第九章欧氏空间独立作业2011
- 格式:doc
- 大小:90.50 KB
- 文档页数:2
第九章欧氏空间习题一、填空题1.设V 是一个欧氏空间,V ξ∈,若对任意V η∈,都有(,)0ξη=,则______ξ=。
2.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是12(,,,)n x x x ,那么(,)____i ξη=,||____ξ=。
3.若33()ij A a ⨯=是一个正交矩阵,则方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩的解为 。
4.已知三维欧式空间V 中有一组基123(,,)a a a ,其度量矩阵为110120003A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则向量12323βααα=+-的长度为 。
5.设2中的内积为(,)'A αβαβ=,2112A ⎛⎫= ⎪⎝⎭则在此内积之下的度量矩阵为 。
6.设1(0,1,1)α=-,2(2,1,2)α=-,12k βαα=+,若β与2α正交,则k = 。
7.若欧氏空间V 在某组基下的度量矩阵为200031011⎛⎫ ⎪ ⎪ ⎪⎝⎭,某向量在此组基下的坐标为(1,1,1),则它的长度为 ,在此基下向量(1,1,1)与向量(1,1,1)-的夹角为 。
8.在欧氏空间中,若,αβ线性相关,且2,3αβ==,则(,)αβ 。
9.11010002A k k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是度量阵,则k 必须满足条件______________。
10.线性空间在不同基下的过渡阵、线性变换在某组基下的矩阵、欧氏空间的度量阵这三类矩阵中,可以为退化阵的是 。
11. 在欧氏空间3R 中,向量(1,0,1)α=-,(0,1,0)β=,那么(,)αβ=___________, α=___________。
12. 两个有限维欧氏空间同构的充要条件是__________________。
13. 已知A 是一个正交矩阵,那么1A -=__________,2A =__________。
第九章 欧氏空间一. 内容概述1.欧氏空间的定义设V 是实数域R 上一个向量空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,它具有以下性质:1) ),(),(αββα=;2) ),(),(βαβαk k =; 3) ),(),(),(γβγαγβα+=+; 4) 0),(≥αα,当且仅当0=α时, 0),(=αα这里γβα,,是V 任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间. 常见的欧氏空间举例:例1 在线性空间nR 中,对于向量 ),,,(,),,,(2121n n b b b a a a ==βα, 定义内积.),(2211n n b a b a b a +++= βα (1) 则内积(1)适合定义中的条件,这样nR 就成为一个欧几里得空间.仍用来表示这个欧几里得空间.在3=n 时,(1)式就是几何空间中的向量的内积在直角坐标系中的坐标表达式. 例2 在n R 里, 对于向量 ),,,(,),,,(2121n n b b b a a a ==βα定义内积.2),(2211n n b na b a b a +++= βα 则内积(1)适合定义中的条件,这样n R 就也成为一个欧几里得空间.对同一个线性空间可以引入不同的内积,使得它作成不同的欧几里得空间.例 3 在闭区间],[b a 上的所有实连续函数所成的空间),(b a C 中,对于函数)(),(x g x f 定义内积⎰=b a dx x g x f x g x f )()())(),((. (2)对于内积(2),),(b a C 构成一个欧几里得空间.例4 设R m n ⨯为一切m n ⨯矩阵所成的线性空间.内积定义为()()3,B A B A t r '=则称R mn ⨯为R 上的欧氏空间,2.欧氏空间的内积的主要性质:1)定义中条件1)表明内积是对称的. ),(),(),(),()2αββααββαk k k k ==='),(),(),(),(),(),()3γαβααγαβαγβγβα+=+=+=+' 定义2 非负实数),(αα称为向量α的长度,记为α.显然,向量的长度一般是正数,只有零向量的长度才是零,这样定义的长度符合熟知的性质:αα||k k = (3)这里V R k ∈∈α,.长度为1的向量叫做单位向量.如果,0≠α由(3)式,向量αα1就是一个单位向量.用向量α的长度去除向量α,得到一个与α成比例的单位向量,通常称为把α单位化.柯西-布涅柯夫斯基不等式:即对于任意的向量βα,有βαβα≤),( (5)当且仅当βα,线性相关时,等式才成立.对于例1的空间nR ,(5)式就是 .22221222212211n n n n b b b a a a b a b a b a ++++++≤+++ 对于例2的空间),(b a C ,(5)式就是()()212212)()()()(⎰⎰⎰≤b a ba ba dx x g dx x f dx x g x f 定义3 如果向量βα,的内积为零,即0),(=βα那么βα,称为正交或互相垂直,记为βα⊥. 