭对称C .若函数()f x 在区间0,8π⎛⎫⎪⎝⎭上单调递增,则ω的最大值为2D .若函数()f x 在[]0,2π有且仅有5个零点,则ω的取值范围是192388ω≤< 三、填空题13.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.14.如图,某湖有一半径为1km 的半圆形岸边,现决定在圆心O 处设立一个水文监测中心(大小忽略不计),在其正东方向相距2km 的点A 处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B 以及湖中的点C 处,再分别安装一套监测设备,且90BAC ∠=︒,AB AC =.定义:四边形OACB 及其内部区域为“直接监测覆盖区域”,设AOB θ∠=.则“直接监测覆盖区域”面积的最大值为________.15.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______. 16.已知函数()sin 0,02y x πωϕωϕ⎛⎫=+><≤ ⎪⎝⎭的部分图像如图所示,则点(,)P ωϕ的坐标为___.四、解答题17.已知函数()sin 3cos 33x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()1y f x =-的单调递增区间; (2)设函数()()()1sin g x x f x =+,求()g x 的值域.18.已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,22ππϕ-<<,x ∈R 其部分图象如图所示.(1)求函数()y f x =的解析式; (2)若23()f α=(0,)3πα∈,求cos2α的值.19.计算: (1)sin15︒;(2)sin cos cos sin 33ππαααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭;(3)sin13sin73cos13sin17︒︒+︒︒.20.已知函数()222sin 4cos 1f x x x =-+.(1)求()f x 的最小正周期;(2)求()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最大值与最小值.21.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且()3sin cos a bC C =+.(1)求B ;(2)已知23BC =,D 为边AB 上的一点,若1BD =,2ACD π∠=,求AC 的长.22.2020年一场突如其来的疫情让亿万中华儿女的心再一次凝结在一起,为控制疫情,让广大发热患者得到及时有效的治疗,武汉市某社区决定临时修建一个医院.医院设计平面图如图所示:矩形ABCD 中,400AB =米,300BC =米,图中DMN 区域为诊断区(M 、N 分别在BC 和AB 边上),ADN △、CDM 及BMN △区域为治疗区.受诊断区医疗设备的实际尺寸影响,要求MDN ∠的大小为4π.(1)若按照200AN CM ==米的方案修建医院,问诊断区是否符合要求?(2)按照疫情现状,病人仍在不断增加,因此需要治疗区的面积尽可能的大,以便于增加床位,请给出具体的修建方案使得治疗区面积S 最大,并求出最大值.23.已知向量,a b 满足2sin ,4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭(cos ,cos sin )b x x x =-,函数()()f x a b x R =⋅∈.(1)求函数()f x 的单调区间;(2)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且()222242cos a ac B a b c -=+-,求()f B参考答案1.A2.B3.B4.C5.B6.C7.C8.D 9.ABD10.ABC11.ABD12.ACD 13.12-14252km15.35 16.2,3π⎛⎫ ⎪⎝⎭17.(1)()2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)1,42⎡⎤-⎢⎥⎣⎦18.(1)()2sin()6f x x π=+(2)cos 2α=19.(1(2);(3)12.20.(1)π;(2)最小值是-3,最大值是32.21.(1)6B π=(2)AC =22.(1)不符合要求(2)按照tan 18ADN ADN π⎛⎫∠∠= ⎪⎝⎭修建,治疗区面积最大,最大值为240000-(平方米)23.(1)单调增区间为7,,1212k k ππππ⎡⎤--⎢⎥⎣⎦k Z ∈;单调减区间为5,,1212k kππππ⎡⎤-+⎢⎥⎣⎦k Z∈;(2)。
三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
2025届新高考一轮复习特训 三角函数一、选择题1.函数()sin 2f x =到()g x 的图象,则()g x =( )A.cos 4xB.cos x- C.cos 4x- D.sin x-2.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=( )3.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭,若()f x 在2π0,3⎡⎤⎢⎥⎣⎦上有两个零点,则ω的取值范围是( )A.5,42⎡⎫⎪⎢⎣⎭B.5,2⎡⎫+∞⎪⎢⎣⎭C.511,22⎡⎫⎪⎢⎣⎭D.5,42⎡⎤⎢⎥⎣⎦4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P -,则cos 2α=( )355.与1990-︒终边相同的最小正角是( )A.80︒B.150︒C.170︒D.290︒6.已知tan α==( )7.下列区间中,函数π()7sin 6f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A.π0,2⎛⎫⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭8.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭πT <<,且()y f x =的图象关于点3π,22⎛⎫⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( )D.3二、多项选择题9.设x ∈R ,用[]x 表示不超过x 的最大整数,则函数[]y x =被称为高斯函数;例如[]2.13-=-,[]2.12=,已知()sin sin f x x =+()()x f x =⎡⎤⎣⎦,则下列说法正确的是( )A.函数()g x 是偶函数B.函数()g x 是周期函数C.函数()g x 的图像关于直线x =()g x x =只有1个实数根10.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.()()πf x f x += B.()f x 的图象关于直线x =C.()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D.()f x 在5ππ,1212⎛⎫-⎪⎝⎭单调递增11.已知函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =A.函数π12f x ⎛⎫+ ⎪⎝⎭为奇函数B.函数()f x 在ππ,123⎡⎤⎢⎥⎣⎦上单调递增)()12x f x -=-D.函数()f x 的图象关于5π,012⎛⎫ ⎪⎝⎭中心对称三、填空题12.若tan θ==____________.13.如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别是直角三角形ABC 的斜边AB ,直角边AC ,BC ,点E 在以AC 为直径的半圆上,延长AE ,BC 交于点D .若5AB =,sin CAB ∠=DCE ∠=ABE 的面积是______.14.如图所示,终边落在阴影部分(含边界)的角的集合是__________.四、解答题15.如图,弹簧挂着的小球做上下振动,它在t (单位:s )时相对于平衡位置(静止时的位置)的高度h (单位:cm )由关系式πsin 4h A t ω⎛⎫=+ ⎪⎝⎭确定,其中0A >,0ω>,[0,)t ∈+∞.