【创新设计】2015-2016学年高中数学 第二章 推理与证明 2.2.2反证法课时作业 新人教A版选修1-2
- 格式:doc
- 大小:220.50 KB
- 文档页数:9
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.2.2 反证法课堂探究新人教B版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.2.2 反证法课堂探究新人教B版选修2-2的全部内容。
2-2探究一用反证法证明否定性命题所谓否定性命题,就是指所证问题的结论中含有“不”、“不是"、“不存在"、“不相等”、“不可能”等词语的命题,这类问题的结论的反面比较具体,适合用反证法进行证明.【典型例题1】(1)若数列{a n}的通项公式为a n=错误!(n∈N+),求证{a n}中任意连续的三项都不可能构成等差数列.(2)已知a是整数,且a2+2a是奇数,求证:a不是偶数.思路分析:两个命题均是否定性命题,可用反证法证明.证明:(1)假设{a n}中存在连续的三项构成等差数列.设这连续三项为a k,a k+1,a k+2(k∈N+),则2a k+1=a k+a k+2,即错误!=错误!+错误!,所以错误!=错误!。
所以2k2+4k=2k2+4k+2,即0=2,这显然是矛盾的.因此假设不成立,即{a n}中任意连续三项不可能构成等差数列.(2)假设a是偶数,不妨设a=2k(k∈Z),于是a2+2a=(2k)2+2·2k=4k2+4k=4(k2-k),由于k∈Z,所以k2+k∈Z。
因此4(k2+k)是偶数,即a2+2a是偶数.这与已知a2+2a是奇数相矛盾,故假设不成立,即a不是偶数.探究二用反证法证明唯一性命题1.结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题,由于反设结论易于导出矛盾,所以用反证法证其唯一性简单明了.2.用反证法证明问题时,若结论的反面呈现多样性,必须罗列出各种可能的情况,缺少任何一种情况时,反证都是不完全的.3.证明“有且只有”的问题,需要证明两个命题,即存在性和唯一性.【典型例题2】(1)求证:经过平面α外一点M,只能作一条直线与该平面垂直.(2)若函数f(x)在区间[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.思路分析:对于(1)可假设能作两条直线与该平面垂直,然后根据空间中有关定理推出矛盾;对于(2),应先由函数零点存在性判定定理判定函数在(a,b)内有零点,再用反证法证明零点唯一.证明:(1)假设经过平面α外一点M,能作两条直线a,b都与该平面垂直.那么由线面垂直的性质可知a∥b,且a,b在同一平面内,这与a,b相交(均过点M)矛盾,因此假设不成立,即经过平面α外一点M,只能作一条直线与该平面垂直.(2)由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内至少存在一个零点,设零点为m,m∈(a,b),则f(m)=0,假设f(x)在(a,b)内还存在另一个零点n,则f(n)=0,且n≠m。
反证法一、教学目标:1。
知识与技能:(1)了解间接证明的一种基本方法──反证法;(2)了解反证法的思考过程与特点,会用反证法证明数学问题。
2.过程与方法:通过学生动手及简单实例,让学生充分体会反证法的数学思想,并学会简单应用。
3.情感态度与价值观通过反证法的学习,让学生形成逆向思维的模式,体验数学方法的多样性。
提高学生推导、推理能力及思考问题和解决问题的能力,并在合作探究中找到一种解决生活生产实际问题的新方法。
二.教学重点:了解反证法的思考过程与特点。
三。
教学难点:正确理解、运用反证法。
四.教学方法:多媒体辅助教学;小组合作探究,多元活动。
教学过程:一、课前复习与思考:(1)请学生复习旧知,为本节课夯实基础:直接证明:是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推理证明结论的真实性。
常用的直接证明方法:综合法与分析法。
