高斯主元消去法
- 格式:docx
- 大小:14.08 KB
- 文档页数:5
列主元高斯消去法发展过程1.引言1.1 概述列主元高斯消去法是一种重要的线性方程组求解方法,它在科学计算、工程领域以及数学研究中都有广泛的应用。
本文将对列主元高斯消去法的发展过程进行深入探讨。
列主元高斯消去法最早可以追溯到高斯消去法的提出。
高斯消去法是由十九世纪德国数学家卡尔·弗里德里希·高斯首先提出的一种解线性方程组的方法。
但是高斯消去法的一个缺点是,它需要选取主元,并且主元的选取会影响计算结果的精确性和稳定性。
为了克服这个问题,人们开始思考如何选择更稳定的主元。
随着计算机技术的发展,人们可以使用计算机进行大规模的数值计算。
在这个背景下,对算法的精确性和稳定性要求越来越高。
于是,人们开始尝试改进高斯消去法,以提高算法的效率和计算结果的精确性。
经过多年的研究和实践,人们发现通过选择列主元进行消去,可以在很大程度上提高算法的稳定性。
列主元高斯消去法的基本思想是,在每一步消去过程中,选择列主元使其绝对值最大,从而减小误差的传播。
通过这种策略,列主元高斯消去法能够更好地处理数值计算中的舍入误差,提高计算结果的准确性和稳定性。
随着计算机科学的快速发展,列主元高斯消去法的应用领域也不断扩大。
它在科学计算中被广泛应用于解线性方程组、求解矩阵的特征值和特征向量、拟合曲线等问题。
在工程领域,列主元高斯消去法可以用于求解结构力学、电路分析、图像处理等相关问题。
总而言之,列主元高斯消去法是一种重要的数值计算方法,通过选择列主元进行消去,能够提高计算结果的精确性和稳定性。
它在科学计算和工程领域有广泛的应用,是现代数值计算的重要组成部分。
本文将进一步探讨列主元高斯消去法的定义、原理、应用领域以及其发展过程的总结和未来发展方向。
文章结构文章的结构是指整篇文章的框架和分节安排,它对于读者理解和掌握文章的内容起着至关重要的作用。
对于本文《列主元高斯消去法发展过程》而言,其结构可以按照以下方式进行组织和安排。
实验三 高斯列主元消去法一、实验目的:1、掌握高斯消去法的基本思路和迭代步骤。
2、 培养编程与上机调试能力。
二、高斯列主元消去法的基本思路与计算步骤:设有方程组Ax b =,设A 是可逆矩阵。
高斯消去法的基本思想就是僵局真的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。
列主元高斯消去法计算步骤:将方程组用增广矩阵[]()(1)ij n n B A b a ⨯+== 表示。
步骤1:消元过程,对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得,max k i k ikk i n a a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。
(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。
(4) 消元,对,,i k n = ,计算/,ikik kk l a a =对1,,1j k n =++ ,计算 .ij ij ik kj a a l a =- 步骤 2:回代过程:(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。
(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑三:程序流程图四:程序清单:function X=uptrbk(A,b)% A是一个n阶矩阵。
% b是一个n维向量。
% X是线性方程组AX=b的解。
[N N]=size(A);X=zeros(1,N+1);Aug=[A b];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));%返回向量的最大值存入y,最大值的序号存入j。
C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A是奇异阵,方程无惟一解'breakendfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endend% 这里用到程序函数backsub来进行回代。
全主元高斯消去法发展过程1.引言1.1 概述在数学领域中,线性方程组求解一直是一个重要的问题。
