8 飞机机电系统精华(1)
- 格式:ppt
- 大小:9.03 MB
- 文档页数:34
飞机综合电子控制系统(一)飞行管理计算机系统随着飞机驾驶自动化的进一步发展,要求把飞机的信号基准系统、启动驾驶系统和显示系统统一综合管理,使飞机在整个航线实现最佳性能的自动驾驶飞行,这个任务即由飞行管理计算机系统完成。
(二)飞行信息记录系统(俗称“黑匣子”)它包括两个部分:一个是数字飞行数据记录器。
它能将飞机系统工作状况和发动机工作参数等飞行参数都记录下来。
记录器可记录25个小时的60多种数据,其中有16种是必录数据(主要是加速度、姿态、空速、时间、推力及各操纵面的位置)。
一个是驾驶舱话音记录器。
它实际上就是一个无线电通话记录器,可以记录飞机上的各种通话。
这一仪器上的4条音轨分别记录飞行员与地面指挥机构的通话,正、副驾驶员之间的对话,机长、空中小姐对乘客的讲话以及驾驶舱内各种声音。
记录器记录飞行的最后30分钟内的信号,同时把以前的信号抹掉。
飞行信息记录系统的用途包括:①事故分析——记录的数据在飞机失事后再现,用模拟器模拟,它是分析事故原因最直接可行的方法,国际民航组织规定大型民航机必须安装飞行记录器;②用于维修——从这些记录上可以发现出现的故障,从而适时进行维修;③用于监控飞行质量——从这些记录上可以发现飞行员的不安全操作,及时加以纠正。
数字飞行数据记录器(黑匣子)可以向人们提供飞机失事瞬间和失事前一段时间里,飞机的飞行状况、机上设备的工作情况。
驾驶舱话音记录器能帮助人们根据机上人员的各种对话分析事故原因,以便对事故作出正确的结论。
黑匣子通常安装在飞机尾部最安全的部位,也就是失事时最不易损坏的部位,并带有自动信号发生器和水下超大型定位标。
黑匣子并不是黑色的,为了便于人们搜寻,它被涂上了国际通用的警告色——鲜艳的橘黄色。
(三)增强型近地警告系统增强型近地警告系统使用自身的全球机场位置数据库和地形数据库,并且利用飞机位置、气压高度和飞行轨迹信息来确定潜在的撞地危险,并通过灯光和声音通知驾驶员飞机正在以不安全的方式或速度靠近地面,警告驾驶员预防因疏忽或计算不周而发生的可控飞行触地事故。
飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。
本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。
通过本文的阅读,读者可以对飞机系统有一个全面的了解。
一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。
1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。
通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。
飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。
2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。
比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。
此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。
3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。
自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。
二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。
飞机的动力系统通常由发动机和推进系统组成。
1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。
涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。
螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。