在一次振动中,小球从最高点运动至最低点所用时间为1s ,且最高点与最低点间的距离为10cm .(1)求小球相对于平衡位置的高度h (单位:cm )和时间t (单位:s )之间的函数关系式;(2)小球在0t s 内经过最高点的次数恰为50次,求0t 的取值范围.16.已知α=(1)写出与角α终边相同的角的集合;(2)写出在()4π,2π-内与角α终边相同的角.17.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,||πϕ<)图象的最高点为π,16⎛⎫⎪⎝⎭,距离该最高点最近的一个对称中心为5π,012⎛⎫⎪⎝⎭.(1)求()f x 的解析式及单调递减区间;(2)若函数()(0)2a g x f x a ⎛⎫=>⎪⎝⎭,()g x 的图象关于直线x =()g x 在π0,15⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的值.18.已知函数(1)化简;(2)若的值.19.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.cos αβ的值.()f x =()f x ()0f x =00π2π2cos(2)63x x ⎛⎫-+- ⎪⎝⎭参考答案1.答案:A解析:()sin 2f x=ππsin 2sin 2cos 242y x x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭的图象,再把横坐标缩短为原来的一半,得到()cos 4g x x =的图象故选:A.2.答案:A解析:因为()sin sincos +cos sin αβαβαβ+===cos 5cos sin αβαβ=,所以11sin cos cos sin 6cos sin ,cos sin ,sin cos 212αβαβαβαβαβ+====所以()5141sin sin cos cos sin .1212123αβαβαβ-=-=-==故选:A.3.答案:A解析:因为2π0,3x ⎡⎤∈⎢⎥⎣⎦,0ω>,所以ππ2ππ,3333x ωω⎡+∈+⎢⎣π[2π,3π)3+∈,所以5,42ω⎡⎫∈⎪⎢⎣⎭.4.答案:D解析:因为角α的始边与x 轴非负半轴重合,终边过点()1,2P -,所以cos α==所以2cos 22cos 1αα=-=故选:D.5.答案:C解析:因为199********-=-⨯-︒︒︒,199********-=-⨯+︒︒︒,所以与1990-︒终边相同的最小正角是170︒.故选C.6.答案:B,故选:B.7.答案:A解析:方法一:令πππ2π2π262k x k -+-≤+≤,k ∈Z ,得π2π2π2π33k x k -+≤≤+,k ∈Z .取0k =,则π3x -≤≤ππ2π0,,233⎫⎡⎤-⎪⎢⎥⎭⎣⎦Ü,所以区间π0,2⎛⎫⎪⎝⎭是函数()f x 的单调递增区间.方法二:当π02x <<时,,所以在π0,2⎛⎫⎪⎝⎭上单调递增,故A 正πx <<π6x <-<()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故B 错误;当πx <<π6x <-<()f x 在3ππ,2⎛⎫ ⎪⎝⎭上单调递减,故C 错误;当3π2π2x <<π6x <-<()f x 在3π,2π2⎛⎫⎪⎝⎭上不单调,故D 错误.8.答案:A T <<2ππω<<,解得23ω<<.因为()y f x =的图象关于点3π,22⎛⎫ ⎪⎝⎭中心对称,所以2b =,且,即,所以,又π4π4+=,解得ω=5π()sin 224f x x ⎛⎫=++ ⎪⎝⎭,所以π5ππ3πsin 2sin 2122242f ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭.故选A.9.答案:AD解析:选项A ,函数()f x 的定义域为R ,2tan 313tan 2αα+==-πππ663x -<-<()f x 3ππsin 224b ω⎛⎫++= ⎪⎝⎭3ππsin 024ω⎛⎫+= ⎪⎝⎭3πππ()24k k ω+=∈Z 2ω<<3ππ24ω<+<因为()()()sin sin sin sin f x x x x x f x -=-+-=+=,所以()f x 为偶函数,当0πx <≤时,()sin sin 2sin f x x x x =+=,当π2πx <≤时,()sin sin 0f x x x =-=,当2π3πx <≤时,()sin sin 2sin f x x x x =+=,…因为()f x 为偶函数,所以函数()f x 的图象如下图所示由()()g x f x =⎡⎤⎣⎦可知,在0x ≥内,当2πx k =+∈Z 时,()2g x =,当π2π2π6k x k +≤≤+2πx k ≠+∈Z 时,()1g x =,当2π2πk x k ≤<5ππ2π2π6k x k +<≤+,k ∈Z 时,()0g x =,因为()()()()g x f x f x g x -=-==⎡⎤⎡⎤⎣⎦⎣⎦,所以()g x 为偶函数,则函数()g x 的图象如下图所示显然()g x 不是周期函数,故选项A 正确,B 错误,C 错误;()g x x =,当()0g x =时,0x =方程有一个实数根,当()1g x =时,x =π212⎛⎫=≠ ⎪⎝⎭,方程没有实数根,当()2g x =时,πx =,此时()π02g =≠,方程没有实数根,()g x x =只有1个实数根,故D 正确;故选:AD.10.答案:AD解析:对于A,函数()π23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==,()()πf x f x +=,A正确;对于B,由πππ2π3266332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线x =对于C,由πππ2π32066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 的图象不关于点π,06⎛⎫⎪⎝⎭对称,C 错误;对于D,当5ππ,1212x ⎛⎫∈- ⎪⎝⎭时,πππ2,322x ⎛⎫+∈- ⎪⎝⎭,而正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,因此函数()f x 在区间5ππ,1212⎛⎫- ⎪⎝⎭上单调递增,D 正确.故选:AD.11.答案:ACD解析: 函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =ππ3π42k ϕ∴⨯+=+,k ∈Z ,ππ4k ϕ∴=-+,k ∈Z因为ππ22ϕ-<<,所以ϕ=π()sin(3)4f x x =-.函数πππ()sin 3sin 312124f x x x ⎡⎤⎛⎫+=+-= ⎪⎢⎥⎝⎭⎣⎦为奇函数,故A 正确;当[,123ππx ∈,π3π0,434x ⎡-∈⎤⎢⎥⎣⎦,函数()f x 没有单调性,故B 错误;若12|()()|2f x f x -=,因为[]()1,1f x ∈-,所以()()1211f x f x =⎧⎪⎨=-⎪⎩或()()1211f x f x =-⎧⎪⎨=⎪⎩,则12|x x -2π3=5π5ππsin 3sin 012124f π⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 图象关于5π,012⎛⎫⎪⎝⎭中心对称,故D 正确故选:ACD ..解析:由题意得:DCE ACE ∠+∠=π2CAE ACE +∠=所以DCE CAE ∠=∠,故sin sin DCE CAE ∠=∠=cos CAE ∠==因为sin CAB ∠=45CAB ∠=故()sin sin sin cos cos sin EAB CAE CAB CAE CAB CAE CAB∠=∠+∠=∠∠+∠∠343455=⨯=因为5AB =,ACB ∠=CAB ∠=3BC =,4AC =又因为AEC ∠=CAE ∠=,所以cos 4AE AC CAE =∠==的cos 11cos sin cos tan 131cos cos θθθθθθθ====+++所以ABE △的面积是11sin 522S AB AE EAB =⋅⋅∠=⨯=14.答案:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z 解析:终边落在阴影部分第二象限最左边的角为360120k ⋅︒+︒,k ∈Z ,终边落在阴影部分第四象限最左边的角为,k ∈Z .所以终边落在阴影部分(含边界)的角的集合是.