离散数学-最小生成树
- 格式:doc
- 大小:32.00 KB
- 文档页数:7
离散数学上机实验指导徐凤生如果你需要索取源程序,请发邮件至xfs@。
实验11实验内容(1)求任意一个命题公式的真值表。
(2)利用真值表求任意一个命题公式的主范式。
(3)利用真值表进行逻辑推理。
注:(2)和(3)可在(1)的基础上完成。
2实验目的真值表是命题逻辑中的一个十分重要的概念,利用它几乎可以解决命题逻辑中的所有问题。
例如,利用命题公式的真值表,可以判断命题公式的类型、求命题公式的主范式、判断两命题公式是否等价,还可以进行推理等。
本实验通过编写一个程序,让计算机给出命题公式的真值表,并在此基础上进行命题公式类型的判定、求命题公式的主范式等。
目的是让学生更加深刻地理解真值表的概念,并掌握真值表的求解方法及其在解决命题逻辑中其他问题中的应用。
3算法的主要思想利用计算机求命题公式真值表的关键是:①给出命题变元的每一组赋值;②计算命题公式在每一组赋值下的真值。
真值表中命题变元的取值具有如下规律:每列中0和1是交替出现的,且0和1连续出现的个数相同。
n个命题变元的每组赋值的生成算法可基于这种思想。
含有n个命题变元的命题公式的真值的计算采用的方法为“算符优先法”。
为了程序实现的方便,约定命题变元只用一个字母表示,非、合取、析取、条件和双条件联结词分别用!、&、|、-、+来表示。
算符之间的优先关系如表1-32所示:为实现算符优先算法,另一个称作OPND,用以寄存操作数或运算结果。
算法的基本思想是:(1)首先设置操作数栈为空栈,符号“@”为运算符的栈底元素;(2)调用函数Divi(exp,myopnd)得到命题公式包含的命题变元序列myopnd(按字典序排列,同一个命题变元只出现一次);(3)依次读入命题公式中的每个字符,若是命题变元则其对应的赋值进OPND栈,若是运算符,则和OPTR栈的栈顶运算符比较后作相应操作,直至整个命题公式求值完毕。
实验21实验内容(1)求任意两个集合的交集、并集、差集。
(2)求任意一个集合的幂集。
离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B 是等值的,记作A<=>B。
约束变元和自由变元:在合式公式xA和 xA中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Qk…xkB,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学实验报告姓名:学号:班级:实验地点:实验时间:1实验目的和要求运用最小生成树思想和求最小生成树程序解决实际问题。
实际问题描述如下:八口海上油井相互间距离如下表,其中1号井离海岸最近,为5km。
问从海岸经1号井铺设油管把各井连接起来,怎样连油管长度最短(为便于检修,油管只准在油井处分叉)?2实验环境和工具实验环境:Windows 7 旗舰版工具:Dev-C++ 5.8.33实验过程3.1算法流程图3.2程序核心代码//油管铺设问题 Prim算法实现#include <iostream>#include<iomanip>using namespace std;#define MAXV 10#define INF 32767 //INF表示∞typedef int InfoType;typedef struct{int no; //顶点编号InfoType info; //顶点其他信息} VertexType; //顶点类型typedef struct{ //图的定义float edges[MAXV][MAXV]; //邻接矩阵int vexnum; //顶点数VertexType vexs[MAXV]; //存放顶点信息} MGraph; //图的邻接矩阵类型/*输出邻接矩阵g*/void DispMat(MGraph g){int i,j;for (j=0;j<g.vexnum;j++)if (g.edges[i][j]==INF)cout<<setw(6)<<"∞";elsecout<<setw(6)<<g.edges[i][j];cout<<endl;}}void prim(MGraph g,int v){ //从顶点V0出发,按Prim算法构造G的最小生成树//输出最小生成树的每条边及其权值float Vlength[MAXV];int i, j, k;int cloest[MAXV];float min;float sum = 0.0;for(i=0;i<g.vexnum;i++){Vlength[i]=g.edges[v][i];cloest[i]=v;}min=INF; //min为其中最大的一条边=MAXVfor(j=0;j<g.vexnum;j++){ //找n-1条边if(Vlength[j]!=0&&Vlength[j]<min){min=Vlength[j];k=j;}}cout<<"连接油井<"<<cloest[k]+1<<","<<k+1<<">"<<"长度为:"<<min<<endl;sum+=min;Vlength[k]=0;Vlength[cloest[k]]=0;for(j=0;j<g.vexnum;j++){ //选择当前代价最小的边if(g.edges[k][j]!