2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。
这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。
三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。
1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。
空运飞行员的航空器电气系统知识航空器电气系统是现代航空运输中至关重要的一部分,对空运飞行员来说,了解和掌握航空器电气系统的知识至关重要。
本文将介绍空运飞行员需要了解的航空器电气系统的基本知识和相关要点。
一、航空器电气系统的组成航空器电气系统由多个部分组成,包括电源系统、分配系统、控制系统和保护系统等。
其中,电源系统提供电能,分配系统将电能分配到各个设备,控制系统用于控制各个电气设备的工作,而保护系统则负责保护电气系统免受过载和故障等不良影响。
二、航空器电气系统的功能航空器电气系统的功能十分重要,主要包括:1. 为飞机提供照明和通信设备所需的电能;2. 支持导航、操纵和监控系统的运行;3. 驱动各种飞行仪器、设备和其他航电设备;4. 提供紧急备用电源以应对电力中断等紧急情况。
三、航空器电气系统的类型根据电力来源的不同,航空器电气系统可以分为两类:直流电气系统和交流电气系统。
直流电气系统主要由直流电源提供电能,交流电气系统则由发动机产生的交流电源提供电能。
不同类型的电气系统在航空器上的应用也有所差异,空运飞行员需要了解并熟练掌握两种类型的系统。
四、航空器电气系统的故障排除由于航空器电气系统的复杂性,故障排除是空运飞行员必备的技能之一。
在遇到电气系统故障时,空运飞行员需要快速准确地判断故障原因,并采取相应的措施。
常见的电气故障包括电路短路、电源故障和设备故障等,空运飞行员需要通过仪器设备和手动操作完成故障排除工作。
五、航空器电气系统的维护和保养航空器电气系统的维护和保养对保证其正常运行至关重要。
空运飞行员需要按照相关要求和程序对电气系统进行定期检查和维护,包括检查电池状态、接线端子的状态和电源电压等。
此外,空运飞行员还应了解和掌握电气系统的保养技巧,如清洁电线和设备以确保正常的导电性能。
六、最新发展和趋势随着科技的不断发展,航空器电气系统也在不断更新和升级。
例如,最新的飞机电气系统采用了更先进的数字化技术和自动化控制系统,提高了电气系统的性能和可靠性。
二、课程教学基本内容和要求本课程包括开关电器、电机、蓄电池、飞机直流供电系统、飞机交流供电系统、电力起动设备、飞机电气控制系统、灭火及火警探测系统、灯光信号警告设备和电磁干扰及防护等内容。
学完本大纲规定的内容后,应达到以下要求:1.掌握断路器的工作原理;掌握直流电机的工作原理、外特性、调节特性、起动;航空蓄电池容量定义和容量检测方法;掌握蓄电池的正确使用方法;掌握交、直流电源电压调节装置的基本工作原理;掌握直流电源并联运行的原理;理解交、直流电源系统控制保护装置的基本工作原理;掌握交、直流电源系统中常见故障的种类及特征;掌握恒速传动装置的功用和调速原理;掌握旋转变流机、静止变流器和变压整流器的基本工作原理和功用;掌握襟翼收放电路的工作原理;掌握电磁干扰的传播方式;掌握静电防护技术。
2.了解开关电器的基本概念、分类及使用特点;了解直流电机和电枢反应和换向;了解蓄电池的分类、活性物质和使用特性;了解反流和过压的定义及危害;了解航空电机的种类、组成及特性;了解伺服电机的工作原理;了解交流电源的自动并联方法;了解交流电源的常见控制逻辑;了解飞机发动机电力起动的常用方法及增速措施;了解飞机内、外灯光照明设备的分类及功用;了解收放式着陆灯工作原理;了解起落架收放和指示原理,了解电气控制电路的标注和基本分析方法;了解火警烟雾探测系统的组成及原理;了解警告指示设备的功用;了解电磁干扰的危害;了解控制电磁干扰的常用方法。
四、教学内容要点和要求第一章电器基本知识【教学内容要点】1.电接触和气体导电的基本理论2.电磁铁【教学要求】了解电接触和气体导电的基本理论;了解电磁铁的基本工作原理和特性。