故答案为:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z .15.答案:(1)π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭(2)1198,10044⎡⎫⎪⎢⎣⎭解析:(1)由题意得1052A ==.因为在一次振动中,小球从最高点运动至最低点所用时间为1s ,所以最小正周期为2s ,即2T ==π=,所以π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭.(2)由(1)知,当t =最高点.因为小球在0s t 0149504T tT +≤<+.因为2T =,所以01984t ≤<所以0t 的取值范围为1198,10044⎡⎫⎪⎢⎣⎭.16.答案:(1)π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z (2)36045k ⋅︒-︒36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z解析:(1)与角α终边相同的角的集合为π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z .(2)令π4π2π2π3k -<+<,得136k -<<又k ∈Z ,2k ∴=-,-1,0,∴在()4π,2π-内与角α终边相同的角是17.答案:(1)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭;单调递减区间为π2π[π,π]()63k k k ++∈Z(2)a =5=解析:(1)由题意解题思路知A =5ππ126=-=所以πT =,2π2πω==,所以()sin(2)f x x ϕ=+.将π,16⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+,得πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2π2k ϕ+=+,k ∈Z ,即π2π6k ϕ=+,k ∈Z ,又||πϕ<,所以ϕ=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭.π3π2π22π62k x k +≤+≤+,k ∈Z 2πππ3k x k +≤≤+,k ∈Z ,即()f x 的单调递减区间为π2π[π,π]()63k k k ++∈Z .(2)由(1)可得π()sin (0)6g x ax a ⎛⎫=+> ⎪⎝⎭,由()g x 的图象关于直线x =πππ62k =+,k ∈Z ,即51544a k =+,k ∈Z ,当π0,15x ⎡⎤∈⎢⎥⎣⎦时,ππππ,66156a ax ⎡⎤+∈+⎢⎥⎣⎦,由()g x 在[π0,15ππ62+≤,即5a ≤.又0a >且51544a k =+,k ∈Z ,所以a =5=.18.答案:(1)π()cos 23f x x ⎛⎫=+ ⎪⎝⎭(2)35-解析:(1)ππππcos 2cos 2π2tan 22333()ππtan 2πsin π233x x x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎛⎫⎛⎫-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππsin 2cos 2tan 2π333cos 2ππ3tan 2sin 233x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭==+ ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.(2)因为()00πcos 23f x x ⎛⎫=+= ⎪⎝⎭所以000ππππsin 2sin 2cos(2)6323x x x ⎡⎤⎛⎫⎛⎫-=+-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦0002πππcos 2cos 2πcos 2333x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故00π2π33sin 2cos 2631010x x ⎛⎫⎛⎫-+-=--=⎪ ⎪⎝⎭⎝⎭19.答案:(1)1-(2)3225-解析:(1)由题意得π2βα=+sin sin cos cos αβαβ=πsin sin sin cos 21πcos sin cos cos 2αααααααα⎛⎫+⎪⎝⎭==-=-⎛⎫+ ⎪⎝⎭.35α=,sin α=则πcos cos sin 2βαα⎛⎫=+=-= ⎪⎝⎭所以442sin cos 255αβ⎛⎫=⨯⨯-= ⎪⎝⎭。
专题 三角函数的图象与性质一、题型全归纳题型一 三角函数的定义域【题型要点】三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. (2)转化为求解简单的三角不等式来求复杂函数的定义域.【例1】(2020·昆山一中模拟)1.函数y =lg(3tan x -3)的定义域为 .【答案】:Z k k k ∈⎪⎭⎫⎝⎛++,2,6ππππ【解析】:要使函数y =lg(3tan x -3)有意义,则3tan x -3>0,即tan x >33.所以π6+k π<x <π2+k π,k ∈Z . 【例2】函数y =cos x -12的定义域为 .【答案】 ⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ【解析】 要使函数有意义,则cos x -12≥0,即cos x ≥12,解得-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ. 题型二 三角函数的单调性命题角度一 确定三角函数的单调性(单调区间)【题型要点】求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.【例1】(2020·广东省七校联考)函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是( ) A.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,342,322ππππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,344,324ππππ D.Z k k k ∈⎪⎭⎫ ⎝⎛+-,344,324ππππ 【解析】:由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ,故选B. 【例2】.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛24ππ,单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递增,故A正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.命题角度二 利用三角函数的单调性比较大小利用单调性比较大小的方法:首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.【例3】已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πx ,设a =⎪⎭⎫⎝⎛7πf ,b =⎪⎭⎫⎝⎛6πf ,c =⎪⎭⎫⎝⎛3πf ,则a ,b ,c 的大小关系是( ) A .a <c <b B .c <a <b C .b <a <cD .b <c <a【解析】 a =⎪⎭⎫⎝⎛7πf =2sin 10π21,b =⎪⎭⎫⎝⎛6πf =2sin π2=2,c =⎪⎭⎫⎝⎛3πf =2sin 2π3=2sin π3, 因为y =sin x 在⎥⎦⎤⎢⎣⎡20π,上单调递增,且π3<10π21<π2,所以c <a <b .命题角度三 已知三角函数的单调区间求参数【题型要点】已知函数单调性求参数——明确一个不同,掌握两种方法(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.