=0&&g.edges[k][j]<Vlength[j]){ Vlength[j]=g.edges[k][j];cloest[j]=k;}}}cout<<"管道总长度为:"<<sum<<endl;}int main(){int i,j,u=3;MGraph g;float A[MAXV][10];g.vexnum=8;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[i][j]=INF;A[0][1]=1.3; A[0][2]=2.1; A[0][3]=0.9;A[0][4]=0.7; A[0][5]=1.8; A[0][6]=2.0;A[0][7]=1.8; A[1][2]=0.9; A[1][3]=1.8;A[1][4]=1.2; A[1][5]=2.8; A[1][6]=2.3;A[1][7]=1.1; A[2][3]=2.6; A[2][4]=1.7;A[2][5]=2.5; A[2][6]=1.9; A[2][7]=1.0;A[3][4]=0.7; A[3][5]=1.6; A[3][6]=1.5;A[3][7]=0.9; A[4][5]=0.9; A[4][6]=1.1;A[4][7]=0.8; A[5][6]=0.6; A[5][7]=1.0;A[6][7]=0.5;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[j][i]=A[i][j];for (i=0;i<g.vexnum;i++) /*建立图的邻接矩阵*/ for (j=0;j<g.vexnum;j++)g.edges[i][j]=A[i][j];cout<<endl;cout<<"各油井间距离:\n";DispMat(g);cout<<endl;cout<<"最优铺设方案:\n";prim(g,0);cout<<endl;return 0;}3.3运行结果3.4运行结果分析程序实现了输出需要铺设管道的油井编号,并给出了每条管道长度以及总长度,基本实现了题目要求。
离散数学大作业——编程实现最小生成树学院:电子工程学院班级:021051学号:*********名:***一、最小生成树概念:设G=(V,E)是无向连通带权图,即一个网络。
E中每条边(v,w)的权为c[v,w]。
所有生成树G’上各边权的总和最小的生成树称为G的最小生成树。
二、prim算法(贪心思想)设图G =(V,E),其生成树的顶点集合为U。
1.把v0放入U。
2.在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
3.把2找到的边的v加入U集合。
如果U集合已有n个元素,则结束,否则继续执行2其算法的时间复杂度为O(n^2)三、程序源代码# include<stdio.h># include<malloc.h># define m 6# define n 11 typedef struct {int i,tag;char s;}vertice;typedef struct {int a,b,tag;int weight;}edge;vertice v[m];edge e[n];void inititate();void sort();void chuli();int biaoji( edge *s); void print();void main() {inititate();sort();chuli();print();}void inititate() {int i;printf("输入图的%d个顶点:\n",m);for(i=0;i<m;i++) {v[i].i=i+1;v[i].tag=0;scanf("%c",&v[i].s);getchar();}printf("\n输入%d条边的两端顶点及权:\n",n);for(i=0;i<n;i++) {scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].weight);e[i].tag=0;}}int biaoji( edge *s) {int i,j;i=s->a;j=s->b;if(v[i].tag==0 || v[j].tag==0) {v[i].tag=1;v[i].tag=1;s->tag=1;return 1;}return 0;}void print() {int i,j=0;printf("\n最小生成树的边为:\n");for(i=0;i<n&&j<m-1;i++)if(e[i].tag==1) {printf("<%d-%d> ",e[i].a,e[i].b);j++;}printf("\n\n");}void sort() {edge s;int i,j;for(i=0;i<n-1;i++) {for(j=i+1;j<n;j++) {if(e[i].weight>e[j].weight) {s=e[i];e[i]=e[j];e[j]=s;}}}}void chuli() {int i,j=0;edge *s;for(i=0;i<n&&j<m;i++) {s=&e[i];if(biaoji(s)==1)j++;}}四、实验结果输入图的6个顶点:1 2 3 4 5 6输入11条边的权及两端顶点:1 2 11 4 61 6 91 3 112 3 22 4 33 5 83 6 74 5 104 6 45 6 5最小生成树的边为:<1-2> <2-3> <2-4> <4-6> <5-6> Press any key to continue。