第二章电路装置【教学内容要点】1.导线及其连接装置2.电路控制装置3.电路保护装置【教学要求】了解导线的分类方法和连接装置、汇流条的作用;了解常用开关电器的分类、组成原理及使用特点;了解保险丝的工作原理。
理解断路器的工作原理。
第三章航空电机【教学内容要点】1.航空电机的分类及特点2.直流电机的基本结构和工作原理3.直流电机的电枢反应4.直流电机的换向5.直流发电机6.直流电动机7.三相异步电动机8.两相和单相异步电动机 9.同步发电机 10.步进电机 11.自整角机【教学要求】了解航空电机的分类、特点、基本结构和使用特性;理解交、直流电机的工作原理、外特性及使用方法。
.第八章飞机空调系统8.1概述一、创造空中座舱环境的技术措施为了确保飞行安全,改善空中人员的生活和工作条件,一般可采用以下两类措施: 1、供氧装置供氧方式对于民用飞机来说仅适用于低速的螺旋桨类飞机,或者为喷气客机气密座舱的一种补充方式,如给机组人员或病员补充供氧,或者当座舱失去气密时用氧气面罩作为应急供氧。
2、气密座舱(又称增压舱)它是将飞机座舱密封,然后给它供气增压,使舱内压力大于外界大气压力,并对座舱空气参数进行调节,创造舒适的座舱环境,以满足人体生理和工作的需要。
这是一种高空飞行时安全而有效的措施,是当代民用飞机普遍采用的一种方式。
当座舱增压后,机身结构承受拉应力。
二、气密座舱的环境参数与其要求气密舱的主要环境参数是座舱空气的供气量温度、压力、压力变化率以与座舱余压,另外还有空气的湿度、清洁度等等,对它们的要求主要是基于满足人体生理卫生要求出发的,应能为乘客和空勤人员提供安全而舒适的生活和工作环境。
1、对座舱温度的要求根据航空医学要求,最舒适的座舱温度为20~22℃,正常保持在15~26℃的舒适区范围内。
另外,座舱内温度场应均匀,无论是垂直方向还是水平方向,与规定座舱温度值的偏差,一般不得超过±3℃。
座舱壁、地板和顶部的内壁温度,基本上应保持与舱内温度一致,否则由于热辐射和对流的影响会使乘员感到不舒适。
同时,各内壁的温度应高于露点,使其不致蒙上水汽。
2、座舱压力的要求对座舱压力有两个方面的要求,一个是使用升限时座舱空气压力的绝对值,另一个是座舱压力变化速率的要求。
常用到的与座舱压力有关的参数有以下几个:(1)座舱空气压力p C使用升限时座舱空气的绝对压力,应保证舱内有足够的氧分压,以使在整个飞行过程中,旅客不需要使用氧气设备。
根据生理研究,对于一般乘客只要保证吸入空气的压力不小于570mmHg就不会产生缺氧症状(2)座舱高度H C座舱压力也可以用座舱高度(H C)表示。
座舱高度是指座舱内空气的绝对压力值所对应的标准气压高度,单位为m。
几分钟让你看懂飞机上的电子系统航空电子系统使电子技术在飞机中的应用,是在航空技术和电子技术发展过程中逐步形成的。
由于数字式技术、微电子技术和卫星计算机技术的迅速发展,航空电子系统已成为现代军用飞机提高作战效能的重要手段。
没有先进的航电系统,就没有先进的飞机,也就不会完成现代战争所赋予空军的使命。
因此,要想发挥飞机的综合作战效能,航空电子系统更是起着决定性的作用。
航空电子系统通常可分为通用电子系统和任务电子系统两大类:通用电子系统就是保证飞机能完成正常飞行任务所必须装备的的电子系统,比如无线电通信系统、导航系统、飞行控制系统。
任务电子系统就是飞机为完成某种特定任务而装备的电子系统,比如目标探测系统、电子战系统。
敌我识别系统。
接下来就对几个重要的电子系统给大家稍微简单的介绍一下。
一通信系统通信系统是航空电子系统的重要组成部分,它为完成飞行任务和保证飞行安全起着重要的作用。
无线通信和飞机差不多是同一个年代出现的。
驾驶员要想了解空中航线上的交通状况和气象条件,机场对飞机的起飞进场和着陆等都是通过通信系统完成的。
此外,对作战飞机的指挥和控制,驾驶员将空中和地面战区的情况及时向指挥所报告,都需依赖高效、可靠、安全、保密的通信系统来实现。
以民航飞机为例,除了某些导航设备也担负范围有限的通信任务外,还装备了一套或多套的高频无线电通信电台和甚高频无线电通信电台。
前者工作在2- 30MHz的短波波段,其无线电波可利用电离层的反射而传播到很远距离;而后者工作在118-136MHz范围内,可在视线距离内与其他飞行器或地面进行通信联络。