而高斯消去法是一种常用的线性方程组求解方法之一,它的基本原理是通过一系列的行变换将线性方程组化为阶梯形方程组,从而容易求解。
然而,传统的高斯消去法存在一些问题。
在某些情况下,选择的主元元素可能会导致运算过程中出现除零错误,进而使得整个计算过程失效。
为了解决这个问题,全主元高斯消去法应运而生。
全主元高斯消去法在选择主元元素时不仅会考虑当前列的元素,而是会同时考虑当前行和当前列的元素。
这种全面考虑的方式能够确保选取到一个非零元素作为主元,避免了除零错误的发生,提高了计算的稳定性和精度。
全主元高斯消去法的提出是对传统高斯消去法的一种改进和完善。
它不仅解决了传统高斯消去法中可能出现的除零错误问题,还能够更好地应对一些特殊情况,如矩阵中存在大量零元素时,能够减少运算量和计算时间。
全主元高斯消去法的发展过程经历了数学学者们的不断努力与探索。
通过引入新的思想和算法,全主元高斯消去法在求解线性方程组的过程中展现出了更好的效果和稳定性。
综上所述,全主元高斯消去法是对传统高斯消去法的一种改进和完善,它解决了传统方法中的除零错误问题,并能够更好地应对特殊情况,具有更高的计算稳定性和精度。
在接下来的正文中,我们将详细介绍全主元高斯消去法的基本原理和提出过程,以及其在实际应用中的前景。
1.2 文章结构本文将按照以下方式组织和呈现全主元高斯消去法的发展过程。
首先,我们将在引言部分对整篇文章进行概述,介绍全主元高斯消去法的基本原理和目的。
这将帮助读者初步了解文章的主题和内容。
接下来,在正文部分的第2.1节中,我们将详细介绍高斯消去法的基本原理。
通过解释高斯消去法的基本步骤和计算过程,读者将对该方法的工作原理有一个清晰的认识。
紧接着,在正文部分的第2.2节中,我们将着重介绍全主元高斯消去法的提出及其特点。
全主元高斯消去法在传统高斯消去法的基础上进行了改进,使得解方程组的过程更加稳定和准确。
如果在高斯顺序消去法消去过程进行到第i 步时,现选取ri a )(n r i ≤≤中绝对值最大的元素,设为第j 行的元素ji a ,把矩阵的第i 行和第j 行互换,这时ii a 变为ji a ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii ki a a (k 代表行号),依次进行消元。
Gauss 列主元消去法的算法步骤如下:将方程组写成以下的增广矩阵的形式:⎪⎩⎪⎪⎨⎧43212423222114131211............n n n n a a a a a a a a a a a a对k=1,2,3,...,n-1,令∑==nks sk pk a a max ;交换增广矩阵的第k 行与第p 行;对j=k+1,k+2,...,n,计算kk jkkm jm jm a a a a a ⋅-=(m=看,k+1,...,n )kk jkk j j a a b b b ⋅-=算法结束。
三角分解法程序如下:建立相应的M 文件,其函数名为LU,程序如下:function y=LU(A,B);n=length(A);A=[A B];for k=1:n-1;for i=k:n;if (abs(A(i,k))==max(abs(A(k:n,k)))) P(k)=i;temp=A(k,:);A(k,:)=A(i,:);A(i,:)=temp;endendfor j=k+1:n;A(j,k)=A(j,k)/A(k,k);A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);endendP(n)=n;L(1,1)=1;L(2:n,1)=A(2:n,1);L(1,2:n)=0;U(1,1)=A(1,1);U(2:n,1)=0;U(1,2:n)=A(1,2:n);for i=2:n;L(i,1:i-1)=A(i,1:i-1);L(i,i)=1;L(i,i+1:n)=0;U(i,1:i-1)=0;U(i,i:n)=A(i,i:n);endx(n) = A(n,n+1)/U(n,n);for k = n-1:-1:1x(k)=A(k,n+1);for p=n:-1:k+1;x(k) = x(k)-U(k,p)*x(p); endx(k)=x(k)/U(k,k);endxLUPend在程序命令行输入:a=[0.101 2.304 1.5355;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183,2.137,3.035]';LU(a,b)运行结果为:x =3.1160 -1.1960 2.3305 L =1.0000 0 00.4751 1.0000 0-0.0356 0.7313 1.0000 U =-2.8350 1.0720 5.64300 3.2027 1.94180 0 0.3359 P =3 2 3。