【例4】(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D .13【解析】 法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,所以⎩⎨⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎨⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B.命题角度四 利用三角函数的单调性求值域(最值)【题型要点】1.三角函数值域的求法 (1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域. (3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域. 2.换元法求三角函数的值域(最值)的策略(1)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值). (2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例5】 (2019·高考全国卷Ⅱ)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -3cos x 的最小值为 . 【解析】 f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =1-2cos 2x -3cos x =-2243cos ⎪⎭⎫ ⎝⎛+x +178,因为cosx ∈[-1,1],所以当cos x =1时,f (x )取得最小值,f (x )min =-4.【例6】(2020·河北省中原名校联盟联考)若函数f (x )=3sin ⎪⎭⎫⎝⎛+10πx -2在区间⎥⎦⎤⎢⎣⎡a ,2π上单调,则实数a 的最大值是 .【解析】:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎥⎦⎤⎢⎣⎡5752ππ,上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎥⎦⎤⎢⎣⎡a ,2π上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5.题型三 三角函数的周期性与奇偶性【题型要点】(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的最小正周期为2πω,函数y =A tan(ωx +φ)(ω>0)的最小正周期为πω求解.【例1】(2020·湖北宜昌联考)已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,则( ) A .ω=2,θ=π2 B .ω=12,θ=π2 C .ω=12,θ=π4D .ω=2,θ=π4【答案】因为函数y =2sin(ωx +θ)的最大值为2,且其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,所以函数y =2sin(ωx +θ)的最小正周期是π. 由2πω=π得ω=2.因为函数y =2sin(ωx +θ)为偶函数,所以θ=π2+k π,k ∈Z . 又0<θ<π,所以θ=π2,故选A.【例2】(2020·石家庄市质量检测)设函数f (x )=sin ⎪⎭⎫ ⎝⎛-+4πϕωx ⎪⎭⎫⎝⎛<>2,0πϕω的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎪⎭⎫⎝⎛20π,上单调递增 B .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递减 C .f (x )在⎪⎭⎫⎝⎛20π,上单调递减 D .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递增 【解析】:.f (x )=sin ⎪⎭⎫⎝⎛-+4πϕωx ,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎪⎭⎫ ⎝⎛-+42πϕx .f (-x )=f (x ),即f (x )为偶函数,所以φ-π4=k π+π2(k ∈Z ),所以φ=k π+3π4(k ∈Z ).因为|φ|<π2,所以φ=-π4,所以f (x )=-cos 2x ,所以f (x )在⎪⎭⎫ ⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛02-,π上单调递减,故选A. 题型四 三角函数的对称性【题型要点】对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解. (2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【例1】(2020·北京西城区模拟)函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是( )A.⎪⎭⎫⎝⎛13,π B.⎪⎭⎫ ⎝⎛012,π C.⎪⎭⎫ ⎝⎛0125,π D .⎪⎭⎫⎝⎛012-,π 【解析】 由题意可得2πω=π,所以ω=2,可得f (x )=A sin(2x +φ),再由函数图象关于直线x =π3对称,故⎪⎭⎫ ⎝⎛3πf =A sin ⎪⎭⎫⎝⎛+ϕπ32=±A ,故可取φ=-π6. 故函数f (x )=A sin ⎪⎭⎫⎝⎛-62πx ,令2x -π6=k π,k ∈Z , 可得x =k π2+π12,k ∈Z ,故函数的对称中心为⎪⎭⎫⎝⎛+0122,ππk ,k ∈Z . 所以函数f (x )图象的一个对称中心是⎪⎭⎫⎝⎛012,π. 【例2】已知函数f (x )=|sin x ||cos x |,则下列说法错误的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的周期为π2C .(π,0)是f (x )的一个对称中心D .f (x )在区间⎥⎦⎤⎢⎣⎡24ππ,上单调递减【解析】:f (x )=|sin x ||cos x |=|sin x cos x |=12·|sin 2x |,则⎪⎭⎫ ⎝⎛2πf =12|sin π|=0,则f (x )的图象不关于直线x =π2对称,故A 错误;函数周期T =12×2π2=π2,故B 正确;f (π)=12|sin 2π|=0,则(π,0)是f (x )的一个对称中心,故C 正确;当x ∈⎥⎦⎤⎢⎣⎡24ππ,时,2x ∈⎥⎦⎤⎢⎣⎡ππ,2,此时sin 2x >0,且sin 2x 为减函数,故D 正确.题型五 三角函数的图象与性质的综合问题【题型要点】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【例1】 已知函数f (x )=2sin ⎪⎭⎫⎝⎛-42πx . (1)求函数的最大值及相应的x 值的集合;(2)求函数f (x )的图象的对称轴方程与对称中心.【解析】:(1)当sin ⎪⎭⎫⎝⎛-42πx =1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,83ππ(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z .即函数f (x )的图象的对称轴方程为x =3π8+12k π,k ∈Z .由2x -π4=k π,k ∈Z 得x =π8+12k π,k ∈Z ,即对称中心为⎪⎭⎫⎝⎛+0,28ππk k ∈Z . 【例2】已知函数f (x )=sin(2π-x )·sin ⎪⎭⎫⎝⎛x -23π-3cos 2x + 3.(1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎡⎦⎤0,7π12时,求f (x )的最小值和最大值. 【解析】 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2x +3=sin x cos x -3cos 2x +3=12sin 2x -32(cos 2x +1)+3=12sin 2x -32cos 2x +32=sin ⎪⎭⎫ ⎝⎛3-2πx +32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),则x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知,-32≤sin ⎪⎭⎫ ⎝⎛3-2πx ≤1,即0≤sin(2x -π3)+32≤2+32. 故f (x )的最小值为0,最大值为2+32.二、高效训练突破 一、选择题1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎪⎭⎫⎢⎣⎡20π, B.