机上的每部电台配备一副电线,由发射机和接收机共同使用,以减少机上天线的数量,因此通常发射和接收不能同时进行。
二导航系统导航是把飞机、导弹、宇宙飞船、舰船等运动体从一个地方引导到另一个地方的过程,正如大家在日常生活中出行开车中所使用导航一样。
导航系统的主要用途就是引导飞机沿着预定航线飞到预定地点,并能随时给出飞机准确的即时位置。
空中飞行器的机电系统和航空电子设备在现代航空航天技术中,机电系统和航空电子设备被广泛应用于空中飞行器。
机电系统负责控制飞行器的机械运动和能量转换,而航空电子设备则负责操纵和监控飞行器的各种系统,确保其安全、高效地运行。
本文将对空中飞行器的机电系统和航空电子设备进行全面介绍。
一、机电系统的组成与功能机电系统是飞行器的核心部分,由多个子系统组成。
其中,主要包括发动机系统、液压系统、燃油系统、起落架系统和传动系统等。
每个子系统都起着不可或缺的作用。
1. 发动机系统发动机系统是提供飞行器动力的重要组成部分。
它通常由燃油系统、燃烧室、喷气口和涡轮等组件构成。
发动机系统的主要功能是产生推力,推动飞行器前进。
其中,燃油系统负责提供燃料,并将其喷入燃烧室进行燃烧,产生高温高压的气体。
这些气体通过喷气口排出,产生反作用力推动飞行器。
2. 液压系统液压系统是机电系统中的重要支撑系统,主要用于飞行器的控制和动力传输。
液压系统通常由压力供应装置、油箱、液压泵、液压缸和阀门等组件构成。
它的作用是通过压力将油液传输到各个液压执行器,并通过液压缸实现飞行器的起落架、襟翼、飞行操纵面等的运动控制。
3. 燃油系统燃油系统是负责储存和供应燃料的系统,确保发动机的正常运行。
燃油系统通常由燃油箱、燃油泵、燃油滤清器和喷油嘴等组件构成。
它的主要功能是存储和提供燃料,并通过燃油喷油嘴将燃料喷入燃烧室进行燃烧。
4. 起落架系统起落架系统是飞行器在地面和空中之间切换的重要机构。
起落架系统通常由起落架、缓冲装置、刹车和轮胎等组件构成。
它的主要功能是在起飞和降落时支撑飞行器的重量,以及提供良好的操控和减震性能。
5. 传动系统传动系统是机电系统中负责传输动力和运动的重要组成部分。
传动系统通常由传动装置、轴和齿轮等组件构成。
它的主要功能是将发动机的动力传输到各个子系统,以实现飞行器的运动控制和动力传递。
二、航空电子设备的应用与特点航空电子设备是现代飞行器的重要组成部分,用于飞行器的导航、通信、监控和安全保障等方面。
飞机电气系统原理和维护一、飞机电气系统原理飞机的电气系统由多个部分组成,包括发电系统、电源分配系统、蓄电池系统、保护设备等部分。
发电系统是电气系统的核心部分,它由飞机上的发电机、交流发电机、直流发电机等组成,主要负责对飞机上的各种设备提供电力。
飞机上的发电机分为交流发电机和直流发电机两种,它们分别通过传动和转子上的旋翼的旋转提供机械能,进而产生电能,供飞机上的设备使用。
电源分配系统是飞机上的电气系统的一个重要组成部分,它负责将发电系统产生的电能分配给飞机上的各种设备。
电源分配系统通过电源线路、主分配盒、辅助分配盒等组成,它能够通过控制开关,将电能分配到飞机上的各个设备上,实现对飞机上的设备的供电。
蓄电池系统主要用于飞机在地面停机状态下对飞机的设备进行供电,保证飞机上的设备在地面停靠状态下也能够正常使用。
同时,蓄电池系统还能够在飞机的电源系统出现故障时,继续为飞机上的设备提供电力,保证飞机的安全运行。
保护设备是飞机的电气系统中的一个非常重要的组成部分,它能够对发电系统、电源分配系统、蓄电池系统等进行保护。
保护设备能够监控发电系统、电源分配系统、蓄电池系统的工作情况,当发现系统出现故障或过载时,会及时对系统进行保护,避免对飞机上的设备造成影响。
同时,保护设备能够监控飞机上的各种设备,及时发现设备出现故障,避免对飞机的安全造成影响。
二、飞机电气系统维护飞机电气系统的维护是飞机维护的一个重要部分,它对飞机的安全飞行具有重要意义。
飞机电气系统的维护包括定期检查、维修和更换部分设备等多个环节。
1. 定期检查飞机电气系统的定期检查是飞机维护的一个重要环节,它能够发现和修复飞机电气系统中的一些潜在故障,保证飞机的安全飞行。
