广东惠州芦洲学校2018-2019学度初二数学第13章单元测试题
- 格式:doc
- 大小:7.50 MB
- 文档页数:5
第十三章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·遵义)观察下列图形,是轴对称图形的是( A )2.点P(5,-4)关于y 轴的对称点是( D )A .(5,4)B .(5,-4)C .(4,-5)D .(-5,-4)3.如图,△ABC 与△ADC 关于AC 所在的直线对称,∠BCD =70°,∠B =80°,则∠DAC 的度数为( B )A .55°B .65°C .75°D .85°,第3题图) ,第4题图) ,第5题图) ,第6题图)4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 长为( A )A .2B .3C .4D .以上都不对5.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( C ) A .80° B .100° C .140° D .160°6.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A )A .①B .②C .⑤D .⑥ 7.(2015·玉林)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是( D )A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC,第7题图) ,第8题图) ,第9题图),第10题图)8.如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE ,AC=5,BC=3,则BD的长为( A )A.1 B.1.5 C.2 D.2.59.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( C )A.10 B.8 C.6 D.410.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD =BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是( C ) A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.正方形是轴对称图形,它共有__4__条对称轴.12.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF等于__70°__.,第12题图),第13题图),第14题图) 13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__5__种.14.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为E.若∠B=35°,则∠DAC的度数为__75°__.15.在△ABC中,AC=BC,过点A作△ABC的高AD,若∠ACD=30°,则∠B=__75°或15°__.16.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):__①③或②③__.,第16题图),第17题图),第18题图)17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是__60__.18.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为__5_cm__.三、解答题(共66分)19.(7分)如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.(不写作法,保留作图痕迹)解:作∠B的平分线与线段AD的垂直平分线,它们的交点即为点P20.(9分)如图,在平面直角坐标系中,A(-2,2),B(-3,-2). (1)若点D 与点A 关于y 轴对称,则点D 的坐标为__(2,2)__;(2)将点B 先向右平移5个单位再向上平移1个单位得到点C ,则点C 的坐标为__(2,-1)__; (3)求A ,B ,C ,D 组成的四边形ABCD 的面积.解:(3)31221.(9分)如图,在△ABC 中,AB =AC ,D 为BC 为上一点,∠B =30°,∠DAB =45°. (1)求∠DAC 的度数; (2)求证:DC =AB.解:(1)∠DAC =120°-45°=75°(2)∵∠ADC =180°-75°-30°=75°,∴∠DAC =∠ADC ,∴DC =AC ,又AB =AC ,∴DC =AB22.(9分)(2015·潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD ,请你写出与筝形ABCD 的角或者对角线有关的一个结论,并证明你的结论.解:(答案不唯一)AC ⊥BD.理由:证△ABD ≌△CBD (SSS ),∴∠ABO =∠CBO ,∵AB =CB ,∴BD ⊥AC23.(10分)如图,△ABC ,△ADE 是等边三角形,B ,C ,D 在同一直线上. 求证:(1)CE =AC +DC ;(2)∠ECD =60°.解:(1)∵△ABC,△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC.∵BD=BC+CD=AC+CD,∴CE=BD=AC+CD(2)由(1)知△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°-∠ACB-∠ACE=60°24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.解:(1)∵BF∥AC,∠ACB=90°,∴∠CBF=90°,∵∠ABC=45°,DE⊥AB,∴∠BDF=45°,从而∠BFD=45°=∠BDF,∴BD=BF=CD,又AC=BC,∴△ACD≌△CBF(SAS),∴∠CAD=∠BCF,∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=90°,∴AD⊥CF(2)△ACF是等腰三角形.理由:由(1)知BD=BF,又DE⊥AB,∴AB是DF的垂直平分线,∴AD=AF,由(1)知△ACD≌△CBF,∴AD=CF,∴AF=CF,∴△ACF是等腰三角形25.(12分)如图,已知AE⊥FE,垂足为E,且E是DC的中点.(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.解:(1)AE是∠FAD的角平分线(2)成立.理由如下:延长FE交AD的延长线于G.∵E为CD的中点,∴CE=DE.证△CEF≌△DEG(ASA),∴EF=EG.∵AE⊥FG,∴AF=AG,∴AE是∠FAD的平分线(3)结论仍成立,证明方法同(2)。
