最小生成树的构造离散数学
- 格式:docx
- 大小:12.01 KB
- 文档页数:1
离散数学上机实验指导徐凤生如果你需要索取源程序,请发邮件至xfs@。
实验11实验内容(1)求任意一个命题公式的真值表。
(2)利用真值表求任意一个命题公式的主范式。
(3)利用真值表进行逻辑推理。
注:(2)和(3)可在(1)的基础上完成。
2实验目的真值表是命题逻辑中的一个十分重要的概念,利用它几乎可以解决命题逻辑中的所有问题。
例如,利用命题公式的真值表,可以判断命题公式的类型、求命题公式的主范式、判断两命题公式是否等价,还可以进行推理等。
本实验通过编写一个程序,让计算机给出命题公式的真值表,并在此基础上进行命题公式类型的判定、求命题公式的主范式等。
目的是让学生更加深刻地理解真值表的概念,并掌握真值表的求解方法及其在解决命题逻辑中其他问题中的应用。
3算法的主要思想利用计算机求命题公式真值表的关键是:①给出命题变元的每一组赋值;②计算命题公式在每一组赋值下的真值。
真值表中命题变元的取值具有如下规律:每列中0和1是交替出现的,且0和1连续出现的个数相同。
n个命题变元的每组赋值的生成算法可基于这种思想。
含有n个命题变元的命题公式的真值的计算采用的方法为“算符优先法”。
为了程序实现的方便,约定命题变元只用一个字母表示,非、合取、析取、条件和双条件联结词分别用!、&、|、-、+来表示。
算符之间的优先关系如表1-32所示:为实现算符优先算法,另一个称作OPND,用以寄存操作数或运算结果。
算法的基本思想是:(1)首先设置操作数栈为空栈,符号“@”为运算符的栈底元素;(2)调用函数Divi(exp,myopnd)得到命题公式包含的命题变元序列myopnd(按字典序排列,同一个命题变元只出现一次);(3)依次读入命题公式中的每个字符,若是命题变元则其对应的赋值进OPND栈,若是运算符,则和OPTR栈的栈顶运算符比较后作相应操作,直至整个命题公式求值完毕。
实验21实验内容(1)求任意两个集合的交集、并集、差集。
(2)求任意一个集合的幂集。
离散数学实验报告姓名:学号:班级:实验地点:实验时间:1实验目的和要求运用最小生成树思想和求最小生成树程序解决实际问题。
实际问题描述如下:八口海上油井相互间距离如下表,其中1号井离海岸最近,为5km。
问从海岸经1号井铺设油管把各井连接起来,怎样连油管长度最短(为便于检修,油管只准在油井处分叉)?2实验环境和工具实验环境:Windows 7 旗舰版工具:Dev-C++ 5.8.33实验过程3.1算法流程图3.2程序核心代码//油管铺设问题 Prim算法实现#include <iostream>#include<iomanip>using namespace std;#define MAXV 10#define INF 32767 //INF表示∞typedef int InfoType;typedef struct{int no; //顶点编号InfoType info; //顶点其他信息} VertexType; //顶点类型typedef struct{ //图的定义float edges[MAXV][MAXV]; //邻接矩阵int vexnum; //顶点数VertexType vexs[MAXV]; //存放顶点信息} MGraph; //图的邻接矩阵类型/*输出邻接矩阵g*/void DispMat(MGraph g){int i,j;for (j=0;j<g.vexnum;j++)if (g.edges[i][j]==INF)cout<<setw(6)<<"∞";elsecout<<setw(6)<<g.edges[i][j];cout<<endl;}}void prim(MGraph g,int v){ //从顶点V0出发,按Prim算法构造G的最小生成树//输出最小生成树的每条边及其权值float Vlength[MAXV];int i, j, k;int cloest[MAXV];float min;float sum = 0.0;for(i=0;i<g.vexnum;i++){Vlength[i]=g.edges[v][i];cloest[i]=v;}min=INF; //min为其中最大的一条边=MAXVfor(j=0;j<g.vexnum;j++){ //找n-1条边if(Vlength[j]!=0&&Vlength[j]<min){min=Vlength[j];k=j;}}cout<<"连接油井<"<<cloest[k]+1<<","<<k+1<<">"<<"长度为:"<<min<<endl;sum+=min;Vlength[k]=0;Vlength[cloest[k]]=0;for(j=0;j<g.vexnum;j++){ //选择当前代价最小的边if(g.edges[k][j]!