定期检查主要包括对发电系统、电源分配系统、蓄电池系统和保护设备等进行检查。
对发电系统的检查包括对发电机、交流发电机、直流发电机和相关传动系统进行检查,确保发电系统能够正常工作。
对电源分配系统的检查包括检查主分配盒和辅助分配盒的工作情况,确保电源分配系统能够正常为飞机上的设备供电。
飞机用电知识点总结飞机作为一种重要的交通工具,其用电系统是其正常运行和安全飞行的重要保障。
飞机用电系统主要包括发电系统、配电系统、控制系统和保护系统。
下面就对飞机用电系统的相关知识进行总结:1. 发电系统发电系统是飞机用电系统的基础,主要由发动机驱动的发电机和APU(辅助动力装置)发电机组成。
发电机利用发动机或APU输出的机械能转化为电能,供应飞机整个用电系统。
在飞机飞行过程中,发电机产生的电能还可以用于充电备用电池,以备发生异常情况时的应急供电。
2. 配电系统飞机配电系统主要包括主配电系统和辅助配电系统两部分。
主配电系统主要负责将发电机产生的电能分配给飞机各个用电设备,如主飞行显示器、通信设备、导航设备等。
辅助配电系统主要负责向各种辅助设备供电,如照明系统、环境控制系统等。
同时,配电系统还包括电气负载管理系统,通过对电能的控制和优化使用,保证飞机用电系统的正常运行。
3. 控制系统飞机用电控制系统主要包括电力订购系统、列车/轮式保护系统、电源控制组件等。
电力管理系统主要负责管理发电系统和配电系统,保证整个用电系统的稳定供电。
而列车/轮式保护系统主要负责监测和保护配电线路和设备,一旦发生故障,可以及时断开电源,保护整个用电系统的安全运行。
电源控制组件主要负责对发电系统和配电系统的切换和调节,确保用电系统的正常运行。
4. 保护系统飞机用电保护系统主要包括过流保护、短路保护、过电压保护等功能。
在飞机飞行过程中,可能会受到各种外部因素的影响,如雷电、静电等,这些都可能导致用电系统发生故障。
保护系统的作用就是在发生故障时,及时进行保护,避免故障扩大影响整个用电系统的正常运行。
5. 实用问题在飞机的实际运行中,用电系统还面临着一些具体的应用问题。
比如,在飞机起降阶段,由于加速耗能增大和空速快速变化,电压的稳定性要求相较于巡航状态时有所提高。
因此,需要设计合理的电力管理方案,保证飞机用电系统在各个飞行阶段下都能够稳定供电。
飞机系统原理机械类ME杨图文1. 引言随着现代航空技术的不断发展,飞机的机械系统越来越复杂,需要运用更加精细的工程技术来保证飞机的安全和可靠性。
本文将介绍飞机系统原理机械类ME杨图文,旨在帮助大家更好地了解飞机机械系统的原理。
2. 飞机机械系统的组成飞机机械系统是指飞机中所有机械构件的总称,包括发动机、起落架、螺旋桨、传动系统、液压系统和燃油系统等。
下面我们将逐一介绍这些系统的原理以及其在飞机中的作用。
2.1 发动机发动机是飞机的动力系统,负责提供飞机的推进力。
发动机分为内燃机和涡轮机两种类型。
内燃机使用燃油加氧气反应产生热能驱动飞机,而涡轮机则利用高速旋转的机械零件带动空气从而产生动力。
在飞行中,发动机除了提供推力,还需要负责飞机的供电、压缩空气、散热等任务。
2.2 起落架起落架是飞机降落和起飞时提供支撑的机械系统。
它通常由主起落架和前起落架组成。
主起落架负责支撑飞机的重量,而前起落架则可以实现飞机的转向和地面操控。
起落架在飞机起落过程中承受巨大的重力和惯性力,因此需要使用高强度材料和精细的机械结构来保证其安全可靠。
2.3 螺旋桨螺旋桨是飞机涡轮发动机的动力输出装置,负责将发动机产生的动力转化为推进力。
螺旋桨在工作原理上类似于涡轮机,通过高速旋转的螺旋叶片带动空气产生动力,从而推动飞机。
随着技术的不断发展,现代螺旋桨具备了更加高效的工作方式和更加耐用的材料,能够在不同的气候和环境条件下工作。
2.4 传动系统传动系统是飞机中实现动力输出、能量传输和控制的重要设备之一。
传动系统通常包括传动轴、齿轮、离合器、扭矩限制器等几部分。
传动系统能够将发动机产生的动力传输到螺旋桨、液压系统和电气系统等部分,以实现飞机的控制和动力输出。
2.5 液压系统液压系统是飞机中的重要动力控制系统之一,主要用于控制起落架的缩放、翼展控制和舵面调整等任务。
液压系统使用压缩气体或液体来驱动液压机构,从而实现机械运动和控制作用。