第十三章轴对称单元测试一、单选题(共10题;共30分)1、下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、角D、平行四边形2、如图所示几何图形中,一定是轴对称图形的有几个()A、2B、3C、4D、53、点A(3,4)关于x轴对称的点B的坐标为().A、(6,4)B、(-3,5)C、(-3,-4)D、(3,-4)4、已知两角及夹边作三角形,所用的基本作图方法是()A、作已知角的平分线B、作已知线段的垂直平分线C、过一点作已知直线的高D、作一个角等于已知角和作一条线段等于已知线段5、已知等腰三角形的一边长为5,另两边的长是方程x2﹣6x+m=0的两根,则此等腰三角形的周长为()A、10B、11C、10或11D、11或126、如图,直线l:y=﹣x+b,点M(3,2)关于直线l的对称点M1落在y轴上,则b的值等于()A、3B、2C、1或2D、2或37、把经过点(﹣1,1)和(1,3)的直线向右移动2个单位后过点(3,a),则a的值为()A、1B、2C、3D、48、点N(a,﹣b)关于y轴的对称点是坐标是()A、(﹣a,b)B、(﹣a,﹣b)C、(a,b)D、(﹣b,a)9、若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A、12B、15C、12或15D、910、下列几何图形中,既是轴对称图形,又是中心对称图形的是()A、等腰三角形B、正三角形C、平行四边形D、正方形二、填空题(共8题;共24分)11、一个大的等腰三角形能被分割为两个小等腰三角形,则该大等腰三角形顶角的度数是________.12、已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为________cm.13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为________14、如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,若AC=9cm,BC=5cm,则△BCE的周长为________cm.15、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是________.。
八年级数学 第十三章《轴对称》 单元检测试题完卷时间:90分钟 满分:100分 姓名 成绩 一、选择题。
(每小题3分,共30分)细心择一择,你一定很准! 1、下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )A. B. C. D. 2、一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像是( )3、在平面直角坐标系中,已知点A (m, 3)与点B (4, n )关于y 轴对称,那么(m +n )2017的值为( ) A. -1 B. 1 C. -72015 D. 720154、 如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )5、已知等腰三角形的一个角等于42°,则它的底角为( ) A. 42° B.69° C.69°或84° D.42°或69°6、如图,∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A. 90°B. 75°C. 70°D. 60°7、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形 的底角是( )A. 75°或15°B. 75°C. 15°D. 75°和30°8、如图,DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )A. 16cmB. 18cmC. 26cmD. 28cm9、如图所示的是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( )A. 1号袋B. 2号袋C. 3号袋D. 4号袋10、如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .(21) n •75° B .(21) n -1•65° C .(21) n -1•75° D .(21) n •85°二、填空题。
一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001...2. 已知x是有理数,且x^2=4,则x的值为()A. ±2B. ±1C. ±4D. ±83. 下列方程中,解集为空集的是()A. x^2 = 0B. x^2 + 1 = 0C. x^2 - 4 = 0D. x^2 = 44. 已知a,b为实数,且a + b = 0,则下列说法正确的是()A. a和b都是正数B. a和b都是负数C. a和b中至少有一个是0D. a和b互为相反数5. 下列各数中,无理数是()A. √4B. √-9C. 0.333...D. π二、填空题(每题5分,共25分)6. 已知x是有理数,且x^2=9,则x的值为______。
7. 下列各数中,绝对值最小的是______。
8. 已知a,b为实数,且a - b = 0,则a和b的关系是______。
9. 下列方程中,解集为全体实数的是______。
10. 已知x是有理数,且x^2=16,则x的值为______。
三、解答题(每题10分,共40分)11. 简化下列各数:(1)√36 - √9(2)√(25 + 5√5)12. 求下列方程的解:(1)2x^2 - 5x + 2 = 0(2)x^2 - 3x - 4 = 013. 已知a,b为实数,且a^2 + b^2 = 1,求a - b的最大值和最小值。
14. 已知x是有理数,且x^2 + 3x - 4 = 0,求x^3 + 6x^2 - 11x的值。
四、附加题(10分)15. 已知a,b为实数,且a^2 + b^2 = 2,求a + b的最小值。
答案:一、选择题1. D2. A3. B4. D5. D二、填空题6. ±37. 08. 相等9. x^2 = 010. ±4三、解答题11. (1)√36 - √9 = 6 - 3 = 3(2)√(25 + 5√5) = √5(√5 + 1)12. (1)2x^2 - 5x + 2 = 0,解得x = 1或x = 2/2(2)x^2 - 3x - 4 = 0,解得x = 4或x = -113. a + b的最小值为-√2,最大值为√2。
《第13章轴对称》一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B 的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.65.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=度.8.如图,黑颜色的三角形与哪些图形成轴对称(填写序号)9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:证明:17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 度.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.《第13章轴对称》参考答案与试题解析一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)【考点】坐标与图形变化-对称.【分析】根据轴对称的定义列式求出点B的横坐标,然后解答即可.