选主元消去法的基本原理选主元消去法是高斯消元法的一种改进方法,旨在提高高斯消元法的运算效率。
它通过在每一次消去过程中选择系数矩阵的最大元素(主元)作为基准元素,将其放在消去过程中的当前行首位,从而避免出现除数为零的情况,减小误差累积,并降低运算量。
选主元消去法的基本原理如下:1. 确定主元:在每一次消去过程中,首先需要根据某种准则选择当前列中绝对值最大的元素作为主元素,并将其所在行与当前行进行交换。
常用的准则有最大主元消去法和选主元消去法。
2. 消元过程:将主元所在列中主元下方的所有元素全部变为0。
这一步骤可以通过对当前行进行线性组合,将主元下方的其他元素变为0。
消元过程结束后,主元所在列下方的所有元素均为0。
3. 回代过程:从最后一行开始,用回代法求解未知数。
通过将回代过程中的已求得的未知数带入方程组中的其他未知数,依次求解出剩余的未知数。
选主元消去法的关键在于选择合适的主元。
在最大主元消去法中,选择当前列中绝对值最大的元素作为主元,并进行行交换,使主元所在行位于当前行首位。
这样做的目的是为了最大限度地减小主元造成的误差累积。
然而,在某些情况下,选取最大主元并不能有效地减小误差,甚至可能会增加误差。
因此,选主元消去法中选取主元的准则更为复杂。
在选主元消去法中,选择准则一般有三种:绝对值最大法、相对值最大法和列主元法。
绝对值最大法:选择当前列中绝对值最大的元素作为主元。
这种方法可以有效地减小误差,并提高计算精度。
然而,对于某些特殊的矩阵,如病态矩阵,选择绝对值最大的元素作为主元可能导致误差累积增大。
相对值最大法:选择当前列中相对值最大的元素作为主元,即选择当前列中的元素与该列中绝对值最大的元素的比值最大的元素作为主元。
相对值最大法能够有效地降低误差累积,并提高计算精度。
列主元法:选择当前列中除主元外绝对值最大的元素所在的行作为主元所在的行。
这种方法能够有效地减小误差,尤其在处理病态矩阵时效果显著。
§2高斯主元素消去法⎪⎩⎪⎨⎧=++-=++=++00.357.404.100.200.224.563.200.100.100.200.10120.0321321321x x x x x x x x x 解:clear alla=[0.0120 1.00 2.00;1.00 2.63 5.24;-2.00 1.04 4.57]; b=[1.00;2.00;3.00];x=a\b方程组的三位有效数字的解:Tx )266.0,476.0,645.0(*-=Gauss 消去法求解(取三位有效数字):[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-==00.300.5003.811627.80000.100.200.10120.016432916603.811627.80000.100.200.10120.000.357.404.100.200.224.563.200.100.100.200.10120.006.21673.83323121l l l b A 解出Tx )60.0,197.0,25.0(--≈。
【注】1)设Ax=b,其中A 为n 阶非奇异矩阵,可以应用高斯消元法。
2)消元过程中,即使0)(≠k kk a ,用其作除数)/()()(k kk k ik ik a a l =会导致计算中间结果数量级严重增长和舍入误差的累积、扩大,最后使得计算结果不可靠。
3)应避免采用绝对值很小的主元素)(k kk a ;对一般的系数矩阵,最好保持乘数1≤ik l ,因此,在高斯消去法中应引进选主元技巧,以便减少计算过程中舍入误差对求解的影响。