设V 是一个n 维欧几里得空间,在V 中取一组基n εεε,,,21 ,对于V 中任意两个向量n n x x x εεεα+++= 2211, n n y y y εεεβ+++= 2211, 由内积的性质得∑∑===++++++=n i nj ji j i n n n n y x y y y x x x 1122112211),(,),(εεεεεεεεβα 设),,2,1,(),(n j i a j i ij==εε (8)显然 .ji ij a a =于是∑∑===n i nj j i ij y x a 11),(βα (9)利用矩阵,),(βα还可以写成AY X '=),(βα, (10)其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n y y y Y x x x X 2121, 分别是βα,的坐标,而矩阵nn ij a A )(=称为基n εεε,,,21 的度量矩阵.3. 标准正交基定义4 欧氏空间V 的一组非零的向量,如果它们两两正交,就称为一个正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组.正交向量组是线性无关的.这个结果说明,在n 维欧氏空间中,两两正交的非零向量不能超过n 个.定义6 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基组.定理:正交向量组是线性无关的.定义 n 组实数矩阵A 称为正交矩阵,如果E A A ='(即A A '=-1)例2 考虑定义在闭区间]2,0[π上一切连续函数所作成的欧氏空间]2,0[πC .函数组 .,sin ,cos ,,sin ,cos ,1 nx nx x x 构成]2,0[πC 的一个正交组.例3 欧氏空间nR 的基 ))(0,,0,1,0,,0( i i =ε(其中n i,,2,1 =) 是n R 的一个标准正交基.定理:正交矩阵的乘积是正交矩阵, 正交矩阵的逆是正交矩阵.掌握施密特正交化的方法实对称矩阵的标准形(对角化问题).引理1:设A 是实对称矩阵,则A 的特征值皆为实数.引理2: 设A 是实对称矩阵,则R n 中属于A 的不同特征值的特征向量必正交.引理3:实对称矩阵的k 重特征值一定有k 个线性无关的特征向量。
第九章欧几里得空间习题解答P394.1.1(,)'0(""0)'(')'''(,)A A A αααααβαβαβααβαβ∴=≥=⇔====正定非负性证得由矩阵失去,线性性成立,再由(,)=A A 对称性成立,是一个内积()1111161P394.1.2,(06);19,,P394.1.2|(,)|||||(,)|i ijiji j n nnij i ji j n n ij i j i j A a x y c s B a x y εεαεεεαβαβαβ====⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∴≤=∴--≤∑∑∑∑的度量矩阵即为A不等式为|()393.2P ①, α=(2,1,3,2), β=(1,2,-2,1)|||,)0,,2αβαβαβπαβ∴====∴⊥∴=〈〉393.2P ②, α=(1,2,2,3), β=(3,1,5,1)|||6,(,)18(,)(,)arc cos ||||4arc arc αβαβαβπαβαβ=====∴====393.2P ③, α=(1,1,1,2), β=(3,1,-1,0)||||(,)3,arc 700'30''38αβαβαβ===∴==︒〈〉P393. 3||||||αβαβ+≤+(,)|||()()||||(,)(,)d d d αγαγαββγαββγαββγ∴=-=-+-≤-+-+ =P393.4在4R 中求一单位向量与(1,1,-1),(1,-1,1-,1),(2,1,1,3)正交解设所求212341234123412344123(,,,)1,00230111111111111111020001003,2113013100314,0,14i x x x x x x x x x x x x x x x x x x x x x x αα==+-+=⎧⎫⎪⎪--+=⎨⎬⎪⎪+++=⎭⎩⎛⎫-⎛⎫⎛⎫--⎪⎪ ⎪ ⎪ ⎪ ⎪--→-→=⎪⎪ ⎪ ⎪ ⎪ ⎪+ ⎪⎝⎭⎝⎭⎝⎭===-=-∑则且与各向量的内积为0得令得,0,1,3),()-单位化393.5P ①证:因为12(,)0, 1.2,,i n i n γαααα==而是一个基11(,)(,)(,)0.0.nni i i i i i k k γγγαγαγ==∴====∑∑因此,必有393.5P ②证,12(,)(,), 1.2,i i i n γαγα==12(,)0, 1.2i i n γγα∴-==由第①小题:12120,γγγγ-==故P393.61231232211(,,)(,,)2123122αααεεε⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭而1232211212,,3122ααα⎛⎫⎪-- ⎪ ⎪--⎝⎭是正交矩阵,所以是标准正交基11212431231212121124512451131212351152124531235393.7,/2(,)1111(22)(,)222221210)22)1()2s P αεεαεεεεεεεβααββαβαβεεεεεεεεβββαββεεεεηεεηεεεεηεεεε==-+=++==-=-=-+-=-+-=--=++-=+=-+-=++-123解:再正交化称:P394.8,解:123452111310014001110101115X X X X X X ⎛⎫ ⎪ ⎪---⎛⎫⎛⎫ ⎪=→= ⎪ ⎪--- ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭解出:123014115100010001ηηη-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Schmidt:1221331022711161151311116222105022130005ββηββηβ--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==-=-=++-= ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭单位化便得到解空间的标准正交基:123766135εεε⎛⎛⎫⎛⎫⎪⎪-⎪⎪⎪⎪====⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ ⎪⎝⎭P394.9 11(,)()()f g f x g x d x-=⎰已知2312341,,,x x xαααα====解:111βα==21122111223132321211223434142441234112233111222(,)(,)*2(,)(,)1310(,)(,)232(,)(,)(,)352(,)(,)(,)532(,)2||(,)||3(xdxx xx xx x x αββαβββαβαββαββββββαβαβαββαβββαββββββββββββ--=-=-=--=---=-=---=--=-====⎰又142333116424441218,)()||3945698(,)()||525175x x dxx x x dxββββββ+--=-+===-+==⎰⎰单位化标准正交基312324,1),3)396.17.4133333333133333343313333333313333x x x xPA A Eγγγγ===-=-------⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪==⎪ ⎪-----⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭1123443() 4.840Acy Tr A x x λλλλχχ∴===-⇒==-+-=221-秩(A+4E)=1至少为重根,而-(4+4+4)+解(A+4E)x=o,即1111210311111110212003⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪⎪ ⎪⎪⎪-- ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭得正交基础体系1100单位化为28λ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭解(A-8E)x=0.得解取自A+4E的一列3-33-31111121124124'1402812T T AT T AT -⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭-⎛⎫- ⎪- ⎪=== ⎪- ⎪ ⎪⎝⎭-单位化为令则112121211111111395.10.10(,,)(,)(,)0,.(,)(,)0P V V V V V k k k V ββαβαβαβββββαβαβ∈≠∅=+=⇒+∈⎫∀∈∴≤⎬==⇒∈⎭11123123111P395.10.2 0dim 1.,,,(2)(,)dim 1.dim 1.n n V V n V i V i L V V n V n αααααααααααα≠∴∉≤-=∈≥∴≤⇒≥-∴≥-故将扩充为的一个正交基那么.P394,11①设两个基:12,12,,,n n εεεηηη及,它们的度量矩阵分别为A 和B,并设121211122111221212'''221122(,,,)(,,,),,(,,)(,,,)(,,)(,,,),(,)(')'()n n n n n n CV X X Y Y X CX Y CY X BY X AY X C AC Y C AC B ηηηεεεαβαεεηηηβεεηηηαβ=∈=========∴=任设所以合同P394.11②, 取V 的一个基12,,,,n A ααα其度量矩阵为因为A 正交,故存在矩阵C,使12121212',,,,,,',,,n n n n C AC E ηηηαααηηηηηη=C AC=E做基(,)=()C,那么,的度量矩阵为因此,为标准正交基.1212121212121212211111P394.12,,,,(,)(,,)()(,,),,|(,,)|,,,,(,,|0()0|()|||0,m ij i j m ij m mm m m m m m V G G G G G ααααααααααααααααααααααααααααααααα⨯∈==⇔≠⇔>⇔=≠记:,称,为,的Gram 矩阵称,为,的Gram 行列式证明,线性无关,)证:若m=1,线性无关,成立121211,|(,,)|0(,,)(,)(,,)0,0,1,2,.n m mj k k ij k ik k i k k k jk jk ji j k k k jm G A c c a c c i m αααβββββααααααγ=≠≠≠≠>==⇔=⇔==⇔-=∴⇔==∑∑∑∑若而,不妨设,1212(,,,),,,,j k k m k jj k m k jc L ck γαααααααααα≠≠=-∈⇔=⇔∑∑线性相关211212112121222122122222212122123|()|||||||||cos (,),(,)|(,)|(,),(,)||||cos ||||||(1cos )(||||cos )|(,,)|()G G G αααααθααααααααααααθαααθααθααα====-==类似地:平行六面体积P394,13,设:1222000n n n n nn A αααααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭因为A 正交,故A'A=E ,令A=12(,,)n βββ由第1行列,211111,1αα==±由β1与其余各列正交,β1⊥βj (j>1),(β1,βj )=111100(1)j j a a j α=⇒=>1100A A ±⎛⎫∴= ⎪⎝⎭其中A 1仍为上三角正交矩阵,但阶数少1,故可用归纳法给出证明,且n=1时显然为真,由归纳法原理,证毕。