⎥⎦⎤⎝⎛ππ,2 C.⎪⎭⎫⎢⎣⎡23ππ, D .⎥⎦⎤ ⎝⎛ππ223, 【解析】:法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎪⎭⎫⎢⎣⎡23ππ,.故选C.法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0B .3C .-1D .-2【解析】:因为f (b )=tan b +sin b +1=2,即tan b +sin b =1. 所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.3.已知函数f (x )=cos 2x +sin 2⎪⎭⎫ ⎝⎛+6πx ,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-12【解析】:.f (x )=1+cos 2x 2+1-cos ⎝⎛⎭⎫2x +π32=12+12cos 2x +12-12⎝⎛⎭⎫cos 2x cos π3-sin 2x sin π3=14cos 2x +34sin 2x +1=12sin⎪⎭⎫ ⎝⎛+62πx +1,则f (x )的最小正周期为π,最小值为-12+1=12,最大值为12+1=32. 4.(2020·福州市第一学期抽测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( ) A.π4 B.π2 C.3π8D .π【解析】:由题意,得f (x )=sin 2x -cos 2x =2sin⎪⎭⎫ ⎝⎛4-2πx ,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ), 解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x ≤3π8,即函数f (x )在⎥⎦⎤⎢⎣⎡838-ππ,上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.5.若⎪⎭⎫⎝⎛08,π是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( ) A .2 B .4 C .6D .8【解析】:因为f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,由题意,知⎪⎭⎫ ⎝⎛8πf =2sin ⎪⎭⎫ ⎝⎛+48πωπ=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 6.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心 D .最小正周期为π【解析】:函数y =tan(2x -π3)是非奇非偶函数,A 错;在区间(0,π3)上单调递增,B 错;最小正周期为π2,D错;由2x -π3=k π2,k ∈Z 得x =k π4+π6,当k =0时,x =π6,所以它的图象关于(π6,0)中心对称,故选C.7.(2020·武汉市调研测试)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在区间⎪⎭⎫ ⎝⎛80π,上单调递增,则ω的最大值为( ) A.12 B .1 C .2D .4【解析】:法一:因为x ∈⎪⎭⎫ ⎝⎛80π,,所以ωx +π4∈⎪⎭⎫ ⎝⎛+484πωππ,,因为f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在⎪⎭⎫ ⎝⎛80π,上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.法二:将选项逐个代入函数f (x )进行验证,选项D 不满足条件,选项A 、B 、C 满足条件f (x )在⎪⎭⎫⎝⎛80π,上单调递增,所以ω的最大值为2,故选C.8.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( ) A .当k =1,a =2时,f (sin A )<f (cos B ) B .当k =1,a =2时,f (cos A )>f (sin B ) C .当k =2,a =1时,f (sin A )>f (cos B ) D .当k =2,a =1时,f (cos A )>f (sin B )【解析】:A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin⎪⎭⎫ ⎝⎛-B 2π=cos B ,cos A <cos ⎪⎭⎫ ⎝⎛-B 2π=sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误; 当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cos B ),f (cos A )>f (sin B ),故C 错误,D 正确.9.已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .4【解析】:函数f (x )=sin ωx +3cos ωx =2sin ⎪⎭⎫ ⎝⎛+3πωx . 由f (α)=2,f (β)=2,且|α-β|的最小值是π2,所以函数f (x )的最小正周期T =π2,所以ω=2ππ2=4.10.(2020·江西八所重点中学联考)已知函数f (x )=2sin(ωx +φ)⎪⎭⎫⎝⎛<<<2,10πϕω的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A .f (x )在⎥⎦⎤⎢⎣⎡3212ππ,上是减函数 B .若x =x 0是f (x )图象的对称轴,则一定有f ′(x 0)≠0 C .f (x )≥1的解集是⎥⎦⎤⎢⎣⎡+32,2πππk k ,k ∈Z D .f (x )图象的一个对称中心是⎪⎭⎫⎝⎛03-,π 【解析】:由f (x )=2sin(ωx +φ)的图象经过点(0,1),得sin φ=12,又|φ|<π2,所以φ=π6,则f (x )=2sin⎪⎭⎫ ⎝⎛+6πωx .因为f (x )的图象关于直线x =2π3对称,所以存在m ∈Z 使得2π3ω+π6=m π+π2,得ω=3m 2+12(m ∈Z ),又0<ω<1,所以ω=12,则f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx .令2n π+π2≤12x +π6≤2n π+3π2,n ∈Z ,得4n π+2π3≤x ≤4n π+8π3,n ∈Z ,故A 错误;若x =x 0是f (x )图象的对称轴,则f (x )在x =x 0处取得极值,所以一定有f ′(x 0)=0,故B 错误;由f (x )≥1得4k π≤x ≤4k π+4π3,k ∈Z ,故C 错误;因为⎪⎭⎫ ⎝⎛-3πf =0,所以⎪⎭⎫⎝⎛03-,π是其图象的一个对称中心,故D 正确.选D.二、填空题1.比较大小:sin ⎪⎭⎫ ⎝⎛18-π sin ⎪⎭⎫⎝⎛10-π. 【解析】:因为y =sin x 在⎥⎦⎤⎢⎣⎡02-,π上为增函数且-π18>-π10>-π2,故sin ⎪⎭⎫ ⎝⎛18-π>sin ⎪⎭⎫⎝⎛10-π. 2.已知函数f (x )=4sin⎪⎭⎫ ⎝⎛3-2πx ,x ∈[-π,0],则f (x )的单调递增区间是 . 【解析】:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡127--ππ,和⎥⎦⎤⎢⎣⎡012-,π 3.设函数f (x )=cos ⎪⎭⎫ ⎝⎛6-πωx (ω>0).若f (x )≤⎪⎭⎫ ⎝⎛4πf 对任意的实数x 都成立,则ω的最小值为 . 【解析】:由于对任意的实数都有f (x )≤⎪⎭⎫⎝⎛4πf 成立,故当x =π4时,函数f (x )有最大值,故⎪⎭⎫⎝⎛4πf =1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23. 4.若函数y =cos ⎪⎭⎫ ⎝⎛+6πωx (ω∈N *)图象的一个对称中心是⎪⎭⎫⎝⎛06,π,则ω的最小值为 . 【解析】:由题意知πω6+π6=k π+π2(k ∈Z )∈ω=6k +2(k ∈Z ),又ω∈N *,所以ωmin =2.5.(2020·无锡期末)在函数∈y =cos|2x |;∈y =|cos 2x |;∈y =cos⎪⎭⎫ ⎝⎛+62πx ;∈y =tan 2x 中,最小正周期为π的所有函数的序号为 .