综合法的思路是由因导果;分析法的思路是执果索因.(2)让学生思考间接证明是什么?它有哪些方法?(初中所学)间接证明:不是从正面证明命题的真实性,而是证明命题的反面为假,或改证它的等价命题为真,间接地达到证明的目的。
反证法就是一种常用的间接证明方法.二、探究新知【新课导引】多媒体课件显示9个白色球.上课时要求学生将9个球分别染成红色或绿色.让学生注意观察现象.提问学生,让学生由感性认识上升到理性认识:同学们请看,这9个球无论如何染色,至少有5个球是同色的。
你能用数学中的什么方法来证明这个结论吗?【学生自主合作探究】学生阅读完教材后,小组合作探究以下问题:1、什么是反证法?2、反证法的证题步骤有哪几步?3、什么样的命题适合用反证法来证明?4、反证法的应用关键在于什么?【学生展示、交流】(1)反证法概念反证法:假设命题结论不成立(即命题结论的反面成立),经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。
(2)反证法的一般步骤:a、反设:假设命题结论不成立(即假设结论的反面成立);b、归缪:从假设出发,经过推理论证,得出矛盾;c、下结论:由矛盾判定假设不成立,从而肯定命题成立。
高中数学第二章推理与证明2.2.2 反证法教案新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.2.2 反证法教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.2.2 反证法教案新人教A版选修2-2的全部内容。
2.2.2 反证法 一、知识与技能1.了解命题、逆命题、否命题与逆否命题的概念;2.能正确判断命题的真假,掌握四种命题的关系,能求一般命题的逆命题、否命题、逆否命题.合理进行思维的方法。
3.会用反证法证明简单的数学问题 二、过程与方法1.从实例出发,抽象出命题、逆命题、否命题与逆否命题的概念;2.由具体事例入手,让学生发现命题、逆命题、否命题与逆否命题的关系;3.由互为逆否命题的真假一致引导学生学会准确地判断命题的真假. 三、情感态度与价值观初步形成运用逻辑知识准确地表述问题的数学意识.四、新课学习1.反证法的逻辑依据【师生互动】【例7】证明:若R y x ∈,,且022=+y x ,则0==y x 。
分析:对于该命题的证明,从正面着手:∵R y x ∈, ∴0,022≥≥y x 又∵022=+y x , ∴0=x 且0=y ,即0==y x直接证明也可以。
但总给人一种说理不是那么很得劲,美中不足的感觉。
如果采用了证明方法:假设y x ,不全为0,不妨设0≠x ,则∵02>x ∴022>+y x 这与已知的022=+y x 矛盾,故0==y x .就会给人一种无可辩驳,不得不服的感觉。
【师】对于后一种证明方法,大家能把它以“若p 则q "的形式表述出来再看看合原来要证明的命题是什么关系吗?【生】后面要证明的命题写成“若p 则q ”的形式是:“若y x ,不全为0,则022>+y x ”原命题写成“若p 则q "的形式是:“若022=+y x ,则0==y x ”。
直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。
课题:2.2.2反证法
课标转述:结合已经学过的数学实例,了解间接证明的一种基本方法—反证法;了解反证法的思考过程、特点。
学习目标:
1、 通过学习P42页内容,了解间接证明的一种基本方法——反证法;
2、 通过对例1、例2的讨论学习,了解反证法的思考过程、特点. 学习重点:会用反证法证明问题;了解反证法的思考过程.
学习过程:
一、复习准备:(小组合作完成)
提问:将9个球分别染成红色和白色,那么无论怎样染,至少有5个球是同色的。
你认为真确么?为什么?(口头展示)
二、新知探索
个人精读反证法的概念并记忆:
三、例题解析:(个人思考后小组讨论)
例1、已知0≠a ,证明x 的方程b ax =有且只有一个根。
例2、已知直线b a ,和平面α,如果αα⊂⊄b a ,,且a ∥b ,求证:a ∥α
四、巩固练习:(个人完成,小组评改,课堂展示)
1、证明:一定是锐角。
是直角,则中,若在B C ABC ∠∠∆.
2、求证:,2,3,5不可能成等差数列.