离散数学最小生成树例题(实用版)目录1.最小生成树的概念和性质2.最小生成树的算法原理3.最小生成树的算法举例4.最小生成树的应用实例正文一、最小生成树的概念和性质最小生成树(Minimum Spanning Tree,简称 MST)是指在一个加权连通图中,选择一些边,使得所有节点都能被联通,并且边代价之和最小。
最小生成树具有以下性质:1.树中的边是最短的边:在生成树中,任意两个节点之间的边都是最短的边,即不存在比这条边更短的边能连接这两个节点。
2.树是没有圈的:最小生成树显然不应该有圈,因为如果有圈,可以通过删除圈中的一条边来形成一个更小的生成树。
二、最小生成树的算法原理求解最小生成树的经典算法有 Kruskal 算法和 Prim 算法。
这里我们以 Prim 算法为例介绍最小生成树的算法原理。
Prim 算法的基本思想是从一个初始节点开始,不断地寻找与当前生成树距离最近的节点,将其加入到生成树中,直到所有节点都加入到生成树中为止。
在寻找距离最近的节点时,我们需要使用贪心策略,即每次都选择距离最近的节点。
为了判断一个节点是否已经加入了生成树,我们可以使用并查集数据结构。
三、最小生成树的算法举例这里我们以一个简单的例子来说明 Prim 算法的求解过程。
假设有一个图,共有 4 个节点,5 条边,边的权值分别为 1, 2, 3, 4, 5。
我们选择节点 1 作为初始节点,按照 Prim 算法的步骤,可以得到最小生成树的权值为 9,生成树如下所示:```1 --2 --3 -- 4```四、最小生成树的应用实例最小生成树在实际应用中有很多实例,如网络路由、数据压缩、图像处理等。
这里我们以网络路由为例,介绍最小生成树的应用。
在网络中,为了提高传输效率,我们需要在网络中建立一条最短路径。
通过求解最小生成树,我们可以得到网络中的最短路径,从而为数据包的传输提供指导。
在求解最小生成树时,我们可以将网络中的节点看作是图的顶点,边看作是图的边,边的权值看作是节点之间的距离。
价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
树权C(T)=23+1+4+9+3+17=57即为总造价。
3设<Z6,+6>是一个群,这里+6是模6加法,Z6={[0 ],[1],[2],[3],[4],[5]},试求出<Z6,+6>的所有子群。
答: 子群有<{[0]},+6>;<{[0],[3]},+6>;<{[0],[2],[4]},+6>;<{Z6},+6>简答题834权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。
答: 简答题83235集合X={<1,2>, <3,4>, <5,6>, … },R={<<x 1,y 1>,<x 2,y 2>>|x 1+y 2= x 2+y 1} 。
1) 说明R 是X 上的等价关系。
(6分)2) 求出X 关于R 的商集。
(2分)答: 1)、1、自反性:y x y x X y x +=+>∈<∀由于,, 自反R R y x y x >>∈<><<∴,,,2、对称性:X y x X y x >∈<∀>∈<∀2211,,,时当R y x y x >>∈<><<2211,,, 21121221y x y x y x y x +=++=+也即即有对称性故R R y x y x >>∈<><<1122,,,3、传递性:X y x Xy x X y x >∈<∀>∈<∀>∈<∀332211,,,,时且当R y x y x R y x y x >>∈<><<>>∈<><<33222211,,,,,,简答题8 34⎩⎨⎧+=++=+)2()1(23321221y x y x y x y x 即 23123221)2()1(y x y x y x y x +++=++++即1331y x y x +=+有传递性故R R y x y x >>∈<><<3311,,,由(1)(2)(3)知:R 是X 上的先等价关系。
详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)1.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树1.1 问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢?1.2 分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n 个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1 条边。