【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选D.【点评】本题考查了坐标与图形变化﹣对称,熟记对称的性质并列出方程求出点B的横坐标是解题的关键.3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】根据AB=AC,判断出∠B=∠C=30°,从而求出∠BAC=120°,然后根据∠BAD=90°,求出∠1=30°,得到DC=AD,然后根据30°的角所对的直角边是斜边的一半解答.【解答】解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=180﹣30°×2=120°,又∵BAD=90°,∴∠1=120°﹣90°=30°,∴∠1=∠C=30°,∴DC=AD,∵在Rt△ABD中,∠B=30°,∴AD=BD,则CD=BD.∴BD=2CD.故选B.【点评】本题考查了含30°角的直角三角形和等腰三角形的性质,知道30度的角所对的直角边是斜边的一半是解题的关键.4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.6【考点】生活中的轴对称现象.【专题】应用题.【分析】根据题意分析可得:分别找出入射点B和反射点B,看看是否符合即可.【解答】解:由图可知可以瞄准的点有2个..故选B.【点评】本题考查轴对称图形的定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.解此题关键是找准入射点和反射点.5.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【考点】等腰三角形的判定.【分析】根据角平分线的定义求出∠1=∠2,再根据等角的余角相等求出∠3=∠4,根据对顶角相等可得∠5=∠4,然后求出∠3=∠5,再利用等角对等边可得CE=CF,从而得解.【解答】解:如图,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠ACB=90°,CD是AB边上的高,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∵∠5=∠4(对顶角相等),∴∠3=∠5,∴CE=CF,∴△CEF是等腰三角形.故选B.【点评】本题考查了等腰三角形的判定,角平分线的定义,直角三角形两锐角互余的性质,等角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象.二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=55 度.【考点】角的计算.【专题】计算题.【分析】根据题意∠B′OG=∠BOG,根据平角和角平分线的定义即可求得.【解答】解:由题意可得∠B′OG=∠BOG,则∠B′OG=(180﹣∠AOB′)÷2=55°.故答案为55.【点评】已知折叠问题就是已知图形全等,因而得到相等的角.8.如图,黑颜色的三角形与哪些图形成轴对称1,3,5,7 (填写序号)【考点】轴对称的性质.【分析】根据轴对称的性质即可得出结论.【解答】解:由轴对称的性质可知,黑颜色的三角形与1,3,5,7可形成轴对称图形.故答案为:1,3,5,7.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是14 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据线段垂直平分线的性质得出AD=CD,进而可得出结论.【解答】解:∵DE垂直平分AC,∴AD=CD.∵AB=AC=8,BC=6,∴△BDC的周长=BC+(BD+CD)=BC+(BD+AD)=BC+AB=6+8=14.故答案为:14.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【专题】几何图形问题.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有 4 个.【考点】坐标与图形性质;等腰三角形的判定.【分析】如果OA为等腰三角形的腰,有两种可能,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点;符合条件的点一共4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;针对线段OA在等腰三角形中的地位,分类讨论用画圆弧的方式,找与y轴的交点,比较形象易懂.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是8:00 .【考点】镜面对称.【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【解答】解:由图中可以看出,此时的时间为8:00.故答案为:8:00.【点评】考查了镜面对称的知识,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是0<x<25 .【考点】等腰三角形的性质;三角形三边关系.【分析】已知周长和底边,可表示腰长.根据三角形三边关系得不等式求解.【解答】解:∵等腰三角形的周长为50,底边长为x,∴两腰和=50﹣x.∴50﹣x>x>0,解得 0<x<25.故答案是:0<x<25.【点评】此题考查等腰三角形的性质及三角形三边关系定理,解题的关键是设出的底边的长表示出两腰的和,难度不大.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.【考点】轴对称-最短路线问题.【分析】点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P 在一条直线上时,|PA﹣PB|的值最大.【解答】解:如图所示:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.【点评】本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.【考点】作图—应用与设计作图.【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l 的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】涉及在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:DE=AC证明:【考点】等边三角形的性质;含30度角的直角三角形.【专题】探究型.【分析】根据等边三角形的性质,由△ABC为等边三角形得到AC=BC,∠ACB=60°,则由AC⊥CE可计算出∠BCE=30°,再利用△BDE为等边三角形得到DE=BE,∠DBE=60°,于是根据三角形内角和定理可计算出∠BEC=90°,然后在Rt△BEC中利用含30度的直角三角形三边的关系可得BE=BC,所以DE=AC.【解答】解:DE=AC.证明如下:∵△ABC为等边三角形,∴AC=BC,∠ACB=60°,∵AC⊥CE,∴∠ACE=90°,∴∠BCE=90°﹣60°=30°,∵△BDE为等边三角形,∴DE=BE,∠DBE=60°,∴∠BEC=180°﹣60°﹣30°=90°,在Rt△BEC中,∵∠BCE=30°,∴BE=BC,∴DE=AC.