【解析】:∈y =cos|2x |=cos 2x ,最小正周期为π;∈y =cos 2x ,最小正周期为π,由图象知y =|cos 2x |的最小正周期为π2;∈y =cos⎪⎭⎫ ⎝⎛+62πx 的最小正周期T =2π2=π;∈y =tan 2x 的最小正周期T =π2.因此∈∈的最小正周期为π.6.已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .【解析】:由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,所以ω=k +23,又ω∈(1,2),所以ω=53,从而得函数f (x )的最小正周期为2π53=6π5.三 解答题1.已知函数f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡44-ππ,时,f (x )≥-12. 【解析】:(1)f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎪⎭⎫ ⎝⎛+32πx ,所以T =2π2=π. (2)证明:令t =2x +π3,因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,因为y =sin t 在⎥⎦⎤⎢⎣⎡26-ππ,上单调递增,在⎥⎦⎤⎢⎣⎡652ππ,上单调递减,且sin ⎪⎭⎫⎝⎛6-π<sin 5π6, 所以f (x )≥sin ⎪⎭⎫⎝⎛6-π=-12,得证. 2.已知f (x )=2sin⎪⎭⎫ ⎝⎛+62πx +a +1. (1)求f (x )的单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡20π,时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.【解析】:(1)f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即⎪⎭⎫⎝⎛6πf =2sin π2+a +1=a +3=4,所以a =1. (3)由f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +2=1,可得sin⎪⎭⎫ ⎝⎛+62πx =-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.3.已知函数f (x )=sin(ωx +φ)⎪⎭⎫⎝⎛<<320πϕ的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎪⎪⎭⎫⎝⎛236,π,求f (x )的单调递增区间.【解析】:由f (x )的最小正周期为π,则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).所以sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 已知上式对∈x ∈R 都成立,所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为⎪⎭⎫ ⎝⎛6πf =32,所以sin⎪⎭⎫ ⎝⎛+⨯ϕπ62=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎪⎭⎫ ⎝⎛+32πx ,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).4.已知函数f (x )=sin ⎪⎭⎫⎝⎛x -2πsin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.【解】:(1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin⎪⎭⎫ ⎝⎛3-2πx . 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.所以x 1+x 2=56π,则x 1=56π-x 2,所以cos(x 1-x 2)=cos ⎪⎭⎫ ⎝⎛22-65x π=sin ⎪⎭⎫ ⎝⎛3-22πx ,又f (x 2)=sin⎪⎭⎫ ⎝⎛3-22πx =23,故cos(x 1-x 2)=23.。
专题六 三角函数、三角恒等变换与解三角形一、考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法. 二、考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”. 三、命题热点高考对给部分考查的主要内容为:任意角的概念和弧度制、任意角的三角函数的概念、诱导公式、同角三角函数关系、三角函数的图像和性质、两角和与差的三角函数公式、二倍角公式、正弦定理、余弦定理,并能步运用它们解斜三角形,并结合平面向量的概念和线性运算、平面向量的数量积、平面向量的应用。
高考对该部分的考查重基础,虽然该部分内容在试卷中试题数量多、占有的分值较多,但是试题以考查基础为主,试题的难度一般是中等偏下。
第一部分:基本知识点回顾第一节:三角函数概念1. 角的概念2. 象限角第I 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222ππαπα 第II 角限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,222ππαππα 第III 象限角的集合: ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,2322ππαππα 第IV 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,)1(2232παππα3. 轴线角4. 终边相同的角①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {}Z k k ∈+⨯=,360|αββ ; ②终边在x 轴上的角的集合:{}Z k k ∈⨯=,180| ββ;③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ;④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ.5. 弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化:π=︒1801801π=︒ 1弧度︒≈︒=3.57180π6.弧度制下的公式 扇形弧长公式r =α,扇形面积公式211||22S R R α==,其中α为弧所对圆心角的弧度数。
7. 任意角的三角函数定义:利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在α终边上任取一点(,)P x y (与原点不重合),记22||r OP x y ==+,则sin y r α=,cos x r α=,tan y xα=,注: ⑴三角函数值只与角α的终边的位置有关,由角α的大小唯一确定,∴三角函数是以角为自变量,以比值为函数值的函数.(2)正弦、余弦、正切函数的定义域8. 各象限角的各种三角函数值符号:一全二正弦,三切四余弦第二节:同角三角函数的基本关系式及诱导公式 一、基础知识(一) 同角三角函数的基本关系式: ①平方关系;1cos sin 22=+αα ②商式关系;αααtan cos sin = 任意角三角函数定义单位圆定义: 坐标点定义: 象限角的三角函数值的符号轴线角的三角函数值 三角函数线 同角三角函数的基本关系式 诱导公式三角函数的图像与性质 定义域、值域、周期性、奇偶性、 单调性(最值)、对称性三角函数的图像 三角函数的性质 函数)sin(ϕω+=x A y 的图像 五点作图法 三角函数的图像变换相关概念的物理意义 先相位后周期:先周期后相位:三角恒等变换1.和、差角公式;2.二倍角公式;3.升、降幂公式;4.半角公式;5.辅助角公式(收缩代换). 解三角形正弦定理 余弦定理及推论 解三角形的四种类型 三角形的面积公式 角的有关概念任意角 定义 分类终边相同角的概念 按旋转方向分: 按终边位置分:弧度制 定义及规定 弧度与角度的换算特殊角的度数与 弧度数的对应表 扇形公式③倒数关系。
数学讲义之三角函数、解三角形【主干内容】1 1 21. 弧长公式:l I |r. 扇形面积公式:s扇形尹| r22. 三角函数的定义域:4. 同角三角函数的基本关系式:si^ tan sin2cos21cosk5. 诱导公式:把亍的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”。