1.3最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{ E}) 是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
1.4 解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V 为网图中所有顶点的集合,E 为网图中所有带权边的集合。
最小生成树课程设计一、课程目标知识目标:1. 学生能够理解最小生成树的概念,掌握其定义和性质;2. 学生能够掌握两种常见的最小生成树算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法;3. 学生能够运用最小生成树解决实际问题,如网络设计、电路设计等。
技能目标:1. 学生能够运用图论知识,分析并解决最小生成树问题;2. 学生能够编写和调试实现最小生成树的算法程序;3. 学生能够通过小组合作,共同探讨并解决最小生成树相关问题。
情感态度价值观目标:1. 学生通过学习最小生成树,培养对图论的兴趣,激发探索数学问题的热情;2. 学生在合作解决问题的过程中,学会沟通、协作,培养团队精神;3. 学生能够认识到数学知识在实际生活中的广泛应用,增强学习的积极性和主动性。
课程性质:本课程为计算机科学、信息技术等相关专业的高年级学生设计,旨在帮助学生掌握最小生成树的基本原理和算法,提高解决实际问题的能力。
学生特点:学生已经具备一定的图论基础,熟悉基本的算法和数据结构,具有一定的编程能力。
教学要求:通过讲解、示例、练习和小组讨论等形式,使学生掌握最小生成树的相关知识,提高编程实践能力和解决问题的能力。
同时,注重培养学生的团队合作精神和数学思维。
二、教学内容1. 最小生成树概念与性质- 定义、性质和判定条件- 最小生成树的应用场景2. 普里姆(Prim)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析3. 克鲁斯卡尔(Kruskal)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析4. 最小生成树算法比较与应用- 普里姆与克鲁斯卡尔算法的优缺点对比- 实际问题中的应用案例分析5. 小组讨论与练习- 分组讨论最小生成树相关算法及应用- 编写和调试最小生成树算法程序- 解决实际问题,如网络设计、电路设计等教学内容安排与进度:第一周:最小生成树概念与性质,普里姆算法原理与实现第二周:普里姆算法性能分析,克鲁斯卡尔算法原理与实现第三周:克鲁斯卡尔算法性能分析,最小生成树算法比较与应用第四周:小组讨论与练习,解决实际问题教材章节:《离散数学及其应用》第6章:图论《数据结构与算法分析》第9章:图论算法《计算机算法设计与分析》第4章:最小生成树与最短路径三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,讲解最小生成树的概念、性质和算法原理,使学生系统掌握理论知识。
实验五实验名称:得到最小生成树实验目的:1.熟悉地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。
2.掌握图论中的最小生成树及Prim 和 Kruskal 算法等,进一步能用它们来解决实际问题。
实验内容:输入一个图的权矩阵,得到该图的生成树,用Kruskal算法的最小生成树,用Prim算法的最小生成树。
Kruskal算法假设T中的边和顶点均涂成红色,其余边为白色。
开始时G中的边均为白色。
1)将所有顶点涂成红色;2)在白色边中,挑选一条权最小的边,使其与红色边不形成圈,将该白色边涂红;3)重复2)直到有n-1条红色边,这n-1条红色边便构成最小生成树T的边集合。
Prim算法假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:1)初始化:U={u 0},TE={f}。
此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始形态,在随后的算法执行中,这个形态会不断的发生变化,直到得到最小生成树为止。
2)在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。
此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U 中,其次边的权要最小。
找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。
这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
3)如果U=V,则算法结束;否则重复步骤2。
可以把本步骤看成循环终止条件。