故答案为DE=AC.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了含30度的直角三角形三边的关系.17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】首先证明∠DBC=∠DCB,可得DB=DC,根据线段垂直平分线的判定可得D在BC的垂直平分线上,由AB=AC,得出A在BC的垂直平分线上,于是AD垂直平分BC,即AE⊥BC.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵∠ABD=∠ACD,∴∠ABC﹣∠ABD=∠ACB﹣∠ACD,即∠DBC=∠DCB,∴DB=DC,∴D在BC的垂直平分线上,∵AB=AC,∴A在BC的垂直平分线上,∵两点确定一条直线,∴AD垂直平分BC,∴AE⊥BC.【点评】此题考查了等腰三角形的判定,线段垂直平分线的判定,难度适中.证明出D在BC的垂直平分线上是解题的关键.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 30或150 度.【考点】等腰三角形的性质.【分析】由于BC为腰,则点B可为顶角的顶点,也可为底角的顶点,高AD可在三角形内部也可在三角形外部,故应分三种情况分析计算.【解答】解:由题意得,分三种情况:(1)当点B为顶角的顶点时,且AD在三角形内部,∠ABC=90°﹣∠DAB=90°﹣60°=30°;(2)当点B为顶角的顶点时,且AD在三角形外部,∠ABC=∠D+∠DAB=90°+∠60°=150°;(3)当点C为顶角的顶点时,∠ABC=90°﹣∠DAB=90°﹣60°=30°,当点A为顶角的顶点时,AD在三角形内部,∠ABC=﹣∠ADB﹣∠DAB=90°﹣60°=30°,故答案为:30或150【点评】本题考查了等腰三角形的性质,三角形的内角和定理,直角三角形的性质.注意分类讨论是正确解答本题的关键.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.【考点】等腰三角形的判定与性质.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.正确添加辅助线构造全等三角形是解题的关键.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定与性质.【分析】求出∠ADB=∠ADF,根据SAS证△ABD≌△FED,推出∠F=∠ABD=60°,AB=AF=AC,得出△ACF是等边三角形,推出AC=CF即可.【解答】解:AC=BD+CD,理由是:延长CD到F,使DF=BD,连接AF,∵ED⊥AD,DE平分∠BDC,∴∠ADB=90°﹣∠BDC,∴∠AD F=180°﹣(90°﹣∠BDC)﹣∠BDC=90°﹣,∴∠ADB=∠ADF,在△ABD和△AFD中,,∴△ABD≌△AFD(SAS),∴∠F=∠ABD=60°,AB=AF,∵AB=AC,∴AF=AC,∴△ACF是等边三角形,∴AC=CF=CD+DF=BD+CD.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,正确的作出辅助线是解题的关键.作者留言:非常感谢!您浏览到此文档。
人教版2018-2019学年八年级数学上册第十三章轴对称单元检测题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题2.点P(3,-5)关于y轴对称的点的坐标为( )A. (-3,-5)B. (5,3)C. (-3,5)D. (3,5)3.已知线段AB和点C,D,且CA=CB,DA=DB,那么直线CD是线段AB的( )A. 垂线B. 平行线C. 垂直平分线D. 过中点的直线4.如图所示,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于( )A. 40°B. 50°C. 70°D. 80°5.下列命题中,不正确的是( )A. 关于某条直线对称的两个三角形全等B. 若两个图形关于直线对称,则对称轴是对应点连线的垂直平分线C. 等腰三角形一边上的高、中线及这边所对角的平分线重合D. 两个全等的三角形不一定是轴对称图形6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)7.在△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB,AC边上的中线的长相等.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个8.一个等腰三角形的周长为40 cm,以一边为边作等边三角形,这个等边三角形周长为45 cm,那么这个等腰三角形的底边长为( )A. 15 cmB. 10 cmC. 30 cm或10 cmD. 15 cm或10 cm9.如图所示,在Rt△ABC中,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是( )A. 13 cmB. 6.5 cmC. 30 cmD. 6√2cm10.如图所示,△ABC中,AB=AC,∠EBD=20°,AD=DE=EB,则∠C的度数为( )A. 70°B. 60°C. 80°D. 65°第II卷(非选择题)二、解答题(题型注释).12.如图所示,写出图中A,B,C,D,E,F,G的坐标,并比较B与F,C与E,A与G的坐标特征,用文字表述出来.13.如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.14.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.15.如图所示,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE.求证:AD=CE.16.如图所示,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.17.如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8 cm,且BC=4 cm,求△ABC的周长.三、填空题请写出两个具有轴对称性的汉字.19.M(x,y)与点N(﹣2,﹣3)关于y轴对称,则x+y=______.20.若△ABC的三个顶点的横坐标都乘-1,纵坐标不变,则所得到的图形与原图形的关系是____.21.已知一个等腰三角形的一边是6,另一边是8,则这个等腰三角形的周长是____.22.如图,∠A=30°,∠C'=60°,△ABC与△A’B'C'关于直线l对称,则∠B=___________.23.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD的长是________.24.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若△PMN的周长=8厘米,则CD为_______厘米25.如图所示,在直角坐标系内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是__________.26.如图所示,已知△ABC关于直线y=1对称,点C到AB的距离为2,AB长为6,则点A,B的坐标分别为____.27.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.参考答案1.B【解析】1.A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形。