clear alla=[0.0120 1.00 2.00;1.00 2.63 5.24;-2.00 1.04 4.57]; b=[1.00;2.00;3.00];x_value=vpa(a\b,15)%10位有效数字的近似解a=[a,b];eps=1e-6;[n,m]=size(a);Gauss,x=vpa(x,15) %对比高斯消去法的结果一、列主元素消去法基本思想:在每轮消元之前,选列主元素(绝对值最大的元素),使乘数(即消元因子)1≤ik l步骤:设已进行k-1轮消元,得矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=)()()()()2(2)2(2)2(22)1(1)1(1)1(12)1(11)(k nn k nkk kn k kkn kn kk a a a a a a a a a a a A一落千丈 1 23S1:选列主元素: )()(0max k ik ni k k k i a a ≤≤= (1)S2:换行:如果)(0k k i a →0,则方程组解不唯一,停止运算; 否则,如果i0=k , 则可进行下一轮消元;如果k i ≠0,则r i0 r k ,然后进行下一轮消元。
高斯列主元消元法解线性方程组一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)二、原理及步骤分析设nn ij R a A ⨯∈=][)1(,nn Rb b b b ∈=],,,[)1()2(2)1(1 。
若约化主元素),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。
如果在消元过程中发现某个约化主元0)(=k kk a , 则第K 次消元就无法进行。
此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。
为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。
相应过程为:(1)选主元:在子块的第一列中选择一个元)(k k i k a 使)(max k ik ni k kk i a a k ≤≤=并将第k 行元与第k i 行元互换。
高斯列主元消去法例题高斯列主元消去法是解线性方程组的一种方法,也称为高斯-约旦(Gauss-Jordan)消去法。
它的基本思想是通过矩阵的初等行变换,将矩阵化为简化行阶梯形矩阵,然后根据系数矩阵的行列式是否等于0来求得唯一或无穷多解。
下面以一个例题来讲解高斯列主元消去法的步骤。
例题:解下列线性方程组x1 + 2x2 + 3x3 = 94x1 + 5x2 + 6x3 = 247x1 + 8x2 + 10x3 =40首先,将方程组表示为增广矩阵的形式:1 2 3 | 94 5 6 | 247 8 10| 40接下来,要使用高斯列主元消去法,将增广矩阵化为简化行阶梯形矩阵。
具体步骤如下:1.将第一列中的绝对值最大的元素移到第一行。
7 8 10| 404 5 6 | 241 2 3 | 92.用第一行的首元素消元。
7 8 10| 400 1 -2| 60 -6 -21| -273.将第二列中的绝对值最大的元素移到第二行。
7 8 10| 400 -6 -21| -270 1 -2| 64.用第二行的次元素消元。
7 8 10| 400 1 -2| 60 0 -9| 95.将第三列中的绝对值最大的元素移到第三行。
7 8 10| 400 1 -2| 60 0 -9| 96.用第三行的末元素消元。
7 8 10| 400 1 -2| 60 0 1 | -1现在,我们得到了一个简化行阶梯形矩阵,可以根据系数矩阵的行列式是否等于0来求得唯一或无穷多解。
我们发现,最后一行只有一个非零元素,因此,对应的未知数x3的系数不为0,可以直接利用倒推法求得方程组的解。
7.用第二行解出x2x2 - 2x3 = 6x2 = 2x3 + 68.用第一行解出x1x1 + 8x2 + 10x3 = 40x1 + 8(2x3 + 6) + 10x3 = 40x1 + 26x3 = 8综上所述,该线性方程组的解为:x1 = -26t + 8x2 = 2t + 6x3 = t其中,t为任意常数。
高斯列主元素消去法是一种解线性方程组的常用方法,特别在数值分析和线性代数中应用广泛。
在Matlab中,我们可以使用该方法来解决大规模的线性方程组,包括矩阵的求解和矩阵的反转。
一、高斯列主元素消去法的基本原理高斯列主元素消去法是一种基于矩阵消元的方法,它通过一系列的矩阵变换将原始的线性方程组转化为上三角形式,然后再进行回代求解。
这个方法的核心就是通过矩阵的变换来简化原始的线性方程组,使得求解过程更加简单高效。