第九章欧氏空间习题答案一、填空题1、 0;2、 ,;3、 ;4、 ;5、 ;6、 ;7、 ,;8、 ;9、 ;10、 线性变换在某基下得矩阵;11、 0,;12、 它们得维数相同;13、 ,1;14、 ;15、 正交;16、 ;17、 正定得。
二、判断题15 ××√√√ 610 √×√√√ 1115 √√√×√ 1620 √√×√×三、选择题15 CDBCC 610 CACB(BD) 1115 BDAAA 1618 ABB四、计算题1. 由,故特征值为。
当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为。
则令,为正交阵,有。
2. (1),由于二次型正定,则,即。
(2)当时,则。
由,特征值为。
故标准形为。
3. 二次型矩阵为。
由于正交变换得到得标准形为,则得特征值为,故,可得。
当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为。
则令,为正交阵,有。
4. 设属于特征值得特征向量为,则,即,基础解系为,。
把,单位化为,。
单位化为。
令,为正交阵,有。
进一步得到。
5. 当时,则22200011(cos ,cos )cos cos cos()cos()02()2()||jx kx jx kxdx j k x j k x j k j k πππ==+--=+-⎰22200011(sin ,sin )sin sin cos()cos()02()2()||jx kx jx kxdx j k x j k x j k j k πππ==-++-=+-⎰22200011(sin ,cos )sin cos sin()()02()2()||jx kx jx kxdx j k x sin j k x j k j k πππ==-++-=+-⎰故对于任何整数,该集合均为正交向量组。
第九章欧氏空间独立作业及解答
(2011-6)
1、 设实数域上的矩阵A 为101062122A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
,V 是实数域上的3维线性空间,V 上的一
个双线性函数(,)f αβ在V 的一个基123,,ααα下的度量矩阵为A ,证明(,)f αβ是V 的一个内积;并且求出V 对于这个内积所成的欧氏空间的一个标准正交基。
[解法提要]
(1) 123123(,,),(,,)(,)T x y f x Ay ααααβααααβ==⇒=,可以验证(,)f αβ是V 的一个内积;
(2) 可以用schmidt 正交化方法,只是注意这里的内积是(,)f αβ,可得
123103011003,,γγγ-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=== ⎪⎪⎪ ⎪⎪⎪⎝⎭⎭⎭
(由基123,,e e e 出发得到)。
2、 设123,,εεε是欧氏空间V 的一组标准正交基,试求一个正交变换τ使
1123
2123221
()333212()333τεεεετεεεε=+-=-+ [解法提要]由τ是线性变换,可设3112233()=++x x x τεεεε,再由标准正交基到标准正交基的过渡矩阵是正交矩阵,所以τ是正交变换的条件是过渡是正交矩阵。
1123123212332231(,,)(,,)213(,,)3123⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
x x A x τεεεεεεεεε A 是正交矩阵12311223
(,,)(,,)x x x ⇔=- 即1231232211(,,)(,,)2123122-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
τεεεεεε。
3、 设4R 是具有通常内积的欧氏空间,W 是4
R 的子空间,
(1)如W 是下列方程组123412412
342303220390x x x x x x x x x x x ++-=⎧⎪+-=⎨⎪++-=⎩
的解空间,求W =?,W 在4
R 中的正交补W ⊥=?
(2)求W 和W ⊥的标准正交基。
[解法提要] (1) 求出线性方程组的基础解系:121206190110,,(,),W L αααα⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=== ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭
,其一个标准
012190219⎛⎫⎛⎫ ⎪ ⎪-⎪⎪⎪⎪-⎪⎪⎝⎭⎝⎭
; (2) 121223123012(,),,W L ββββ⊥⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭
35240624⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪⎪-⎪⎪--⎝⎭⎝⎭。
4、 试求将211121112A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
相似对角化的正交矩阵。
[解法提要]
214111111410210114()()()
:,;:(,,)
A f Q diag λλλλλΛ=--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛ = - -⎝=。