八年级数学上册第13章轴对称单元测试卷及答案2019年八年级数学上册第13章轴对称单元测试卷及答案把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形。
接下来大家一起来练习2019年八年级数学上册第13章轴对称单元测试卷。
2019年八年级数学上册第13章轴对称单元测试卷及答案一、选择题(共10小题,每小题3分,共30分)1、下列图形成轴对称图形的有()A.5个B.4个C.3个D.2个2、下列图形中,对称轴的条数最少的图形是()3、在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个4、若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°5、若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或76、如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与的夹角为.14、如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC 于点D.已知△BDC的周长为14,BC=6,则AB= .15、在等边三角形ABC中,点D在AB边上,点E在BC边上,且AD=BE.连接AE、CD交于点P,则∠APD=.16、如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA 于点D,PD=6,则点P到边OB的距离为()A.6B.5C.4D.3三、解答题(共8题,共72分)17、(本题8分)如图是未完成的上海大众的汽车标志图案,该图案是以直线L为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分.(要求用尺规作图,保留痕迹,不写作法.)18、(本题8分)如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD 的面积是.19、(本题8分)如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为cm.20、(本题8分)如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC 边与点E,连接AD,若AE=4cm,求△ABD的周长.21、(本题8分)如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数22、(本题10分)在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),求点B′的横坐标.23、(本题10分)已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.24、(本题12分)平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.参考答案一、选择题1、A2、B3、C4、D5、A6、B7、C.8、C9、B 10、D二、填空题11、两,一 12、y轴 13、20° 14、8 15、60° 16、A三、解答题17、如图18、解∵CD平分∠ACB交AB于点D,∴∠DCE=∠DCF,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,在△DEC和△DFC中,∠DCE=∠DCF,∠DEC=∠DFC,CD=CD,∴△DEC≌△DFC(AAS),∴DF=DE=2,∴S△BCD=BC×DF÷2=4×2÷2=419、解∵BD是∠ABC的平分线,PE⊥AB于点E,PE=4cm,∴点P到BC的距离=PE=4cm.20、解:由图形和题意可知AD=DC,AE=CE=4,AB+BC=22,△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,即可求出周长为22.21、解∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°- 100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°- 140°)÷2=20°.22、解:如图所示,∵等边△OAB关于x轴对称的图形是等边△OA′B′,∴点A′的坐标为(6,0),∴点B′的横坐标是3.23、解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,∴ 2m+n=1,n-m= -2解得:m=1,n= -1,(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,∴2m+n= -1,n-m=2解得:m= -1,n=1,24、解:(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积= AB×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△A1B1C1与△ABC关于x轴对称,∴A1(0,﹣4)、B1(2,﹣4)、C1.(3,1).2019年八年级数学上册第13章轴对称单元测试卷到这里就结束了,希望同学们的成绩能够更上一层楼。
量得PA=2cm,PB=2cm,则点P—定()B.在边AB的中线上D.在边AB的垂直平分线上)C. 3条D. 4条,D, E 分别是AB, AC 上的点,且BC=CD,AD=DE=CE,C. 40°D. 36°6.若等腰三角形的腰长为8,腰上的高为4,则此三角形的顶角是()A. 30°B. 150°C. 30°或150°D. 30°或120°7.如图,在AABC中,AB=AC, ZBAC=120° ,0是队的中点,DE丄AB于点E,人教版八年级数学单元检测第十三章《轴对称》检测题一、选择题1.在AABC 中,A. 70°(时间:60分钟分值:(每小题4分,共28分)AB=AC, ZB=67°,则ZA=(B. 55°C. 50°100分))D. 40°2.下列图形中,不是轴对称形的是()A. 1条B. 2条5.如图,则ZA=(在AABC 中,AB=AC )A. 50°B. 45°第5题A第7题3.三角形纸片ABC上有一点P,A.是边AB的中点C.在边AB的高上4.等边三角形的对称轴有(若AE=2cm,则AD的长为()A. 4cm B. 6cm C. 8cm D.12cm二、填空题(每小题4分,共20分)8.将一副直角三角板按如图所示摆放,点C 在EF 上,AC 经过点D.已知ZA=Z EDF=90° , AB=AC, ZE=30° , ZBCE=40°,则ZCDF= _______________________ .9. 