在Matlab中,我们可以利用矩阵运算和函数来实现高斯列主元素消去法,如`lu`分解函数和`\"`运算符等。
通过这些工具,我们能够快速地求解各种规模的线性方程组并得到准确的结果。
二、高斯列主元素消去法在Matlab中的实现在Matlab中,我们可以通过调用`lu`函数来实现高斯列主元素消去法。
该函数返回一个上三角矩阵U和一个置换矩阵P,使得PA=LU。
通过对U进行回代求解,我们可以得到线性方程组的解。
除了`lu`函数之外,Matlab还提供了一些其他的函数和工具来帮助我们实现高斯列主元素消去法,比如`\"`运算符和`inv`函数等。
通过这些工具的组合使用,我们能够更加灵活地进行线性方程组的求解,并且可以方便地处理特殊情况和边界条件。
三、高斯列主元素消去法的应用与局限性高斯列主元素消去法在实际应用中具有广泛的适用性,特别是对于大规模的线性方程组或者稀疏矩阵的求解。
通过Matlab中的工具和函数,我们可以快速地求解各种规模的线性方程组,并得到高精度的数值解。
然而,高斯列主元素消去法也存在一些局限性,比如对于奇异矩阵或者接近奇异矩阵的情况时,该方法的求解精度可能会下降。
在实际应用中,我们需要结合具体的问题和矩阵特性来选择合适的求解方法,以确保得到准确的结果。
四、个人观点和总结作为一种经典的线性方程组求解方法,高斯列主元素消去法在Matlab 中具有较好的实现和应用效果。
通过对其原理和实现细节的深入理解,我们能够更加灵活地应用该方法,并且能够更好地理解其适用性和局限性。
高斯主元消去法
一.算法
由已经学过的高等代数可得,高斯主元消去法无非就是将系数矩阵与结果矩阵组成的增广矩阵进行化简阶梯型,得到阶梯型的增广矩阵后,便可以自下向上每两个方程之间求出一个未知数,最终求得方程组的解。
在化阶梯型的过程中,需要一行一行地判断首元是否为零,如果不为零则通过上一行相减化为零,以此类推。
整体编程思路不难,主要在于各种判断条件以及之后的变形。
二.测试用例及结果
1.>> Gauss
系数矩阵为
-68 6 -16 -75 88 49
52 67 -28 -96 -8 -79
75 20 12 -42 -52 36
-30 -33 49 -37 53 -7
37 -40 -15 31 52 -58
-41 -10 -14 92 48 -81 结果矩阵为
65
-68
33
79
3
ans =
-563/1150
-887/357
-322/205
-453/643
-932/3541
-839/5019
2.>> Gauss
系数矩阵为
41 62 -20 31 -12 34
-70 50 -17 87 -49 43
91 -76 -64 -68 51 29
8 5 -49 85 -55 -16
36 -35 -96 59 -88 -22
-93 9 85 16 54 64 结果矩阵为
-37
58
71
1
27
ans =
-187/108
1121/2405
-1908/623
717/548
943/255
-1441/936
三.附录
程序:
function x=Gauss(A,b)
%采用高斯列主元法求解方程组Ax=b A=randi([-100,100],6,6);
b=randi([-100,100],6,1);
fprintf('系数矩阵为\n');
disp(A);
fprintf('结果矩阵为\n');
disp(b);
n=length(b);
p=1:n;lu=A;
y=[];
for k=1:n
[c,i]=max(abs(lu(k:n,k)));
ik=i+k-1;
ifik~=k
m=p(k);p(k)=p(ik);p(ik)=m;
ck=lu(k,:);lu(k,:)=lu(ik,:);lu(ik,:)=ck;
end
if k==n
break;
end
lu(k+1:n,k)=lu(k+1:n,k)/lu(k,k);
lu(k+1:n,k+1:n)=lu(k+1:n,k+1:n)-lu(k+1:n,k)*lu(k,k+1:n); end
l=diag(ones(n,1))+tril(lu,-1);
u=triu(lu);
y(1)=b(p(1));
fori=2:n
y(i)=b(p(i))-l(i,1:i-1)*y(1:i-1)';
end
x(n)=y(n)/u(n,n);
fori=n-1:-1:1
x(i)=(y(i)-u(i,i+1:n)*x(i+1:n)')/u(i,i); end
x=x';。