重要公式:cos() cos cos sin sin6•三角函数图象的作法:描点法及其特例一一五点作图法(正、余弦曲线)三点二线作图法(正切曲线)【注意!!!】本专题主要思想方法1. 等价变换。
熟练运用公式对问题进行转化,化归为熟悉的基本问题;2. 数形结合。
充分利用单位圆中的三角函数线及三角函数图象帮助解题;3. 分类讨论。
【题型分类】题型一:三角运算,要求熟练使用各种诱导公式、倍角公式等。
〖例1〗(10全国卷I文)cos300A.31-C1n .3B.— D. 2222C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】cos300cos36601cos602〖例2〗(10全国卷n文)已知sin2,则cos(x 2 )3A. JB.1C.1D V5D.3993【解析】B:本题考查了二倍角公式及诱导公式,•••SINA=2/3 , cos( 2 )cos2(12sin 2) -9〖例3〗(10福建文)计算12sin 22.5的结果等于()A.-B.豆C.D.迈2232【答案】B2故选B.【解原式=cos 45 - 51例4〗(10浙江文)函数f(x) sin2(2x -)的最小正周期是 ___________4最小正周期为2,本题主要考察了二倍角余弦公式的灵活运用,属容易题。
题型二:三角函数的图象:三角函数图象从“形”上反应了三角函数的性质。
是()D解析:对解析式进行降幕扩角,转化为f x】cos 4x —1,可知其2 2 21例1〗(10重庆文)下列函数中,周期为,且在[壬,?]上为减函数的是A. y sin(2x -)B. y cos(2x )C. y sin(x 【答案】AD.cos(x —)1例2〗(09浙江文)已知 a 是实数,则函数 f (x ) 1 a sin ax 的图象不可能1例3〗为得到y sin2x 的图象A.向左平移丸个长度单位12C.向左平移4个长度单位6分析:先统一函数名称,在根据平移的法则解决.B .向右平移个长度单位12D.向右平移士个长度单位6n解析:函数 y cos 2x sin 2x — —33 2sin 2xsin2 x512故要将函数y sin2x的图象向左平移丸个长度单位,选择答案A.121例4〗(10江西文)四位同学在同一个坐标系中分别选定了一个适当的区间,y sin(x ), y sin(x )各自作出三个函数y sin2x,63的图像如下,结果发现恰有一位同学作出的图像有错误,那么有错误的图像是 【答案】C【命题意图】考查三角函数的图像与性质•【解析】作出三个函数图像对比分析即可选择 Co2最小正周期为 -.3(I)求 的最小正周期.〖例6〗(11浙江文)已知函数 f(x) As in (§x ) , x R , A 0 ,0 -. y f (x)的部分图像,如图所示, P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1, A).(I)求f (x)的最小正周期及 (n)若点R 的坐标为(1,0),1例5〗(09重庆文)设函数f(x )2 2(sin x cos x) 2cos x( 0)的(n)若函数y g(x)的图像是由y f(x)的图像向右平移三个单位长度得到,求y g(x)的单调增区间.解:(I)2 2依题意得————,故2 3的最小正周期为由2k 2 解得三k3依题意得:5w 3x w 2k24 2 w x w k 4 3-(kZ) 寻(kZ)\故y g(x)的单调增区间为:拿的值;PRQ —,求A 的值.题型三:三角函数的最值: 最值是三角函数最为重要的内容之一, 其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问 题。
高三数学一轮复习教案――三角函数一、本章知识结构:二、重点知识回顾1、终边相同的角的表示方法:凡是与终边α相同的角,都可以表示成k ·3600+α的形式,特例,终边在x 轴上的角集合{α|α=k ·1800,k ∈Z},终边在y 轴上的角集合{α|α=k ·1800+900,k ∈Z},终边在坐标轴上的角的集合{α|α=k ·900,k ∈Z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
理解弧度的意义,并能正确进行弧度和角度的换算;⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度)180(π='1857 ≈⑵弧长公式:R l θ=;扇形面积公式:Rl R S 21212==θ。
2、任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:(1)三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy=αtan (2)三角函数符号规律:一全正,二正弦,三正切,四余弦;(3)特殊角的三角函数值 α6π 4π 3π 2π π23π 2πsin α 0 21 22 23 1-1cos α 123 22 21 0 -1 0 1tan α 033 13不存在 0 不存在 0(3)同角三角函数的基本关系:x xx x tan cos ;1cos sin 22==+ (4)诱导公式(奇变偶不变,符号看象限...........): sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan αsin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan αsin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2πα-)=cos α,cos(2πα-)=sin αsin(2πα+)=cos α,cos(2πα+)=-sin α3、两角和与差的三角函数 (1)和(差)角公式①;sin cos cos sin )sin(βαβαβα±=±②;sin sin cos cos )cos(βαβαβα =±③βαβαβαtan tan 1tan tan )tan( ±=±(2)二倍角公式二倍角公式:①αααcos sin 22sin =;②ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③ααα2tan 1tan 22tan -=(3)经常使用的公式 ①升(降)幂公式:21cos 2sin2αα-=、21cos 2cos 2αα+=、1sin cos sin 22ααα=; ②辅助角公式:22sin cos )a b a b αααϕ+=++(ϕ由,a b 具体的值确定); ③正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-⋅.4、三角函数的图象与性质(一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘:⑴最值的情况;⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈ 注意加了绝对值后的情况变化. ⑷写单调区间注意0ω>.(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式. ⑴“五点法”作图的列表方式;⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. (三)正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 5、解三角形Ⅰ.正、余弦定理⑴正弦定理R CcB b A a 2sin sin sin ===(R 2是ABC ∆外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③CB A cb a Cc B b A a sin sin sin sin sin sin ++++===。
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl=α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ;rad 01745.01801≈π= 。