在AABC 中,AB=AC, ZBAC=36°,作AB 边的垂直平分线DE,交AC 于点D,交AB 于点E,连接BD.给出下列结论:①BD 平分ZABC;②AD=BD=BC;③ABDC 的周长 等于AB+BC;④点D 是AC 的中点.其中正确的是 ___________ (只填序号). 10. ______________________________________________________________ 若(a-1) 2+ | b-2 | =0,则以a, b 为边的等腰三角形的周长为 __________________ . 11. 如图,在AABC 中,AB=AC, D, E 是AABC 内的两点,AD 平分ZBAC, ZEBC= ZE=60° .若BE=6cm, DE=2cm,贝!JBC= ___________ cm. 12. 如图,在AMNP 中,ZP=60° ,MN=NP,MQ 丄PN,垂足为Q,延长MN 至点G,使 NG=NQ.若AMNP 的周长为12,则MG 的长为 ________ . 三、解答题(共52分) 13. (8 分)如图,四边形 ABCD 的顶点坐标为 A (-5, 1), B (-1, 1), C (一1, 6), D (-5, 4), 请作出四边形ABCD 关于x 轴及y 轴的对称图形,并写出对应点的坐标.第8题第11题 第12题14. (10分)如图,AABC 是等边三角形,D 是AC 上一点,BD=CE, ZABD= ZACE,试判断AADE 的形状,并证明你的结论.15.(10分)如图,己知ZA0B 和点C, D,求作一点P ,使点P 到ZAOB 两边的 距离相等,且使点P 到C, D 两点的距离和最小. 16.(12分)如图,某轮船上午11时30分在A 处观测海岛B 在北偏东60°方向,该轮船以10海里/时的速度向正东方向航行,航行到C 处时,再观测海 岛B 在北偏东30°方向,又以同样的速度向正东航行到D 处时,再观测海岛B 在北偏西30°方向,当轮船到达C 处时恰好与海岛B 相距20海里,请你确定轮 船到达C 处和D 处的时间. A EBA17. (12分)如图,己知AC平分ZMAN.(1)在图1 中,若ZMAN=120°,ZABC=ZADC=90°,求证:AB+AD=AC;(2)在图2中,若ZMAN=120° , ZABC+ZADC=180°,则(1)中的结论是否仍成立?若成立,请给出证明;若不成立,请说明理由.参考答案:一、选择题(每小题4分,共28分)1. D2. C3.D4. C5. B6. C7. A二、填空题(每小题4分,共20分)8.25°9•①②③10. 5 11. 8 12. 6三、解答题(共52分)13.(8分)图略Ar(5, D^^l, 1),C1(1,6),D1(5, 4);A2 (-5, -1), B2 (-1, -1), C2 (-1, -6), D2 (-5, -4).14.(10 分)略.15.(10分)图略作法:(1)作ZAOB的平分线0M;(2)作点D(C)关于直线OM的对称点D' (C');(3)连接C D' (DC'),交0M 于点P.则点P即为所求作的点.16.(12分)轮船到达C处的时间是13:30,即下午1时30分;轮船到达D处的时间是15:30,即下午3时30分.17.(12 分)(1)略;(2)成立.提示:过点C作CE丄AN于点E, CF丄AM于点F.证明△BCESADCF(AAS).。
人教版八年级数学上册第13章单元测试卷及答案一.选择题(每小题3分,共30分)1.下面四个图形分别是节能.节水.低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A.B.C.D.2.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(﹣3,﹣2) B.(﹣2,2)C.(2,2)D.(2,﹣2)3.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°第3题图第4题图第5题图4.如图,直线l1∥l2,以直线l1上的点A为圆心.适当长为半径画弧,分别交直线l1.l2于点B.C,连接AC.BC.若∠ABC=67°,则∠1=( )A.23°B.46°C.67°D.78°5.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )A.105°B.100°C.95°D.90°6.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是( )A.9cm B.9cm或12cm C.12cm D.14cm7.如图,OB.OC分别平分∠ABC和∠ACB,MN∥BC,若AB=6,AC=4,则△AMN的周长是( )A.5B.7C .9D.10第7题图第8题图第9题图第10题图8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )A.40°B.36°C.30°D.25°9.如图,在平面直角坐标系中,点B.C在y轴上,△ABC是等边三角形,AB=4,AC与x轴的交点D为AC边的中点,则点D的坐标为( )A.(1,0)B.(2,0)C.(2,0)D.(,0)10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3C.4D.2二.填空题(每小题3分,共15分)11.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为 .第11题图第12题图第13题图12.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有 个.13.如图,在△ABC中,AB=AC,D.E分别在BC.AC上,且AD=AE,若∠BAD=20°,则∠CDE= .14.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为 .第14题图第15题图15.如图,△ABC是边长3cm的等边三角形,动点P.Q同时从A.B两点出发,分别沿AB.BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P.Q两点停止当t时,△PBQ是直角三角形.三.解答题(本大题共8个小题,满分75分)16.(8分)作图题:如图,某地有两所学校M.N和两条交叉的公路AO.BO,现计划建一个体育馆,希望体育馆到两所学校的距离相同,到两条公路的距离也相同,请你用尺规作图的方法确定体育馆的具体位置.(要求:尺规作图,不用写出作法,但要保留作图痕迹)17.(9分)已知:如图,在平面直角坐标系中.(1)作出△ABC 关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出△ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小.18.(9分)如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是15cm,求AB和AC的长.19.(9分)已知BC=ED,AB=AE,∠B=∠E,F是CD的中点,求证:AF ⊥CD.20.(9分)如图,在△ABC中,AB=AC,AM是外角∠DAC的平分线.