我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。
附:程序源代码:#include<iostream.h>#include<string.h>main(){system("color 9c");cout<<"请输入图的点数:\n";int n;cin>>n;char c1='a';cout<<"系统自动生成点为:\n";int i,j,k;cout<<c1;for(i=1;i<n;i++)cout<<","<<(char)(c1+i);int a[n][n];cout<<"\n请输入图的权矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>a[i][j];cout<<"\n\n此图的邻接矩阵为:\n ";for(i=0;i<n;i++)cout<<(char)(c1+i)<<" ";cout<<endl;for(i=0;i<n;i++){cout<<(char)(c1+i)<<" ";for(j=0;j<n;j++)if(a[i][j])cout<<"1"<<" ";elsecout<<"0"<<" ";cout<<endl;}int m=0;k=0;for(i=0;i<n;i++)for(j=0;j<n;j++)if(a[i][j]&&i<j)m++;int b[m][3];for(i=0;i<n;i++) //找出边和权 for(j=0;j<n;j++)if(a[i][j]&&i<j){b[k][0]=i;b[k][1]=j;b[k++][2]=a[i][j];}int t;for(i=0;i<m-1;i++) //排序for(j=i+1;j<m;j++)if(b[i][2]>b[j][2])for(k=0;k<3;k++){t=b[i][k];b[i][k]=b[j][k];b[j][k]=t;}for(i=0;i<m;i++)cout<<"("<<(char)(c1+b[i][0])<<","<<(char)(c1+b[i][1])<<","<<b[i][2]< <")";cout<<endl;int c[n-1][3],d[n];for(k=0;k<3;k++)c[0][k]=b[0][k];d[0]=b[0][0];d[1]=b[0][1];k=1;int k1=2,k2,k3,m1=0;for(i=1;i<m;i++){for(j=0;j<3;j++)c[k][j]=b[i][j];k++;k3=k1;for(k2=0;k2<k1;k2++)if(b[i][0]==d[k2])m1++;if(!m1)d[k1++]=b[i][0];elsem1=0;for(k2=0;k2<k1;k2++)if(b[i][1]==d[k2])m1++;if(!m1)d[k1++]=b[i][1];elsem1=0;if(k>=k1){k--;k1=k3;}if(k==n)break;}cout<<"用Kruskal算法得到的最小生成树为:\n{";int count=0;for(i=0;i<n-2;i++){cout<<"("<<(char)(c1+c[i][0])<<","<<(char)(c1+c[i][1])<<"),";count+=c[i][2];}cout<<"("<<(char)(c1+c[n-1][0])<<","<<(char)(c1+c[n-1][1])<<")}\n"; count+=c[n-1][2];cout<<"最小权和为:"<<count<<endl<<endl;for(k=0;k<3;k++)c[0][k]=b[0][k];b[0][2]=0;d[0]=b[0][0];d[1]=b[0][1];k1=2;k2=0;k3=0,m1=1;while(k1<=n){for(i=1;i<m;i++)if(b[i][2]){for(j=0;j<k1;j++)if(b[i][0]==d[j])k2++;for(j=0;j<k1;j++)if(b[i][1]==d[j])k3++;if(k2&&!k3){d[k1++]=b[i][1];for(k=0;k<3;k++)c[m1][k]=b[i][k];b[i][2]=0;m1++;k2=0;goto h;}else if(!k2&&k3){d[k1++]=b[i][0];for(k=0;k<3;k++)c[m1][k]=b[i][k];b[i][2]=0;m1++;k3=0;goto h;}else{k2=k3=0;}}h:;}cout<<"用Prim算法得到的最小生成树为:\n{";count=0;for(i=0;i<n-2;i++){cout<<"("<<(char)(c1+c[i][0])<<","<<(char)(c1+c[i][1])<<"),";count+=c[i][2];}cout<<"("<<(char)(c1+c[n-1][0])<<","<<(char)(c1+c[n-1][1])<<")}\n"; count+=c[n-1][2];cout<<"最小权和为:"<<count<<endl<<endl;system("pause");}。