=0&&g.edges[k][j]<Vlength[j]){ Vlength[j]=g.edges[k][j];cloest[j]=k;}}}cout<<"管道总长度为:"<<sum<<endl;}int main(){int i,j,u=3;MGraph g;float A[MAXV][10];g.vexnum=8;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[i][j]=INF;A[0][1]=1.3; A[0][2]=2.1; A[0][3]=0.9;A[0][4]=0.7; A[0][5]=1.8; A[0][6]=2.0;A[0][7]=1.8; A[1][2]=0.9; A[1][3]=1.8;A[1][4]=1.2; A[1][5]=2.8; A[1][6]=2.3;A[1][7]=1.1; A[2][3]=2.6; A[2][4]=1.7;A[2][5]=2.5; A[2][6]=1.9; A[2][7]=1.0;A[3][4]=0.7; A[3][5]=1.6; A[3][6]=1.5;A[3][7]=0.9; A[4][5]=0.9; A[4][6]=1.1;A[4][7]=0.8; A[5][6]=0.6; A[5][7]=1.0;A[6][7]=0.5;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[j][i]=A[i][j];for (i=0;i<g.vexnum;i++) /*建立图的邻接矩阵*/ for (j=0;j<g.vexnum;j++)g.edges[i][j]=A[i][j];cout<<endl;cout<<"各油井间距离:\n";DispMat(g);cout<<endl;cout<<"最优铺设方案:\n";prim(g,0);cout<<endl;return 0;}3.3运行结果3.4运行结果分析程序实现了输出需要铺设管道的油井编号,并给出了每条管道长度以及总长度,基本实现了题目要求。
离散数学大作业——编程实现最小生成树学院:电子工程学院班级:021051学号:*********名:***一、最小生成树概念:设G=(V,E)是无向连通带权图,即一个网络。
E中每条边(v,w)的权为c[v,w]。
所有生成树G’上各边权的总和最小的生成树称为G的最小生成树。
二、prim算法(贪心思想)设图G =(V,E),其生成树的顶点集合为U。
1.把v0放入U。
2.在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
3.把2找到的边的v加入U集合。
如果U集合已有n个元素,则结束,否则继续执行2其算法的时间复杂度为O(n^2)三、程序源代码# include<stdio.h># include<malloc.h># define m 6# define n 11 typedef struct {int i,tag;char s;}vertice;typedef struct {int a,b,tag;int weight;}edge;vertice v[m];edge e[n];void inititate();void sort();void chuli();int biaoji( edge *s); void print();void main() {inititate();sort();chuli();print();}void inititate() {int i;printf("输入图的%d个顶点:\n",m);for(i=0;i<m;i++) {v[i].i=i+1;v[i].tag=0;scanf("%c",&v[i].s);getchar();}printf("\n输入%d条边的两端顶点及权:\n",n);for(i=0;i<n;i++) {scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].weight);e[i].tag=0;}}int biaoji( edge *s) {int i,j;i=s->a;j=s->b;if(v[i].tag==0 || v[j].tag==0) {v[i].tag=1;v[i].tag=1;s->tag=1;return 1;}return 0;}void print() {int i,j=0;printf("\n最小生成树的边为:\n");for(i=0;i<n&&j<m-1;i++)if(e[i].tag==1) {printf("<%d-%d> ",e[i].a,e[i].b);j++;}printf("\n\n");}void sort() {edge s;int i,j;for(i=0;i<n-1;i++) {for(j=i+1;j<n;j++) {if(e[i].weight>e[j].weight) {s=e[i];e[i]=e[j];e[j]=s;}}}}void chuli() {int i,j=0;edge *s;for(i=0;i<n&&j<m;i++) {s=&e[i];if(biaoji(s)==1)j++;}}四、实验结果输入图的6个顶点:1 2 3 4 5 6输入11条边的权及两端顶点:1 2 11 4 61 6 91 3 112 3 22 4 33 5 83 6 74 5 104 6 45 6 5最小生成树的边为:<1-2> <2-3> <2-4> <4-6> <5-6> Press any key to continue。
离散数学最小生成树例题(实用版)目录1.最小生成树的概念和性质2.最小生成树的算法原理3.最小生成树的算法举例4.最小生成树的应用实例正文一、最小生成树的概念和性质最小生成树(Minimum Spanning Tree,简称 MST)是指在一个加权连通图中,选择一些边,使得所有节点都能被联通,并且边代价之和最小。
最小生成树具有以下性质:1.树中的边是最短的边:在生成树中,任意两个节点之间的边都是最短的边,即不存在比这条边更短的边能连接这两个节点。
2.树是没有圈的:最小生成树显然不应该有圈,因为如果有圈,可以通过删除圈中的一条边来形成一个更小的生成树。
二、最小生成树的算法原理求解最小生成树的经典算法有 Kruskal 算法和 Prim 算法。
这里我们以 Prim 算法为例介绍最小生成树的算法原理。
Prim 算法的基本思想是从一个初始节点开始,不断地寻找与当前生成树距离最近的节点,将其加入到生成树中,直到所有节点都加入到生成树中为止。
在寻找距离最近的节点时,我们需要使用贪心策略,即每次都选择距离最近的节点。
为了判断一个节点是否已经加入了生成树,我们可以使用并查集数据结构。
三、最小生成树的算法举例这里我们以一个简单的例子来说明 Prim 算法的求解过程。
假设有一个图,共有 4 个节点,5 条边,边的权值分别为 1, 2, 3, 4, 5。
我们选择节点 1 作为初始节点,按照 Prim 算法的步骤,可以得到最小生成树的权值为 9,生成树如下所示:```1 --2 --3 -- 4```四、最小生成树的应用实例最小生成树在实际应用中有很多实例,如网络路由、数据压缩、图像处理等。
这里我们以网络路由为例,介绍最小生成树的应用。
在网络中,为了提高传输效率,我们需要在网络中建立一条最短路径。
通过求解最小生成树,我们可以得到网络中的最短路径,从而为数据包的传输提供指导。
在求解最小生成树时,我们可以将网络中的节点看作是图的顶点,边看作是图的边,边的权值看作是节点之间的距离。
最小生成树的构造离散数学
最小生成树的构造是离散数学技术的重要组成部分,用于解决图形中的最小树问题。
能够有效地构造最小生成树,有助于我们解决复杂的网络优化等问题。
最小生成树是指一个边数最少的连接结点的树,即所有点之间只建立最少的边,使得所有点都连接在一起,称为一棵生成树。
最小生成树建立在图上,是多重图G(V,E)的一棵子树,它满足以下三个条件:1、包含G中的所有n个结点;2、只包含G中m-n+1条边;3、权值最小。
使用最小生成树的边,可以把n个节点连接成一个树,所有边的权重总和最小。
最小生成树的步骤是:1、选择一个结点作为树的根,将它加入到树中;2、以选定的结点为根,从剩余结点中选择权值最小的边,加入到树中;3、继续重复步骤2,直到n-1条边全部加入到树中,从而完成树的构造。
最小生成树有多种构造方式,如Prim和Kruskal算法、动态规划算法等,可以快速和有效地构建最小生成树。
Prim算法从图中原始结点出发,每一步都把一条最短边加入进去;Kruskal算法从图中原始边出发,每次都把一条最短边加入进去;动态规划算法是在Graph-MST网络上使用的,可以用来解决复杂的路径优化等问题。
总之,最小生成树的构造是离散数学的重要技术,能够有效地构建最小生成树,从而解决复杂的网络优化问题。
最小生成树的构造有不同的方法,要想更好地理解和使用,就需要深刻掌握其原理和实现方法。