(1)实践与操作:尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法),作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE.(2)猜想并证明:∠EAC与∠DAC的数量关系并加以证明.21.(10分)如图,点D.E是等边△ABC的BC.AC上的点,且CD=AE,AD.BE相交于P点,BQ⊥AD.(1)求证:△ABE≌△ADC;(2)已知PE=2,AD=8,求PQ的长度.22.(10分)如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)如果AB=6,AC=4,求AE,BE的长.23.(11分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B.C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD= °,∠DEC= °;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.参考答案一.选择题1.A 2.C 3. B4.B 5.A 6.C 7.D8.B9.D10.D 二.填空题11.105°12.313.10°14.A15.1或2.三.解答题(共8小题)16.解:如图所示:,点P就是体育馆的具体位置.17.解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.18.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为9cm,6cm.19.解:如图,连接AC.AD,在△ABC和△AED中,,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD是等腰三角形.又∵点F是CD的中点,∴AF⊥CD.20.解:(1)如图所示:(2)猜想:∠EAC=∠DAC,理由如下:∵AB=AC∴∠B=∠C,∵∠DAC是△ABC的外角∴∠DAC=∠B+∠C=2∠C,∵EF垂直平分AC,∴EA=EC,∴∠EAC=∠C=∠DAC.21.解:(1)∵CD=AE,∴BD=CE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS);(2)∵△ABE≌△ADC,∴∠CAD=∠ABE,BE=AD=8,∵∠APE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,∴∠BPD=∠APE=∠BAC=60°,即∠BPD的度数为60°;∵BQ⊥AD,在Rt△BPQ中,∠BPQ=60°,∴∠PBQ=30°,∵PB=BE﹣PE=8﹣2=6,∴PQ=PB=3.22.解:(1)连接DB.DC,∵DG⊥BC且平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.∠AED=∠BED=∠ACD=∠DCF=90°在Rt△DBE和Rt△DCF中,Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AC+CF=AF,∴AE=AC+CF.∵AE=AB﹣BE,∴AC+CF=AB﹣BE∵AB=6,AC=4,∴4+BE=6﹣BE,∴BE=1,∴AE=6﹣1=5.答:AE=5,BE=1.23.解:(1)25°,115°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.。
初中八年级数学第十三章轴对称单元检测试卷练习题(含答案)已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.【答案】6【解析】分析:设CD=3x,则CE=4x,BE=12﹣4x,依据∠EBF=∠EFB,可得EF=BE=12﹣4x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(4x)2=(3x+12﹣4x)2,进而得出CD=6.详解:如图所示,设CD=3x,则CE=4x,BE=12﹣4x.∵CD CACE CB =3,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,4∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣4x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=6.故答案为6.点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.52.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=______.【答案】2【解析】试题分析:根据点的坐标可得:图象先向右平移1个单位,再向上平移1个单位,则a=1+0=1,b=1+0=1,则a+b=1+1=2.考点:图象的平移.53.如图,在△ABC中,AB AC=10,BC=12,AD是角平分线,P、Q分别是AD、AB边上的动点,则BP+PQ的最小值为_______.【答案】9.6【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CQ⊥AB于Q,交AD于P,则CQ=BP+PQ的最小值,根据勾股定理得,AD=8,利用等面积法得:AB⋅CQ=BC⋅AD,∴CQ=BC ADAB⋅=12810⨯=9.6故答案为:9.6.点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ是解本题的关键.54.如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是________,对应边是______________,对应角是_____________,表示这两个三角形全等的式子是___________.【答案】点A与点F, AB与FD,BC与DE,AC与FE, ∠A=∠F,∠C=∠E,∠B=∠D, △ABC≌△FDE【解析】【分析】利用全等三角形的性质得出对应边以及对应角即可.【详解】解:如图所示:∵△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,∴则另一组对应点是点A 和点F ,对应边是AB 与FD ,BC 与DE ,AC 与FE , (只需填写一组)对应角是∠A =∠F , ∠C =∠E ,∠B =∠D ,△ABC ≌△DEF ,故答案为点A 和点F ; AB 与FD ,BC 与DE ,AC 与FE ; ∠A =∠F , ∠C =∠E ,∠B =∠D . △ABC ≌△FDE .【点睛】考查全等三角形的性质,全等三角形对应角相等,对应角相等.55.如图,将三角形ABC 沿直线BC 平移得到三角形DEF ,其中点A 与点D 是对应点,点B 与点E 是对应点,点C 与点F 是对应点。
广东惠州芦洲学校2018-2019学度初二数学第13章单元测试题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)
1.下列由数字组成的图形中,是轴对称图形的是().
2.下列语句中正确的个数是().
①关于一条直线对称的两个图形一定能重合;
②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;
④轴对称图形的对应点一定在对称轴的两侧.
A.1 B.2 C.3 D.4
3.已知等腰△ABC的周长为18cm,BC=8cm,若△ABC与△A′B′C′全等,则
△A′B′C′的腰长等于().
A.8cm B.2cm或8cm
C.5cm D.8cm或5cm
4.已知等腰三角形的一个角等于42°,则它的底角为().
A.42°B.69°
C.69°或84°D.42°或69°
5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有().
①A、B关于x轴对称;
②A、B关于y轴对称;
③A、B不轴对称;
④A、B之间的距离为4.
A.1个B.2个
C.3个D.4个
6.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段有().
A.AC=AE=BE B.AD=BD
C.CD=DE D.AC=BD
7.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是().
8.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是().
A.1号袋B.2号袋
C.3号袋D.4号袋
二、填空题(本大题共6小题,每小题5分,共30分.把正确答案填在题中横线上)
9.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.
10.如图,在等边△ABC中,AD⊥BC,AB=5cm,则DC的长为__________.
(第11题图)(第12题图)
11.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________.
12.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是__________.
13.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.
(第13题图)(第14题图)
14.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.
三、解答题(本大题共5小题,共50分)
15.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O点,求证:OB=OC.
16.(本题满分10分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的三角形△A1B1C1;
(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.,并写出它们的坐标。
17.(本题满分10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,
求∠B的度数.
18.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB
边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过
D作DG∥AC交BC于G).
19.(本题满分10分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ 为等边三角形.
参考答案
1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否
是轴对称图形,只有A选项是轴对称图形.
2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称
轴上.
3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC
是底时,△ABC的腰长是5cm,当BC是腰时,腰长就是8cm,且均能
构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种相同的情况:8cm或5cm.
4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.
①42°的角为等腰三角形底角;
②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.
所以底角存在两种情况,∴42°或69°.
5.B点拨:①③不正确,②④正确.
6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.
7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各
选项图案按原步骤折叠复原).
8.B 点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.
9.2-5点拨:点E 、F 关于y 轴对称,横坐标互为相反数,纵坐标不变.
10.2.5cm 点拨:△ABC 为等边三角形,AB =BC =CA ,AD ⊥BC ,所以点D 平分BC .
所以DC =
1
2
BC =2.5cm. 11.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的平分线, 则∠CBD =30°,所以CD =
1
2
BD =5. 12.40°点拨:因为MP 、NQ 分别垂直平分AB 和AC ,
所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC =∠C +∠B =180°-110°=70°,
所以∠PAQ 的度数是40°. 13.25°点拨:设∠C =x ,那么∠ADB =∠B =2x , 因为∠ADB +∠B +∠BAD =180°,代入解得x =25°. 14.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC =60°,图(2)中,∠BAC =120°
.
15.证明:∵BD 、CE 分别是AC 、AB 边上的中线,∴BE =1
2
AB ,CD =
1
2
AC . 又∵AB =AC ,∴BE =CD .
在△BCE 和△CBD 中,,,,BE CD ABC ACB BC CB =⎧⎪
∠=∠⎨⎪=⎩
∴△BCE ≌△CBD (SAS). ∴∠ECB =∠DBC .∴OB =OC . 16.解:(1)如图所示的△A 1B 1C 1. (2)如图所示的△A 2B 2C 2.
17.解:如图,在CH 上截取DH=BH ,连接AD , ∵AH ⊥BC ,
∴AH 垂直平分BD.
∴AB=AD.∴∠B=∠ADB. ∵AB+BH=HC ,
∴AD+DH=HC=DH+CD.
∴AD=CD.∴∠C=∠DAC=35°. ∴∠B=∠ADB=∠C+∠DAC=70°.
18.证明:如图,过D 作DG ∥AC 交BC 于G , 则∠GDF=∠E , ∠DGB=∠ACB ,
在△DFG 和△EFC 中,
∴△DFG ≌△EFC(ASA).
∴C E=GD ,∵BD=CE.∴BD=GD. ∴∠B=∠DGB.∴∠B=∠ACB. ∴△ABC 为等腰三角形. 19.证明:如图,
∵△ABC 和△CDE 为等边三角形,
∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°. ∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE . 又∵C 在线段AE 上, ∴∠3=60°.
在△ACD 和△BCE 中,
,,,AC BC ACD BCE CD CE =⎧⎪
∠=∠⎨⎪=⎩
∴△ACD ≌△BCE .∴∠1=∠2. 在△APC 和△BQC 中,
,12,
360,AC BC ACB =⎧⎪
∠=∠⎨⎪∠=∠=︒⎩
∴△APC ≌△BQC .∴CP =CQ .
∴△PCQ 为等边三角形(有一个角是60°的等腰三角形是等边三角形).。