3、特殊角的三角函数值30 45 60 90 120 135 150 18006π4π3π2π32π43π65ππsin 021222312322210cos 1232221021-22-23-1-tan3313⨯3-1-33-0210 225 240 270 300 315 330 36067π45π34π23π35π47π611ππ24、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅n πk 2第一象限角平分线36045⋅+n π+πk 24x 轴负半轴360180⋅+n π+πk 2第二象限角平分线 360135⋅+n π+πk 243x 轴 180⋅n πk 第三象限角平分线360225⋅+n π+πk 245y 轴正半轴36090⋅+n π+πk 22第四象限角平分线 360315⋅+n π+πk 247y 轴负半轴 360270⋅+n π+πk 223第一、三象限角平分线18045⋅+n π+πk 4y 轴18090⋅+n π+πk 2第二、四象限角平分线 180135⋅+n π+πk 43坐标轴90⋅n 2πk 象限角平分线9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
三角函数一轮复习指导 沙河中学 谷天雨一、三角函数知识框架图二、考纲要求:(一)三角函数1.任意角的概念、弧度制 (1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2. 三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出απ±2,απ±的正弦、余弦、正切的诱导公式, 能画出x y sin =,x y cos =,x y tan =的图象,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[]π2,0上的性质(如单调性、最大值和最小值以及 与 x 轴的交点等),理解正切函数在区间⎥⎦⎤⎢⎣⎡++-ππππk k 2,2内的单调性.(4) 理解同角三角函数的基本关系式:1cos sin 22=+αα αααcos sin tan =(5)了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象,了解参数A ,ω,ϕ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实。
(理科)(二)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(三)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.三、考试内容及层次要求四、三角函数、三角恒等变换与解三角形知识清单1.⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l α=;扇形面积公式:22121R lR s α==2.三角函数定义:角α终边上任一点(非原点)P ),(y x ,设r OP =|| 则:,cos ,sin r x r y ==ααx y =αtan3.三角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c ”)4.诱导公式记忆规律:“奇变偶不变,符号看象限”,化简操作:负化正(奇偶性),大化小(周期性),()α化成锐角就终了。
专题一:三角函数
一、三角函数
1、同角三角函数的基本关系:22sin cos 1αα+= sin tan cos ααα
=
2、诱导公式(一) tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k
诱导公式(二) tan )tan(cos )cos( sin )sin(ααα
ααα-=-=--=- 诱导公式(三)sin(180)=-sin ;cos(180)cos ;tan(180)tan αααααα++=+=。
tan )180tan(cos )180cos( sin )180sin(ααα
ααα-=-︒-=-︒=-︒
诱导公式(四)
sin )2
cos( cos )2
sin(
ααπ
ααπ
=-=-
sin )2
cos(
cos )2
sin(
ααπ
ααπ
-=+=+
3、两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n
αβα
βαβ+=-
两角和与差的正弦公式:()sin sin cos cos sin αβαβαβ+=+ ()s i n s i n c o s c o s s i n
αβα
βαβ-=-
两角和与差的正切公式:()tan tan tan 1tan tan αβαβαβ
++=
-; ()tan tan tan 1tan tan αβαβαβ
--=
+
注意:,,()2
2
2
k k k k z π
π
π
αβπαπβπ±≠
+≠
+≠
+∈
4、辅助角公式:
sin cos ))a x b x x x x ϕ+=
+
=+
其中辅助角ϕ
由cos sin ϕϕ⎧
=⎪⎪
⎨
⎪=⎪⎩
确定,即辅助角ϕ的终边经过点(,)a b
5、二倍角正弦、余弦和正切公式:sin 22sin cos ααα=
22
2
2
c o s 2c o s s i n 1
2s i n
2c o s 1
α
αααα=-
=-=- 2
2t a n t a n 21t a n αα
α
=-注意:2,2
2
k k π
π
απαπ≠
+≠
+ ()k z ∈
升幂公式:2
21cos 21cos 2cos ;sin 2
2
α
α
αα+-=
=
降幂公式:22
1cos22cos;1cos22sin
αααα
+=-=
7、正弦函数、余弦函数和正切函数的图象与性质:
sin
y x
=cos
y x
=tan
y x
=
图
象
定
义
域
R R
,
2
x x k k
π
π
⎧⎫
≠+∈Z
⎨⎬
⎩⎭
值
域
[]
1,1
-[]
1,1
-R
最
值
当
2
2
x k
π
π
=+
()
k∈Z时,
m ax
1
y=;当
2
2
x k
π
π
=-
()
k∈Z时,
m in
1
y=-.
当()
2
x k k
π
=∈Z
时,
m ax
1
y=;当
2
x kππ
=+
()
k∈Z时,
m in
1
y=-.
既无最大值也无最
小值
周
期
性
2π2ππ
奇
偶
性
奇函数偶函数奇函数
单
调
性
在
2,2
22
k k
ππ
ππ
⎡⎤
-+
⎢⎥
⎣⎦
在
[]()
2,2
k k k
πππ
-∈Z
上是增函数;在
在
,
22
k k
ππ
ππ
⎛⎫
-+
⎪
⎝⎭函
数
性
质
()k ∈Z 上是增函
数;在
32,222k k ππππ⎡
⎤++⎢⎥⎣⎦
()k ∈Z 上是减函
数. []2,2k k πππ+ ()k ∈Z 上是减函
数.
()k ∈Z 上是增函
数.
对
称性
对
称
中
心
()(),0k k π∈Z
对
称
轴
()2
x k k π
π=+
∈Z
对
称
中
心
(),02k k ππ⎛⎫
+∈Z ⎪⎝⎭
对称轴
()x k k π=∈Z
对
称
中
心
(),02k k π⎛⎫
∈Z ⎪⎝⎭
无对称轴
8、常用特殊角的三角函数值表:
二、解三角形
1、正弦定理:在C ∆A B 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆A B 的外接圆的半径,则有
2sin sin sin a b c R C
=
=
=A
B .
2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R
A =
,sin 2b R
B =,sin 2c
C R
=
;
③::sin :sin :sin a b c C =A B ; ④
sin sin sin sin sin sin a b c a b c C
C
++=
=
=
A +
B +A
B
.
3、三角形面积公式:111sin sin sin 2
2
2
C S bc ab C ac ∆A B =
A =
=
B .
4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,
222
2cos c a b ab C =+-.
5、余弦定理的推论:222
cos 2b c a
bc
+-A =
,222
cos 2a c b
ac
+-B =
,222
cos 2a b c
C ab
+-=
.
6、设a 、b 、c 是C ∆A B 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .。