福建省泉州市2010届高三5月质量检测理科数学试题(扫描版)
- 格式:doc
- 大小:2.56 MB
- 文档页数:18
2010年福建省福州市高中毕业班质量检查理科数学试卷(完卷时间:120分钟;满分:150分)参考公式:样本数据n x x x ,,,21 的标准差;x x x x x x x ns n 其中],)()()[(122221为样本平均数; 柱体体积公式:为底面面积其中S Sh V , 、h 为高;锥体体积公式:h S Sh V ,,31为底面面积其中为高; 球的表面积、体积公式:,34,432R V R S 其中R 为球的半径。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡的相应位置。
1.已知集合2{|20},{|1}A x x x B x x ,则A B I 等于( )A .{|01}x xB .{|12}x xC .{|02}x xD .{|2}x x 2.在同一坐标系内,函数y x a 与log a y x 的图象可能是( )3.在△ABC 中,a 、b 分别是角A 、B 所对的边,则“a b ”是“sin sin A B ”的( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件4.在等差数列{}n a 中,91110a a ,则数列{}n a 的前19项之和为 ( )A .98B .95C .93D .905.某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H 0:“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出2( 6.635)0.01P ,则下列说法正确的是( )A .这种疫苗能起到预防甲型H1N1流感的有效率为1%B .若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1C .有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”D .有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”6.设 、 是两个不同的平面,l 、m 是两条不重合的直线,下列命题中正确的是( ) A .若//,l m I ,则//l mB .若//,l m m ,则//lC .若//,//l m且//,则//l m D .若,l m 且,则l m 7.如图12,e e 为互相垂直的单位向量,向量 a b 可表示为 ( ) A .213 e e B .1224 e e C .123 e e D .123 e e8.设214cos ,()n n xdx x x则二项式的展开式的常数项是( )A .12B .6C .4D .29.已知函数201()log (),()03xf x x x f x 若实数是方程的解,且1010,()x x f x 则的值( )A .恒为负B .等于零C .恒为正D .不小于零10.若直线22505mx ny x y 与圆没有公共点,则过点(,)P m n 的一条直线与椭圆22175x y 的公共点的个数是( )A .0B .1C .2D .1或2二、填空题:本大题共5小题,每小题4分,共20分。
2011年福建省泉州市高中毕业班质量检查理科数学试卷(完卷时间:120分钟;满分:150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡的相应位置. 1. 设{|10}{|360}S x x T x x =+>=-<,,则ST 等于( )A.∅B.{|1}x x <-C.{|2}x x >D.{|12}x x -<< 2.等比数列{}n a 中,已知23a =,71036a a ⋅=,则15a 等于( )A .12 B.12- C.6 D.6-3.设奇函数()f x 在(0)+∞,上为增函数,且(10)0f =,则不等式()0f x x<的解集为( ) A .(100)(10)-+∞,,U B .(10)(010)-∞-,,U C .(10)(10)-∞-+∞,,U D .(100)(010)-,,U 4.某同学设计右面的程序框图用以计算数列{}2n n ⋅的前100项和,则在判断框中应填写 ( )A .99i ≤B .99i ≥C .100i ≤D .101i ≤5.设实数x 和y 满足约束条件20203x y x y x y -≥⎧⎪-≤⎨⎪+≤⎩,则z x y =-的取值范围为A .[]1,1-B .[]2,1-C .[]1,0-D .[]0,16.设函数sin 2,0()2,0x x f x x ≤⎧=⎨>⎩,则方程x x f =)(的解的个数是( )A .1B .2C .3D .47. 命题“平行于同一_______的两______平行.”请在上述空格中分别填入“直线”或者“平面”,使之组成四个不同的命题,则其中的真命题的个数为( ) A .1 B .2 C .3 D.4 8.将函数()sin(2)3f x x π=+的图象向右平移6π个单位得函数()g x 的图象,再将()g x 的图象所有点的横坐标伸长为原来的2倍得到函数()h x 的图象,则( ).A. ()sin 2g x x =,()sin 4h x x =B. ()sin 2g x x =,()sin h x x =C. 2()sin(2)3g x x π=+,2()sin(4)3h x x π=+ D. 2()sin(2)3g x x π=+,2()sin()3h x x π=+ 9. 已知某运动物体的位移随时间变化的函数关系为()2012S t v t at =+,设物体第n 秒内的位移为n a ,则数列{}n a 是( )0.020.030.04A.公差为a 的等差数列 B. 公差为a -的等差数列 C. 公比为a 的等比数列 D. 公比为1a的等比数列 10. 如图所示,圆锥SO 的轴截面SAB ∆是边长为4的正三角形,M 为母线SB 的 中点,过直线AM 作平面β⊥面SAB ,设β与圆锥侧面的交线为椭圆C ,则 椭圆C 的短半轴为( )AB.2CD .2 二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.复数21a iz i+⋅=+是纯虚数,则实数a = 12.若()2011220102011012201020111x a a x a x a x a x -=+++++ ,则12320102011a a a a a+++++=______。
泉州五中届高考模拟试卷〔理科数学〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕,第二卷第21题为选考题,其他题为必考题.本试卷总分值150分,考试时间120分钟. 第一卷一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1. 向量(1,1)a =-,(3,)b m =,//()a a b +,那么m =〔 〕A .2B .2-C .3-D .32. 设等比数列{}n a 的公比2q =,前n 项和为n S ,那么43S a 的值为〔 〕 A .154 B .152 C .74 D .723. 复数1cos23sin 23z i =︒+︒和复数2cos37sin37z i =︒+︒,那么12z z ⋅为〔 〕A12i + B.12+ C.12- D12i - 4. 设01b a <<<,那么以下不等式恒成立的是〔 〕A .21ab b << B .122<<abC .0log log 2121<<b a D .02log 2log <<b a5. 设n m ,是空间两条直线,α,β是空间两个平面,那么以下四个命题中正确的选项是〔 〕A .“m 垂直于α内无数条直线〞是“α⊥m 〞的充要条件;B .“存在一条直线m ,m //α,m //β〞是“//αβ〞的一个充分不必要条件;C .当⊥αβ时,“β//m 〞是“⊥m α〞的必要不充分条件;D .当α⊂m 时,“β⊥m 〞是“βα⊥〞的充分不必要条件。
输入开始p1,0k S ==输出k 开始S p<12k S S -=+1k k =+否是6. 执行如以以下图的程序框图,假设输出的5k =,那么输入的整数p 的最小.值为〔 〕 A. 7B. 8C. 15D. 167.函数sin ,0()1,0x x x x f x e x -≥⎧=⎨-<⎩ ,假设2(2)()f a f a ->,那么实数a 的取值范围是〔 〕A .(,1)(2,)-∞-⋃+∞B .(2,1)-C .(1,2)-D .(,2)(1,)-∞-⋃+∞8. 假设一个三位数的十位数字比个位数字和百位数字都大,那么称这个数为“中优数〞,现在从1、2、3、4、5、6这六个数字中任取三个数,组成无重复数字的三位数,其中“中优数〞的个数为〔 〕A .120B .80C .40D .20 9.函数)sin()(ϕω+=x x f (0,02)ωϕπ><<的导函数()y f x '=的局部图像如以以下图,其中P 为图像与y 轴的交点,C A ,为图像与x 轴的两个交点,且3π=AC ,B 为图像的最低点,点P 的坐标为)233,0(,假设在曲线段ABC 与x 轴所围成的区域内随机取一点,记该点落在ABC ∆内的概率为a ,那么ϕ与a 的值分别为〔 〕 A .6π,8π B .32π,8π C .32π,4π D .6π,4π10.定义全集U 的子集的P 特征函数为1,()0,P U x Pf x x C P∈⎧=⎨∈⎩,这里U C P 表示集合P 在全集U 的补集,,P U Q U ⊆⊆,给出以下结论:① 假设P Q ⊆,那么对于任意x U ∈,都有()()P Q f x f x ≤;)(x f y '=② 对于任意x U ∈都有()1()u C P P f x f x =-; ③ 对于任意x U ∈,都有()()()P QP Q f x f x f x =⋅; ④ 对于任意x U ∈,都有()()()PQP Q f x f x f x =+。
年福建省泉州市高三5月质检数学试卷〔理科〕参考答案与试题解析一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕〔•泉州模拟〕a∈R,且0<a<1,i为虚数单位,那么复数z=a+〔a﹣1〕i在复平面内所对应的点位于〔〕A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题.分析:根据复数z=a+〔a﹣1〕i在复平面内所对应的点的坐标为〔a,a﹣1〕,它的横坐标为正实数,纵坐标为负实数,可得结论解答:解:a∈R,且0<a<1,i为虚数单位,那么复数z=a+〔a﹣1〕i在复平面内所对应的点的坐标为〔a,a﹣1〕,它的横坐标为正实数,纵坐标为负实数,故对应点在第四象限,应选D.点评:此题主要考查复数的代数表示及其几何意义,复数与复平面内对应点之间的关系,属于根底题.2.〔5分〕〔•泉州模拟〕两条直线a,b和平面α,假设b⊂α,那么a∥b是a∥α的〔〕A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件考点:直线与平面平行的判定;充要条件.分析:我们先判断a∥b⇒a∥α与a∥α⇒a∥b的真假,然后利用充要条件的定义,我们易得到a∥b是a∥α的关系.解答:解:当b⊂α是假设a∥b时,a与α的关系可能是a∥α,也可能是a⊂α,即a∥α不一定成立,故a∥b⇒a∥α为假命题;假设a∥α时,a与b的关系可能是a∥b,也可能是a与b异面,即a∥b不一定成立,故a∥α⇒a∥b也为假命题;故a∥b是a∥α的既不充分又不必要条件应选D点评:此题考查的知识点是充要条件,直线与平面平行关系的判断,先判断a∥b⇒a∥α与a∥α⇒a∥b的真假,然后利用充要条件的定义得到结论是证明充要条件的常规方法,要求大家熟练掌握.3.〔5分〕〔•泉州模拟〕假设公比为2且各项均为正数的等比数列{a n}中,a4•a12=64,那么a7的值等于〔〕A.2B.4C.8D.16考点:等比数列的性质.专题:等差数列与等比数列.分析:由等比数列的性质可得=a4•a12=64,从而求得a8的值,再根据公比等于2求得a7的值.解答:解:公比为2且各项均为正数的等比数列{a n}中,a4•a12=64,那么由等比数列的性质可得=a4•a12=64,∴a8=8.再由=q=2,可得 a7=4,应选B.点评:此题主要考查等比数列的性质的应用,属于中档题.4.〔5分〕〔•泉州模拟〕某车间加工零件的数量x与加工时间y的统计数据如表:零件数x〔个〕10 20 30加工时间y〔分钟〕21 30 39现已求得上表数据的回归方程中的值为0.9,那么据此回归模型可以预测,加工100个零件所需要的加工时间约为〔〕A.84分钟B.94分钟C.102分钟D.112分钟考点:回归分析的初步应用.专题:应用题.分析:根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a的值,写出线性回归方程.将x=100代入回归直线方程,得y,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数.解答:解:由表中数据得:=20,=30,又值为0.9,故a=30﹣0.9×20=12,∴y=0.9x+12.将x=100代入回归直线方程,得y=0.9×100+12=102〔分钟〕.∴预测加工100个零件需要102分钟.应选C.点评:此题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a的值,是一个中档题目.5.〔5分〕〔•泉州模拟〕点P〔x,y〕在直线x﹣y﹣1=0上运动,那么〔x﹣2〕2+〔y﹣2〕2的最小值为〔〕A.B.C.D.考点:直线与圆的位置关系;点到直线的距离公式.专题:直线与圆.分析:〔x﹣2〕2+〔y﹣2〕2表示点P〔x,y〕与〔2,2〕距离的平方,求出〔2,2〕到直线x﹣y﹣1=0的距离,平方即可得到最小值.解答:解:∵点〔2,2〕到直线x﹣y﹣1=0的距离d==,∴〔x﹣2〕2+〔y﹣2〕2的最小值为.应选A点评:此题考查了直线与圆的位置关系,以及点到直线的距离公式,熟练掌握距离公式是解此题的关键.6.〔5分〕〔•泉州模拟〕执行如以以下图程序框图所表达的算法,输出的结果是〔〕A.99 B.100 C.120 D.142考点:循环结构.专题:图表型.分析:由图知,每次进入循环体后,新的s值是s加上2n+1得到的,故由此运算规律进行计算,经过10次运算后输出的结果即可.解答:解:由图知s的运算规那么是:s=s+〔2n+1〕,故有:第一次进入循环体后s=3,n=2,第二次进入循环体后s=3+5,n=3,第三次进入循环体后s=3+5+7,n=4,第四次进入循环体后s=3+5+7+9,n=5,…第10次进入循环体后s=3+5+7+9+…+21,n=11.由于n=11>10,退出循环.故该程序运行后输出的结果是:s=3+5+7+9+…+21=120.应选C.点评:此题考查循环结构,运算规那么与运算次数,求最后运算结果的一个题,是算法中一种常见的题型.7.〔5分〕〔•泉州模拟〕向量=〔1,2〕,=〔m﹣1,m+3〕在同一平面内,假设对于这一平面内的任意向量,都有且只有一对实数λ,μ,使=λ+μ,那么实数m的取值范围是〔〕A.B.m≠5C.m≠﹣7 D.考点:平面向量的坐标运算;平面向量的根本定理及其意义;平面向量的正交分解及坐标表示.专题:平面向量及应用.分析:由题意可得,向量=〔1,2〕,=〔m﹣1,m+3〕是同一平面内不平行的两个向量,故有,由此求得m的范围.解答:解:由题意可得,向量=〔1,2〕,=〔m﹣1,m+3〕在同一平面内,且不平行.故有,解得m≠5,应选B.点评:此题主要考查平面向量根本定理的应用,两个向量共线的性质,属于根底题.8.〔5分〕〔•泉州模拟〕公安部新修订的《机动车登记规定》正式实施后,小型汽车的号牌已经可以采用“自主编排〞的方式进行编排.某人欲选由A、B、C、D、E中的两个不同字母,和0、1、2、3、4、5、6、7、8、9中的3个不同数字,组成的三个数字都相邻的一个号牌,那么他选择号牌的方法种数最多有〔〕A.7200种B.14400种C.21600种D.43200种考点:排列、组合及简单计数问题.专题:计算题.分析:先选字母,有种方法,再选3个数字,有种方法,把三个数字看做一个整体进行排列有种方法,再把3个数字做成的一个整体和2个字母进行全排列,有=6种方法,再根据分步计数原理运算求得结果.解答:解:先选字母,有=10种方法,再选3个数字,有=120种方法,把三个数字看做一个整体进行排列有=6种方法,再把3个数字做成的一个整体和2个字母进行全排列,有=6种方法,再根据分步计数原理求得他选择号牌的方法种数最多有10×120×6×6=42200种,应选D.点评:此题主要考查排列与组合及两个根本原理的应用,属于中档题.9.〔5分〕〔•泉州模拟〕周期函数f〔x〕的定义域为R,周期为2,且当﹣1<x≤1时,f〔x〕=1﹣x2.假设直线y=﹣x+a与曲线y=f〔x〕恰有2个交点,那么实数a的所有可能取值构成的集合为〔〕A.或,k∈Z} B.或,k∈Z}C.{a|a=2k+1或,k∈Z}D.{a|a=2k+1,k∈Z}考点:函数的周期性;元素与集合关系的判断;二次函数的性质.专题:函数的性质及应用.分析:由题意画出函数f〔x〕的图象,并在图中画出关键直线,再由条件转化为求出相切时的切点坐标,利用导数的几何意义,然后再把坐标代入切线方程求出a的值,解答:解:由题意画出函数f〔x〕的图象,如以以以下图:其中图中的直线l的方程为:y=﹣x+1,此时恰有两个交点,由图得,当﹣1<x≤1时,直线l向上平移过程中与曲线y=f〔x〕恰有3个交点,直到相切时,设切点为p〔x,y〕,那么f′〔x〕=﹣2x,∴﹣1=﹣2x,解得x=,即y=f〔〕=,∴p〔,〕,代入切线y=﹣x+a,解得a=,∵f〔x〕的定义域为R,周期为2,∴所求的a的集合是:{a|a=2k+1或,k∈Z},应选C.点评:此题考查了函数的性质以及图象的应用,导数的几何意义,考查了数形结合思想,关键正确作图.10.〔5分〕〔•泉州模拟〕如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x〔x∈〔0,1〕〕.以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,那么e1+e2的取值范围为〔〕A.[2,+∞〕B.〔,+∞〕C.[,+∞〕D.〔,+∞〕考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:连接BD、AC,设∠DAB=θ,θ∈〔0,〕,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1,同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的值,最后利用根本不等式求出e1+e2的取值范围即可.解答:解:连接BD,AC,设∠DAB=θ,θ∈〔0,〕,那么BD==,∴双曲线中a=,e1=.∵AC=BD,∴椭圆中CD=2t〔1﹣cosθ〕=2c′,∴c'=t〔1﹣cosθ〕,AC+AD=+1,∴a'=〔+1〕e2==,∴e1e2=×=1,∴e1+e2=2,即那么e1+e2的取值范围为[2,+∞〕.应选A.点评:本小题主要考查椭圆的简单性质、双曲线的简单性质等根底知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.二、填空题:本大题共5小题,每题4分,共20分.请将答案填在答题卡的相应位置. 11.〔4分〕〔•泉州模拟〕设全集U=R,A={﹣1,0,1,2,3},B={x|log2x≤1},那么A∩〔∁U B〕= {﹣1,0,3} .考点:交、并、补集的混合运算.专题:规律型.分析:先求出集合B,然后求出∁U B,利用集合的运算求A∩〔∁U B.解答:解:因为B={x|log2x≤1}={x|0<x≤2},所以∁U B={x|x>2或x≤0},所以A∩〔∁U B〕={﹣1,0,3}.故答案为:{﹣1,0,3}.点评:此题的考点是集合的交集和补集运算,要求熟练集合的交,并,补的根本运算.12.〔4分〕〔•泉州模拟〕a<b,那么在以下的一段推理过程中,错误的推理步骤有③.〔填上所有错误步骤的序号〕∵a<b,∴a+a<b+a,即2a<b+a,…①∴2a﹣2b<b+a﹣2b,即2〔a﹣b〕<a﹣b,…②∴2〔a﹣b〕•〔a﹣b〕<〔a﹣b〕•〔a﹣b〕,即2〔a﹣b〕2<〔a﹣b〕2,…③∵〔a﹣b〕2>0,∴可证得 2<1.…④考点:进行简单的合情推理.专题:证明题.分析:此题是一道不等式证明题,要保证每步中能正确应用不等式性质逐一判断.解答:解:步骤①用的是,不等式两边同加上一个数,不等号方向不变,正确.步骤②用的是,不等式两边同减去一个数,不等号方向不变,正确.步骤③,由于a<b,所以a﹣b<0,根据“不等式两边同乘以一个负数,不等号方向改变〞,步骤③错误.步骤④根据“不等式两边同除以一个正数,不等号方向不变〞,正确.综上所述,错误的推理步骤有③.故答案为:③点评:此题考查逻辑推理,知识和工具是不等式性质.13.〔4分〕〔•泉州模拟〕△ABC的三个内角A,B,C满足sinA•sinB=sin2C,那么角C的取值范围是.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得ab=c2.再由余弦定理可得cosC==,再利用根本不等式求得cosC的最大值为,由此可得角C的取值范围.解答:解:△ABC中,满足sinA•sinB=sin2C,由正弦定理可得ab=c2.再由余弦定理可得 cosC==≥=,当且仅当a=b时,取等号,故 0<C≤,故答案为.点评:此题主要考查正弦定理、余弦定理的应用,属于中档题.14.〔4分〕〔•泉州模拟〕如以以下图的三个等腰直角三角形是某几何体的三视图,那么该几何体的外接球的外表积为3π.考点:由三视图求面积、体积;球的体积和外表积.专题:空间位置关系与距离.分析:由题意可知三视图复原的几何体是三棱锥,正方体的一个角,根据三视图的数据,求出三棱锥的外接球的外表积即可.解答:解:由几何体的三视图知,几何体如以以下图的三棱锥,∵几何体的三视图均为腰长为1的等腰直角三角形,∴SC=AC=BC=1,且∠SCA=∠SCB=∠ACB=90°,∵它是棱长为1的正方体的一个角,∴它的外接球就是棱长为1的正方体的外接球,外接球的半径R=,∴外接球的外表积S=4π〔〕2=3π.故答案为:3π.点评:此题考查由三视图求几何体的外表积,考查由三视图复原直观图形,考查三棱锥的外接球的外表积,此题是一个根底题.15.〔4分〕〔•泉州模拟〕设集合P⊆Z,且满足以下条件:〔1〕∀x,y∈P,x+y∈P;〔2〕﹣1∉P;〔3〕P中的元素有正数,也有负数;〔4〕P中存在是奇数的元素.现给出如下论断:①P可能是有限集;②∃m,n∈P,mn∈P;③0∈P;④2∉P.其中正确的论断是②③④.〔写出所有正确论断的序号〕考点:命题的真假判断与应用.专题:规律型.分析:①P={0}时,利用性质〔1〕〔3〕,可得结论;③利用反证法,假设0不在P里面,不妨设P中的最小正整数为a,最大负整数为b,从而可引出矛盾;②列举反例,可得结论;④利用反证法,结合性质〔1〕引出矛盾.解答:解:①P={0}时,∀x,y∈P,x+y∈P,∵P中的元素有正数,也有负数,∴P不可能是有限集;③假设0不在P里面,不妨设P中的最小正整数为a,最大负整数为b,那么a+b不为零,不妨设a>﹣b,当a>0且a+b<a,又a+b在P中,这与a为P中的最小正整数矛盾,故0在P中,∴③对;②∃m=0,n是奇数∈P,那么mn=0∈P,∴②对④假设2∈P,又P中存在一个负奇数,不妨记为b,且b必小于等于﹣3,由性质〔1〕,不断的运用性质〔1〕,将数a不断的加2,肯定能得到﹣1属于P,与题意矛盾,故④对;故答案为:②③④点评:本小题主要考查复合命题的真假、实数的性质等知识,解答关键是利用反证法的思想方法.三、解答题:本大题共8小题,共80分.解容许写出文字说明,证明过程或演算步骤.16.〔13分〕〔•泉州模拟〕ω>0,函数f〔x 〕=sinωx•cosωx+的最小正周期为π.〔Ⅰ〕试求w的值;〔Ⅱ〕在图中作出函数f〔x〕在区间[0,π]上的图象,并根据图象写出其在区间[0,π]上的单调递减区间.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:〔Ⅰ〕利用倍角公式和两角差的正弦公式即可化简函数f〔x〕=sinωx•cosωx+==,再利用周期公式即可得出ω.〔II〕利用,x∈[0,π],找出区间端点、最大值点、最小值点及函数的零点并列对应值表,描点,并参照弦形曲线的走向特征,用光滑曲线把各对应点顺次联结起来画图,得函数f〔x〕在区间[0,π]上的图象及其单调递减区间.解答:解:〔Ⅰ〕函数f〔x〕=sinωx•cosωx+==.因为函数f〔x 〕的最小正周期为,且ω>0,所以ω=1.〔Ⅱ〕因为,x∈[0,π].列对应值表:x 0 π0 πf〔x〕0 1 0 ﹣1描点,并参照弦形曲线的走向特征,用光滑曲线把各对应点顺次联结起来画图,得函数f〔x〕在区间[0,π]上的图象如以以下图.根据图象可得单调递减区间为.点评:本小题主要考查三角恒等变型、三角函数的图象和性质等根底知识,考查运算求解能力,考查函数与方程思想等.17.〔13分〕〔•泉州模拟〕小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.每卖出一个现烤面包可获利10元,假设当天卖不完,那么未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月〔30天〕中,小王每天售出的现烤面包个数n及天数如下表:售出个数n 10 11 12 13 14 15天数 3 3 3 6 9 6试依据以频率估计概率的统计思想,解答以下问题:〔Ⅰ〕计算小王某天售出该现烤面包超过13个的概率;〔Ⅱ〕假设在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,那么小王决定增加订购量.试求小王增加订购量的概率.〔Ⅲ〕假设小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.考离散型随机变量的期望与方差;等可能事件的概率.点:专题:概率与统计.分析:〔Ⅰ〕由图表可得频率,用频率估计概率可知:P=0.2+0.3=0.5;〔Ⅱ〕记售出超过13个的天数为ξ,那么ξ~B〔5,〕可得P=P〔ξ=4〕+P〔ξ=5〕计算可得;〔Ⅲ〕设其一天的利润为η元,那么η的所有可能取值为80,95,110,125,140.分别计算概率可得分布列,进而可得所求的期望.解答:解:〔Ⅰ〕记事件A=“小王某天售出超过13个现烤面包〞,…〔1分〕用频率估计概率可知:P〔A〕=0.2+0.3=0.5.…〔2分〕所以小王某天售出超过13个现烤面包的概率为0.5.…〔3分〕〔Ⅱ〕设在最近的5天中售出超过13个的天数为ξ,那么ξ~B〔5,〕.…..〔5分〕记事件B=“小王增加订购量〞,那么有P〔B〕=P〔ξ=4〕+P〔ξ=5〕==,所以小王增加订购量的概率为.…〔8分〕〔Ⅲ〕假设小王每天订购14个现烤面包,设其一天的利润为η元,那么η的所有可能取值为80,95,110,125,140.…..〔9分〕其分布列为:利润η80 95 110 125 140概率P…〔11分〕所以小王每天出售该现烤面包所获利润的数学期望为123.5元.…..〔13分〕点评:此题考查离散型随机变量及其分布列,涉及二项分布的知识,属中档题.18.〔13分〕〔•泉州模拟〕椭圆C的对称中心为坐标原点,上焦点为F〔0,1〕,离心率e=.〔Ⅰ〕求椭圆C的方程;〔Ⅱ〕设A〔m,0〕〔m>0〕为x轴上的动点,过点A作直线l与直线AF垂直,试探究直线l与椭圆C的位置关系.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:〔Ⅰ〕由题意可知c,由离心率求出a,结合b2=a2﹣c2可求b,那么椭圆的标准方程可求;〔Ⅱ〕由题意知直线AF的斜率存在且求得其斜率,求出直线l的斜率,写出直线方程,和椭圆方程联立后化为关于x的一元二次方程,写出判别式后由m的范围得到判别式的符号,从而直线和椭圆的位置关系.解答:解:〔Ⅰ〕由条件可知c=1,∵e==,∴a=2,那么b2=a2﹣c2=4﹣1=3,所以b=,所以椭圆C的标准方程为;〔Ⅱ〕∵k AF=﹣,∴直线l的斜率k1=m,那么直线l:y=m〔x﹣m〕.联立y=m〔x﹣m〕与,有〔4+3m2〕x2﹣6m3x+3m4﹣12=0,那么△=36m6﹣4〔4+3m2〕•〔3m4﹣12〕=﹣48〔m4﹣3m2﹣4〕=﹣48〔m2+1〕〔m2﹣4〕=﹣48〔m2+1〕〔m﹣2〕〔m+2〕,∵m>0,∴m2+1>0,m+2>0,那么当0<m<2时,△>0,此时直线l与椭圆C相交;当m=2时,△=0,此时直线l与椭圆C相切;当m>2时,△<0,此时直线l与椭圆C相离.点评:此题主要考查椭圆的标准方程、直线与椭圆的位置关系等根底知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等,是中档题.19.〔13分〕〔•泉州模拟〕如图,四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD.〔Ⅰ〕从以下①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.〔Ⅱ〕设四棱柱ABCD﹣A1B1C1D1的所有棱长都为1,且∠BA D为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.考点:用空间向量求平面间的夹角;直线与平面垂直的性质.专题:空间角;空间向量及应用.分析:〔Ⅰ〕要使AC⊥BD1,只需AC⊥平面BDD1,易知DD1⊥AC.故只需满足条件②即可;〔Ⅱ〕设AC∩BD=0,O1为B1D1的中点,易证OO1、AC、BD交于同一点O且两两垂直.以OB,OC,OO1分别为x,y,z轴建立空间直角坐标系O﹣xyz,设OA=m,OB=n,其中m>0,n>0,m2+n2=1,根据法向量的性质求出平面BC1D1的一个法向量,又=〔0,2m,0〕是平面BDD1的一个法向量,那么cosθ=,利用向量的数量积运算表示出来,然后借助函数的性质即可求得其范围;解答:解:〔Ⅰ〕条件②AC⊥BD,可作为AC⊥BD1的充分条件.证明如下:∵AA1⊥平面ABCD,AA1∥DD1,∴DD1⊥平面ABCD,∵AC⊂平面ABCD,∴DD1⊥AC.假设条件②成立,即AC⊥BD,∵DD1∩BD=D,∴AC⊥平面BDD1,又BD1⊂平面BDD1,∴AC⊥BD1.〔Ⅱ〕由,得ABCD是菱形,∴AC⊥BD.设A C∩BD=0,O1为B1D1的中点,那么OO1⊥平面ABCD,∴OO1、AC、BD交于同一点O且两两垂直.以OB,OC,OO1分别为x,y,z轴建立空间直角坐标系O﹣xyz,如以以下图.设OA=m,OB=n,其中m>0,n>0,m2+n2=1,那么A〔0,﹣m,0〕,B〔n,0,0〕,C〔0,m,0〕,C1〔0,m,1〕,D1〔﹣n,0,1〕,=〔﹣n,m,1〕,=〔﹣2n,0,1〕,设=〔x,y,z〕是平面BC1D1的一个法向量,由得,令x=m,那么y=﹣n,z=2mn,∴=〔m,﹣n,2mn〕,又=〔0,2m,0〕是平面BDD1的一个法向量,∴cosθ===,令t=n2,那么m2=1﹣t,∵∠BAD为锐角,∴0<n<,那么0<t<,cosθ==,因为函数y=﹣4t在〔0,〕上单调递减,∴y=>0,所以0<cosθ<,又0<θ<,∴,即平面BDD1与平面BC1D1所成角的取值范围为〔〕.点评:本小题主要考查直线与直线、直线与平面的位置关系等根底知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.20.〔14分〕〔•泉州模拟〕函数f〔x〕=alnx+bx〔x>0〕,g〔x〕=x•e x﹣1〔x>0〕,且函数f〔x〕在点P〔1,f〔1〕〕处的切线方程为y=2x﹣1.〔Ⅰ〕求函数f〔x〕的解析式;〔Ⅱ〕设点Q〔x0,f〔x0〕〕,当x0>1时,直线PQ的斜率恒小于m,试求实数m的取值范围;〔Ⅲ〕证明:g〔x〕≥f〔x〕.考点:导数在最大值、最小值问题中的应用;函数恒成立问题.专综合题;导数的综合应用.题:分析:〔Ⅰ〕由函数f〔x〕在点P〔1,f〔1〕〕处的切线方程为y=2x﹣1,得f〔1〕=1,f′〔1〕=2,解出即可;〔Ⅱ〕∴“当x0>1时,直线PQ的斜率恒小于m〞⇔当x0>1时,<m恒成立⇔lnx0+〔1﹣m〕〔x0﹣1〕<0对x0∈〔1,+∞〕恒成立.令h〔x0〕=lnx0+〔1﹣m〕〔x0﹣1〕,〔x0>1〕,那么问题等价于h〔x0〕的最大值小于m,求出导数h′〔x0〕,然后分m≤1、1<m<2、m≥2三种情况进行讨论可得;〔Ⅲ〕令h〔x〕=g〔x〕﹣f〔x〕=x•e x﹣lnx﹣x﹣1〔x>0〕,那么问题转化为证明h 〔x〕≥0,求导得h′〔x〕=,由g′〔x〕可判断存在唯一的c∈〔0,1〕使得g〔c〕=0,且当x∈〔0,c〕时,g〔x〕<0;当x∈〔c,+∞〕时,g〔x〕>0,从而得h〔x〕在〔0,c〕上递减,在〔c,+∞〕上递增,故有h〔x〕≥h〔c〕,再g〔c〕=0可得结论;解答:解:〔Ⅰ〕f〔x〕=alnx+bx〔x>0〕,∴f′〔x〕=.∵函数f〔x〕在点P〔1,f〔1〕〕处的切线方程为y=2x﹣1,∴,即,解得a=b=1,∴f〔x〕=lnx+x〔x>0〕.〔Ⅱ〕由P〔1,1〕、Q〔x0,lnx0+x0〕,得,∴“当x0>1时,直线PQ的斜率恒小于m〞⇔当x0>1时,<m恒成立⇔lnx0+〔1﹣m〕〔x0﹣1〕<0对x0∈〔1,+∞〕恒成立.令h〔x0〕=lnx0+〔1﹣m〕〔x0﹣1〕,〔x0>1〕,那么h′〔x0〕==,〔ⅰ〕当m≤1时,由x0>1,知h′〔x0〕>0恒成立,∴h〔x0〕在〔1,+∞〕上单调递增,∴h〔x0〕>h〔1〕=0,不满足题意的要求.〔ⅱ〕当1<m<2时,1﹣m<0,,h′〔x0〕==,∴当x0∈〔1,〕,h′〔x0〕>0;当x0∈〔,+∞〕,h′〔x0〕<0,即h〔x0〕在〔1,〕上单调递增;在〔,+∞〕上单调递减.所以存在t∈〔1,+∞〕使得h〔t〕>h〔1〕=0,不满足题意要求.〔ⅲ〕当m≥2时,0<1,对于x0>1,h′〔x0〕<0恒成立,∴h〔x0〕在〔1,+∞〕上单调递减,恒有h〔x0〕<h〔1〕=0,满足题意要求.综上所述:当m≥2时,直线PQ的斜率恒小于m.〔Ⅲ〕证明:令h〔x〕=g〔x〕﹣f〔x〕=x•e x﹣lnx﹣x﹣1〔x>0〕,那么h′〔x〕=〔x+1〕•e x﹣﹣1==,∵g′〔x〕=〔x+1〕•e x>0〔x>0〕,∴函数g〔x〕在〔0,+∞〕上递增,g〔x〕在〔0,+∞〕上的零点最多一个.又∵g〔0〕=﹣1<0,g〔1〕=e﹣1>0,∴存在唯一的c∈〔0,1〕使得g〔c〕=0,且当x∈〔0,c〕时,g〔x〕<0;当x∈〔c,+∞〕时,g〔x〕>0,即当x∈〔0,c〕时,h′〔x〕<0;当x∈〔c,+∞〕时,h′〔x〕>0.∴h〔x〕在〔0,c〕上递减,在〔c,+∞〕上递增,从而h〔x〕≥h〔c〕=ce c﹣lnc﹣c﹣1.由g〔c〕=0得c•e c﹣1=0且lnc+c=0,∴h〔c〕=0,∴h〔x〕≥h〔c〕=0,从而证得g〔x〕≥f〔x〕.点评:本小题主要考查函数、导数等根底知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.21.〔14分〕〔•泉州模拟〕如图,单位正方形区域OABC在二阶矩阵M的作用下变成平行四边形OAB1C1区域.〔Ⅰ〕求矩阵M;〔Ⅱ〕求M2,并判断M2是否存在逆矩阵?假设存在,求出它的逆矩阵.考点:二阶行列式与逆矩阵.专题:计算题.分析:〔I〕利用待定系数法,先假设所求的变换矩阵M=,再利用点C〔0,1〕、A〔1,0〕分别变换成点C1〔1,1〕、A〔1,0〕,可构建方程组,从而得解.〔II〕先利用矩阵的乘方求出M2,再直接利用求逆矩阵的公式可求即得.解答:解:〔Ⅰ〕设M=,由=,得a=1,c=0,由=,得b=1,d=1,∴M=.〔Ⅱ〕M2==,∵|M2|=1≠0,∴M2存在逆矩阵,M2的逆矩阵为.点评:此题以变换为依托,考查矩阵及其逆矩阵,关键是利用待定系数法,利用矩阵的乘法公式.22.〔•泉州模拟〕在平面直角坐标系xOy中,直线l 的参数方程为:〔t为参数〕.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.〔Ⅰ〕求曲线C的平面直角坐标方程;〔Ⅱ〕设直线l与曲线C交于点M,N,假设点P的坐标为〔1,0〕,求|PM|•|PN|的值.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:〔Ⅰ〕把给出的等式右边展开两角和的正弦公式,两边同时乘以ρ后代入公式x=ρcosθ,y=ρsinθ,整理即可得到答案;〔Ⅱ〕直接把直的参数方程代入曲线C的方程,化为关于t的一元二次方程后利用参数t的几何意义可得结论.解答:解:〔Ⅰ〕由,得==2sinθ+2cosθ.所以ρ2=2ρsinθ+2ρcosθ.即x2+y2﹣2x﹣2y=0.所以曲线C的平面直角坐标方程为x2+y2﹣2x﹣2y=0;〔Ⅱ〕由直线l 的参数方程为:〔t为参数〕,知直线l是过点P〔1,0〕,且倾斜角为的直线,把直线的参数方程代入曲线C 得,.所以|PM|•|PN|=|t1t2|=1.点评:此题考查了直线的参数方程,考查了简单曲线的极坐标方程,考查了直线和圆的关系,解答此题的关键是熟练掌握直线参数方程中参数的几何意义,是中档题.23.〔•泉州模拟〕函数f〔x〕=|x|,x∈R.〔Ⅰ〕解不等式f〔x﹣1〕>2;〔Ⅱ〕假设[f〔x〕]2+y2+z2=9,试求x+2y+2z的最小值.考点:一般形式的柯西不等式;绝对值不等式的解法.专题:不等式的解法及应用.分析:〔Ⅰ〕把要解的不等式f〔x﹣1〕>2等价转化为与之等价不等式|x﹣1|>2,再利用绝对值不等式的解法即得所求.〔II〕利用题中条件:“x2+y2+z2=9”构造柯西不等式:〔x2+y2+z2〕×〔1+4+4 〕≥〔x+2y+2z〕2这个条件进行计算即可.解答:解:〔Ⅰ〕不等式f〔x﹣1〕>2即|x﹣1|>2.解得 x<﹣1,或 x>3.故原不等式的解集为 {x|x<﹣1,或 x>3}.〔II〕[f〔x〕]2+y2+z2=9,即x2+y2+z2=9,由于〔x2+y2+z2〕×〔1+4+4 〕≥〔x+2y+2z〕2,∴9×〔1+4+4 〕≥〔x+2y+2z〕2,∴﹣9≤x+2y+2z≤9.那么x+2y+2z的最小值为:﹣9.点评:〔I〕本小题主要考查绝对值不等式的解法,〔II〕本小题考查用综合法证明不等式,关键是利用〔x2+y2+z2〕×〔1+4+4 〕≥〔x+2y+2z〕2.。
泉州市高中毕业班质量检查 数学(理工农医类)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共6页 本卷满分150分,考试时间120分钟。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据22212121,,:[()()()],n n x x x s x x x x x x n---=-+-++-…的标准差… 其中x -为样本平均数;柱体体积公式:V sh =,其中s 为低面面积,h 为高; 锥体体积公式:1,3V sh s h =其中为低面面积,为高; 球的表面积公式:24S R π=,其中R 为球的半径;球的体积公式:343V R π=,其中R 为球的半径。
()()()1122211,n ni iiii i nni i i i x y nx y x x y y b a y bxx nxx x-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个答案中,只有一个项是符合题目要求的,把正确的代号填在答题卡指定的位置上。
1. 已知集合{}{}211,0,A x x B x x x A B =-<=-≤则等于A.()0,1B.(]0,1C. [)0,1D. []0,1 2. ()()2i i i 为虚数单位,则复数1-1+等于.22A i -+ .22B i -- .22C i + .22D i -()23.log 21f x x x =+-函数的零点必落在区间11.,84A ⎛⎫ ⎪⎝⎭ 11.,42B ⎛⎫ ⎪⎝⎭ 1.,12C ⎛⎫⎪⎝⎭().1,2D4.sin 244y x ππ⎛⎫=+ ⎪⎝⎭将函数的图像上各点的横坐标伸长到原来的2倍,再向右平移个单位,所得到的图形对应的函数式是().sin A f x x = ().cos B f x x = ().sin 4C f x x = ().cos4D f x x = ()()735.11x x x -+的展开式中的系数为A.-14B.14C.26D.56226.1169sin -sin sin x y ABP A B C P A BC P∆-=已知的顶点、分别为双曲线:的左右焦点,顶点在双曲线上,则的值等于4. 5A 7. 4B 54C 47. 4D 7.0,04,a b a b +=若,且则下列不等式中恒成立的是11.2A ab 11.1B a b +≤ .2C ab ≤ 2211.8D a b ≤+ 8. 5.9,x Ex a =已知某一随机变量的概率分布如下,且则是值为A.5B. 6C.7D. 89.,,,,a b a c a b c P b c b a αβαβαβ⊥=⊂⊂⊥⊥已知平面平面,直线直线、不垂直,且、、交于同一点则“”是“”的A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件()[)()2111110.02,04,122400240022a ba f x x ax ba b a b ≤≤=++⨯已知为估计在的条件下,函数有两相异零点的概率P.用计算机产生了0,1内的两组随机数,各个,并组成了2400个有序数对,,统计这个有序数对后得到列联表的部分数据如下表:则数据表中数据计算出的概率P 的估计值为13.48A 11.24B 13.24C 7.12D第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。
保密★启用前泉州市2019届普通高中毕业班第二次质量检查理 科 数 学试题答案与分析本试卷共23题,满分150分,共5页.考试用时120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用5.0毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2log 0A x x =>,{}223B x x x =≥+,则()AB =RA .()3,1-B .()1,3-C .()0,3D .()1,3 【试题简析】由已知可得R {|1},{|13}A x x B x x =>=-<<,所以()R{|13}A B x x =<<.选D .2.已知等比数列{}n a 满足34a =,632a =,则其前6项的和为A .31B .63C .127D .128 【试题简析】解法一:因为3638a q a ==,所以=2q ,所以3121a a q ==,所以661(12)6312S ⋅-==-.选B . 解法二:因为3638a q a ==,所以=2q ,所以3121a a q ==,所以614253623636()()()3663S a a a a a a q q=+++++=++=.选B . 3.若,x y 满足约束条件340,340,80,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则1yx +的取值范围是A .12[,]23B .15[,]24C .25[,]34D . 5[,)4+∞ 【试题简析】由已知可得对应的可行域为如图所示阴影部分,由图可得1BD CD yk k x ≤≤+, 联立方程34=0,80,x y x y -+⎧⎨+-=⎩得点)3,5(B ,联立方程34080,x y x y --=⎧⎨+-=⎩,得点)5,3(C ,故21153=+=BD k ,45135=+=CD k , 所以15214y x ≤≤+.选B . 4.英国统计学家E .H .辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为1x ,2x 和x ,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为1y ,2y 和y法官甲法官乙终审结果 民事庭 行政庭 合计 终审结果 民事庭 行政庭 合计 维持 29 100 129 维持 90 20 110 推翻 3 18 21 推翻 10 5 15 合计32118150合计10025125,则下面说法正确的是A . 11x y <,22y x <,y x >B .11x y <,22x y <,y x <C .11y x >,22y x >,y x >D .11y x >,22y x >,y x < 【试题简析】法官甲民事庭维持原判的案件率为1290.90632x =≈,行政庭维持原判的案件率21000.847118x =≈,总体上维持原判的案件率为1290.86150x ==;法官乙民事庭维持原判的案件率为1900.9100y ==,行政庭维持原判的案件率为2200.825y ==,总体上维持原判的案件率为1100.88125y ==.所以11y x >,22y x >,y x <.选 D . 5.已知抛物线2:2C y px =(0p >)的焦点为F ,准线为l ,O 为坐标原点,点P 在C 上,直线PF 与l 交于点T .若23PFO ∠=π,则PF PT = A .14B .13C .21 D .23【试题简析】作PQ 垂直l 于Q ,则RT △PQT 中,2PQT π∠=,6PTQ π∠=,所以12PF PQ PTPT ==. 选C .6.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则A .75,702<=s xB .75,702>=s xC .75,702<>s xD .75,702><s x 【试题简析】解法一:由于80706090+=+,因此更正前后样本的平均数不发生改变,即70x =.由于80706070-=-, 70709070-<-,因此更正后样本的方差变小,即752<s .解法二:由已知可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为4821,,,x x x ,则])7090()7060()70()70()70[(50175222482221-+-+-++-+-=x x x ]500)70()70()70[(5012482221+-++-+-=x x x , ])7070()7080()70()70()70[(5012224822212-+-+-++-+-=x x x s22212481[(70)(70)(70)100]7550x x x =-+-++-+<, 故275s <.选A .7. 已知等边△ABC 的边长为2,现把△ABC 绕着边BC 旋转到△PBC 的位置.给出以下三个命题:①对于任意点P ,PABC ;②存在点P ,使得PA 平面PBC ; ③三棱锥P ABC 的体积的最大值为1。
福建省泉州市高三数学理科质量检测卷 人教版参考公式:如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是p ,那34π3V R =么在n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)k kn k n n P k C p p -=-第Ⅰ卷(选择题 共60分)一 、 选择题:本题共有12个小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是正确的,把正确的代号填在答题卡指定位置上1、tan(2)4y x π=+的最小正周期是 ( ) ....842A B C D ππππ2、复数61)i -(的值是( )A. 8iB. – 8iC. 8D. – 8 3、等差数列 {a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为( ) A. 55 B.95 C. 100 D. 1904、椭圆221y x m+=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .41 B .21C .2D .4 5、函数)1(log 2-=x y 的反函数1()fx -的图像是( )A B6、已知,a b R ∈,下列命题正确的是( ) A.若a >| b |,则 a 2>b 2B. 若a > b ,则 a 2>b 2C. 若| a |> b ,则 a 2>b 2D.22||,a b a b ≠≠若则7、关于直线a 、b 、l 与平面M 、N ,下面命题中正确的是( ) A.若a //M ,b //M , 则a //b B. 若a //M ,b ⊥a , 则b ⊥MC.若,,,,a M b M l a l b l M ⊂⊂⊥⊥⊥且则D. 若,//,a M a N M N ⊥⊥则 8、将4张互不相同的彩色照片与3张互不相同的黑白照片排成一排,任何两张黑白照片都不相邻的不同排法的种数是( )A .3444A AB .3344A AC .3544C AD .3544A A9、已知O 、A 、M 、B 为平面上四点,满足(1),12OM OB OA λλλ=+-∈(,),则( ) A. 点M 在线段AB 上 B. 点B 在线段AM 上C. 点A 在线段BM 上D. O 、A 、M 、B 四点共线 10、若函数等于则都有对任意实数)4(),4()4(,)sin(3)(πππϕωf x f x f x x x f -=++= A. 0 B. 3 C. -3 D. 3或-311、过点P (-1,0)作圆C:221)(2)1x y -+-=(的两切线,设两切点为A 、B,圆心为C ,则过A 、B 、C 的圆的方程是( )A. 22(1)2x y +-= B. 22(1)1x y +-= C. 22(1)4x y -+= D.22(1)1x y -+=12.若函数()(01)x x f x ka a a a -=+>≠且既是奇函数,又是增函数,那么)(log )(k x x g a +=的图象是( )第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡对应题号的横线上.13、商场在某天的促销活动中,对上午8时至下午13时的销售额进行统计,其频率分布直方图如右图所示.已知8时至9时的销售额为2.5万元,则10时至11时的销售额为 万元.14、点(2,3)与点(3,1)在直线x-y-1=0的 侧(填写同或异)15、已知球面上有三点,,A B C ,6AB BC CA ===,球心到平面ABC 的距离为2,则球的半径为16、“设曲线C 的方程为()y f x =,若limx yk x→∞=,且lim()x y kx b →∞-=,则y kx b =+是曲线C 的渐近线”.根据以上定义可得曲线121y x x=+-的一条渐近线方程为 . .三、 解答题:(本大题共6小题,共74分)解答应写出文字说明 证明过程或推演步骤 17、甲、乙两人独立参加就业应聘考试,根据两人专业知识、应试表现、仪容仪表等综合因素考虑,两人合格率分别为2132、. (Ⅰ)两人恰好有一人合格的概率; (Ⅱ)求合格人数ξ的数学期望.18、(本小题满分12分)在⊿ABC 中,角A B C 、、的对边分别是a b c 、、,已知2cos 22A b c c+=. (Ⅰ)试判断⊿ABC 的形状;(Ⅱ)若3,9,AB BC AB AC ⋅=-⋅=求角B 的大小.8 9 10 11 12 130.400.250.15 0.10 频率时间19、正方体1111ABCD A B C D -中,11AA =,M 为AD 上一点,13DM AD =, N 为1BD 上一点,1:1:3D N NB =,MCBD P =,(Ⅰ)求证:NP ⊥平面ABCD ;(Ⅱ)求平面PNC 与平面11CC D D 所成的角.20、某花木场存放装满泥土的花盆,每堆最底层(第一层)摆放呈长20只,宽14只的矩形,上面各层均比它的下一层长宽各少一只.已知每只装满泥土的花盆的重量为2kg ,为使堆放稳定,每两层之间放有一块耐压的轻质薄板(重量忽略不计).每只花盆的最大抗压力为8kg ,所有花盆不破碎、不变形.(Ⅰ)求第n 层(自下而上,下同)摆放多少只花盆?(Ⅱ)问这堆花盆能否摆7层?如果能,求出第7层的花盆数;如果不能,说明理由,并求这堆花盆最多可摆多少只.21、如图,在OAB ∆中,23==OB OA ,51=,以OA 、OB 所在直线为渐近线的双曲线1c 恰好经过点C ,且离心率为2.(Ⅰ)求双曲线1c 的标准方程;(Ⅱ)直线l 与(Ⅰ)中的双曲线1c 的右支相交于,P Q 两点(其中点P 在第一象限,Q 在第四象限),若线段OP 的中点D 在椭圆143:222=+y x c 上,且PDQ ∆的面积PDQ S ∠=tan 2411,求直线l 的方程.22.(本小题满分14分)已知函数()ln(),f x x m =+2()4,0g x ax x a =+≠(1)设0m =,),()()(x g x f x h -=若h (x )存在单调递减区间,求a 的取值范围; (2) 若m=1,且当x>0时,11)(+>+x kx x f 恒成立, 试求正整数k 的最大值. B 1A B1D1MNPACB ox y[参考答案]一、选择题答案: 1 2 3 4 5 6 7 8 9 10 11 12 CABDCADBBDAB二、填空题答案:13、10 1)、异侧 15、 4 16、 21y x =-三、解答题(17)(Ⅰ)解:分别记甲、乙两人合格的事件为A 、B ,则P(A)21(),(),32P A P B == 所以两人中恰好有一人合格的概率()()()321111()()()()32322P P AB AB P AB P AB P A P B P A P B =+=+=⋅+⋅=⋅+⋅=分故两人中恰好有一人合格的概率是1.2……………………………………6分. (Ⅱ)ξ的分布列如下表:ξ 012P16 12 13则合格人数ξ的数学期望:012.6236E ξ=⋅+⋅+⋅=………………………………12分(18)解:(Ⅰ)在21cos ,cos ,cos ,222A A a c b ABC A c c++∆==∴=中……………3分 由余弦定理得:222=2b c a bbc c+- 故:222ca b =+所以⊿ABC 是以角C 为直角的直角三角形。
福建省泉州市高中数学理科毕业班质量检查试卷 人教版一 选择题:(本题共有12个小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是正确的,把正确的代号填在答题卡指定位置上 )1、已知132lim 22+∞→x x x 的值是A.0B. 不存在C. 1 D 32 2、()y x P ,是0300角终边上异于原点的一点, 则xy的值为 A.3 B. -3 C. 33 D. -333、若点复数i z i z -==1,21,则12z z z =•在复平面内的对应点位于 A .第四象限 B .第三象限 C . 第二象限 D .第一象限4、若a < b < 0,则下列不等式不能成立的是A .ba 11> B .2a > 2bC .| a | > | b | > 0D .(21)a > (21)b 5、 若随机变量的分布列如下表,则则下列说法正确的是0 12PP 113 12A. P 1及E ξ无法计算B.14=0=3P E ξ, C. 114==63P E ξ, D. 113==62P E ξ, 6、已知直线l 、m ,平面α、β,且βα⊂⊥m l ,,给出下列四个命题:①若α//β,则m l ⊥ ②若m l ⊥,则α//β ③若βα⊥,则l //m ④若l //m ,则βα⊥ 其中正确命题的序号是A .①③B .①④C .②④D .③④7、与直线05y 4x 3=++的方向向量共线的一个单位向量是A. )4,3(B. )3,4(-C. )54,53( D. )53,54(- 8、 甲、乙两人独立地解同一问题,甲解出这个问题的概率是31,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是A .16 B .56C .23 D .31 9、函数x x y cos tan •=(0≤x <23π,且x ≠2π)的图象是10、条件21:>+x p ,条件131:>-xq ,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.拟定从甲地到乙地通话m 分钟的电话费由f (m)=1.06(O.5·[m]+1)(元)决定,其中m > O ,[m]是大于或等于m 的最小整数,(如[3]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为A .3.71元B .3.97元C .4.24元D .4.77元12. 如图,在杨辉三角中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则19S 等于A .129B .172C .228D .283二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在答题卡对应题号的横线上 13、某学校共有学生4500名,其中初中生1500名,高中生3000名,用分层抽样法抽取一个容量为300的样本,那么初中生应抽取 名. 14、设圆x 2+ y 2– 4x – 5 = 0的弦AB 的中点为(3,1),则直线AB 的方程是______. 15、若点P 是棱长为3的正四面体内的任意一点,则它到这个四面体各面的距离之和为 . 16.如图,质点P 从点A 起在圆222x y r +=上逆时针做匀角速率运动,角速度为1 r a d/s, 那么t 时刻点P 在x 轴上射影点M 的速率为___________.三 解答题:(本大题共6小题,共74分)解答应写出文字说明 证明过程或推演步骤 17、(本小题满分12分)已知向量1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 … … … … … ……A M O Pyx),2sin ,2(cos ),23sin ,23(cos x x b x x a -==]2,2[),2cos ,2sin (ππ-∈-=x x x c 且(Ⅰ)求||b a +;(Ⅱ)求函数f (x )=的||2b a c a ++⋅单调增区间.18、(本小题满分12分)已知等差数列{}n a 及等比数列{}n b ,其中11=b ,公比q < 0, 且数列{}n n b a +的前三项分别为2、1、4.(Ⅰ)求n a 及q ;(Ⅱ)记数列{}n a 及{}n b 的前n 项和分别为n S 、n T ,求满足n n T S 100≤的n 的最大值. 19、(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1中,D 为线段A 1C 1上一点,BC 1//平面AB 1D. (Ⅰ)求证:D 为A 1C 1中点;(Ⅱ)若AA 1=3,试确定线段AB 的长度,使得二面角A -B 1D -A 1的大小恰为060;DCBBCAAA B D C 20、(本小题满分12分)如图,在平直河岸l 的同一侧有两个缺水的居民区A 、B ,已知A 、B 到河岸的距离AD =1千米,BC =2千米,A 、B 之间的距离AB =2千米.欲在河岸l 上建一个抽水站,使得两居民区都能解决供水问题.(Ⅰ)在河岸l 上选取一点P 建一个抽水站,从P 分别铺设....水管至居民区A 、B ,问点P 应在什么位置,铺设水管的总长度最小?并求这个最小值; (Ⅱ)从实际施的结果来看,工作人员将水管铺设至...居民区A 、B ,且所铺设的水管总长度比(Ⅰ)中的最小值更小,你知道工作人员如何铺设水管吗(指出铺设线路,不必证明)?并算出实际铺设水管的总长度.21、(本小题满分12分)已知双曲线C :22221x y a b-=(a >0,b >03为F ,过点M (1,0)且斜率为1的直线与双曲线C 交于A 、B 两点,并且4FA FB =。
2010年泉州市普通高中毕业班质量检查数学(理工农医类)试题本试卷分第I 卷(选择题)和第II 卷(非选择题),共6页。
全卷满分150分,考试时间120分钟 注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式: 柱体体积公式:V sh =,其中s 为底面面积,h 为高; 锥体体积公式:13V sh =,其中s 为底面面积,h 为高球的表面积公式:24S R π=,其中R 为球的半径;球的体积公式:343V R π=,其中R 为球的半径第Ⅰ卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x k k Z ==∈,,{}05B x x =<≤,则A B ⋂中元素的个数为A .2B .3C .4D .5 2. 命题“若22x y >,则x y >”的逆否命题是A. “若x y <,则22x y <” B. “若x y >,则22x y >” C. “若x y ≤,则22x y ≤” D. “若x y ≥,则22x y ≥” 3. 一个几何体的三视图如图所示,则该几何体的体积是A .23B .2C .43D .44.连续抛掷两次骰子得到的点数分别为m 和n ,记向量()m n a ,=,向量(12)=-b ,,则a ⊥b 的概率是A .112B .16C .736D .295.执行右边框图所表达的算法,如果输出的n 值为4,那么输入的函数()f x 可以是 A .)1(sin +=x y π B.2)1(cos -=x y πC .x y πtan 4= D.x y π32sin =6.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是A.βαβα⊥⊥,//,b aB.βαβα//,,⊥⊂b aC.βαβα//,,⊥⊥b aD.βαβα⊥⊂,//,b a7.对任意实数x ,都有2012()()()n nn x a a x n a x n a x n =+-+-++- ,则1n a -的值为A .2nB .nn C .3(1)2n n- D .1(1)2n n n--8.一只质地均匀的圆形转盘,按图示的方法等分成*31()n n N +∈个区域,并且将各区域分别标上从1到31n +的一个数字作为区域的代号.任意转动转盘,当转盘停止时,如果指针不恰好指向区域的边界,则指针所指区域的代号属于集合{4,7,10,...,31}n +的概率pA .随着n 值的增大而减小且1132p <≤B .是一个与n 无关且落在区间11(,]32内的定值C .随着n 值的增大而增大且1143p ≤<D .是一个与n 无关且落在区间11[,)43内的定值9.已知(,),(,)P x y Q a b ,且01y x ≤≤≤.如果仅在1x y ==时,||PQ 取得最小值,则Q 的坐标应满足的条件是A .11a b ≥⎧⎨≥⎩ B .1a b ≤≤ C .2a b b a +≥⎧⎨≥⎩ D .21a b b +≥⎧⎨≥⎩10. 已知函数()cos ,f x x =记1()22k k S f nnππ-= (1,2,3,...,k n =),若123n T S S S =++...n S ++,则 A .数列{}n T 是递减数列,且各项的值均小于1 B .数列{}n T 是递减数列,且各项的值均大于1 C .数列{}n T 是递增数列,且各项的值均小于1D .数列{}n T 是递增数列,且各项的值均大于1第Ⅱ卷 (非选择题共100分)本卷包括必考题和选考题两部分.第11题-第20题为必考题,每个试题考生都必须作答;第21题为选考题,请考生根据要求选答.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11. 复数1+2i i(i 是虚数单位)的实部是 ;12.已知圆22260n x y x A y +-+⋅=的半径是n = ;13. 在A B C △中,若4cos 5A =,︒=120C ,32=BC ,则A B =_________;14.已知数列{}n a 的通项公式为2n a n =,从数列{}n a 的前5项中任取不同的两项j i a a ,,记i a 与j a 的乘积的个位数为ξ,则ξ的数学期望ξE = ;15.梯形A B C D 中,//A B D C ,若记12,D AB C AB αα∠=∠=,12,AD c BC c ==,则1122c o s c o s A B c c D C αα=⋅+⋅+.试类比上述结论,写出三棱台111ABC A B C -中的一个正确结论: .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知n S 是数列{}n a 的前n 项和,且 *22()n n S a n =-∈N . (Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若数列{}n b 满足2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .17.(本小题满分13分)如图所示的几何体中,ABC PB 面⊥,AB PQ //,1==PB PQ ;直角三角形ABC 中,90=∠ABC , 12A B B C ==.(Ⅰ)求QC 与ABC 面所成角的正弦值;(Ⅱ)若过点A 且与直线QC 垂直的平面与直线P B P C ,交于点,M N ,求线段M N 的长度.18. (本小题满分13分)已知A ,(42)是曲线221221(0)x yC a b a b+=>>:与曲线222(0)C yp x p =>:的一个公共点,F 为曲线2C 的焦点.(Ⅰ)求曲线2C 的方程及线段AF 的长度;(Ⅱ)设22m a b =+,求当m 取得最小值时的曲线1C 的方程;(Ⅲ)在(Ⅱ)的条件下,过点A 且倾斜角为45 的直线l 与曲线1C 的另一个交点为B ,与曲线2C 的另一个交点为C ,求A F B ∆与A F C ∆的面积之比.19.(本小题满分13分)设函数2()ln()2f x x a x =++.(Ⅰ)若当1x =-时,()f x 取得极值,求a 的值;(Ⅱ)在(Ⅰ)的条件下,方程2ln()20x a x m ++-=恰好有三个零点,求m 的取值范围;(Ⅲ)当1a <时,解不等式(21)ln f x a -<. 20.(本小题满分14分)如图,在距离为600m 的两条平行直道1l 、2l 之间的B 处有一重点文化古迹,该古迹到直道1l 的距离是其到直道2l 的距离的两倍.为丰富当地居民的文化生活和开发当地的旅游资源,准备在两直道间修建一个恰好以B 为其中的一个顶点、形状呈菱形的公园A B C D .为安全起见,要求直道1l 与公园最近点C 的距离为100m ,直道2l 与公园最近点A 的距离为50m .设直道1l 与边B C 所在直线的夹角为α,直道2l 与边A B 所在直线的夹角为β, A B C θ∠=.BCDAM Nl 1l 2l 2l 1NM ADCB(Ⅰ)若030β=,求θ;(Ⅱ)如果整个公园都建在古迹B 的右侧(如图1),t a n y α=, 试探求y 关于θ的函数表达式;(Ⅲ)如果公园分布在古迹B 的左右两侧(如图2),试探求公园面积S 关于θ的函数并求其最小值.图1图221.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.(1)(本小题满分7分)选修4-2:矩阵与变换已知122122A ⎛-⎪= ⎪⎪⎝⎭, 2001B ⎛⎫=⎪⎝⎭,求1()AB -.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为cos()4πρθ-=C 的参数方程为cos sin x a y αα=⎧⎨=⎩(α为参数,a 为大于0的常数),且直线l 被曲线Ca 的值.(3)(本小题满分7分)选修4-5:不等式选讲 已知,,,a b c d 均为正实数,且1a b c d +++=,求证:2222111115abcdabcd+++≥++++.2010年泉州市质检数学试卷(理科)参考答案与评分标准一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题4分,共20分.11.2512.3 13.5 14.4.315.若记二面角111,,A AB C B BC A C C A B ------的大小分别为123,,ααα,侧面11ABB A ,11BCC B ,11C A A C 的面积分别为123,,S S S ,则有:11112233cos cos cos B C S S S S S ααα∆∆=+++ABC 1A .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知n S 是数列{}n a 的前n 项和,且 *22()n n S a n =-∈N .(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若数列{}n b 满足2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .解:(Ⅰ)∵*22()n n S a n =-∈N ,∴111122,(22)(22)n n n n n n S a S S a a ++++=--=---,化简得12n n a a +=.……3分 故数列{}n a 为等比数列且公比2q =,又由1122S a =-得12a =,……4分因此1222n nn a -=⨯=.……6分(Ⅱ)若数列{}n b 满足2log n n b a =,则2log 2nn b n ==,……7分因此有1223111111111(1)()()2231n n n T b b b b b b nn +=++⋅⋅⋅+=-+-+⋅⋅⋅⋅+-+……10分1111nn n =-=++.……13分注:本题若采用其它解法,可参照给分。