3、用反证法证明:如果.012,2
12≠-+>
x x x 那么
五、本节小结:(从知识与方法,例题与练习方面总结)
六、延伸提高:
已知(01)a b c ∈,,,.求证:(1)(1)(1)a b b c c a ---,,不能同时大于14.
七、作业:P 44 A 组3题
补充作业:.21,1.2,0中至少有一个小于试证:且、已知x y y x y x y x ++>+>。
2.2.2 反证法明目标、知重点 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.1.定义:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法.2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.[情境导学]王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用的方法即是本节课所要学的方法——反证法.探究点一反证法的概念思考1 通过情境导学得上述方法的一般模式是什么?答(1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最后得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法.思考2 反证法证明的关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?答(1)与原题中的条件矛盾;(2)与定义、公理、定理、公式等矛盾;(3)与假设矛盾.思考3 反证法主要适用于什么情形?答①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.探究点二用反证法证明定理、性质等一些事实结论例1 已知直线a,b和平面α,如果a⊄α,b⊂α,且a∥b,求证:a∥α.证明因为a∥b,所以经过直线a,b确定一个平面β.因为a⊄α,而a⊂β,所以α与β是两个不同的平面.因为b⊂α,且b⊂β,所以α∩β=b.下面用反证法证明直线a与平面α没有公共点.假设直线a与平面α有公共点P,如图所示,则P∈α∩β=b,即点P是直线a与b的公共点,这与a∥b矛盾.所以a∥α.反思与感悟数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法.跟踪训练1 如图,已知a∥b,a∩平面α=A.求证:直线b与平面α必相交.证明假设b与平面α不相交,即b⊂α或b∥α.①若b⊂α,因为b∥a,a⊄α,所以a∥α,这与a∩α=A相矛盾;②如图所示,如果b∥α,则a,b确定平面β.显然α与β相交,设α∩β=c,因为b∥α,所以b∥c.又a∥b,从而a∥c,且a⊄α,c⊂α,则a∥α,这与a∩α=A相矛盾.由①②知,假设不成立,故直线b与平面α必相交.探究点三用反证法证明否定性命题例2 求证:2不是有理数.证明假设2是有理数.于是,存在互质的正整数m,n,使得2=mn,从而有m=2n,因此m2=2n2,所以m为偶数.于是可设m=2k(k是正整数),从而有4k2=2n2,即n2=2k2,所以n也为偶数.这与m,n互质矛盾.由上述矛盾可知假设错误,从而2不是有理数.反思与感悟当结论中含有“不”、“不是、“不可能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法.跟踪训练2 已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.探究点四 含至多、至少、唯一型命题的证明例3 若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多有一个实根.证明 假设方程f (x )=0在区间[a ,b ]上至少有两个实根,设α、β为其中的两个实根.因为α≠β ,不妨设α<β,又因为函数f (x )在[a ,b ]上是增函数,所以f (α)<f (β).这与假设f (α)=0=f (β)矛盾,所以方程f (x )=0在区间[a ,b ]上至多有一个实根.反思与感悟 当一个命题的结论有“最多”、“最少”、“至多”、“至少”、“唯一”等字样时,常用反证法来证明,用反证法证明时,注意准确写出命题的假设.跟踪训练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0, 所以a +b +c ≤0,而a +b +c =(x 2-2y +π2)+(y 2-2z +π3)+(z 2-2x +π6)=(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3, 所以a +b +c >0,这与a +b +c ≤0矛盾, 故a 、b 、c 中至少有一个大于0.1.证明“在△ABC 中至多有一个直角或钝角”,第一步应假设( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角 D .三角形中三个角都是直角或钝角 答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( ) A .有一个内角小于60° B .每一个内角都小于60° C .有一个内角大于60° D .每一个内角都大于60° 答案 B3.“a <b ”的反面应是( ) A .a ≠b B .a >bC .a =bD .a =b 或a >b 答案 D4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于cB .a ,b 都不垂直于cC .a ⊥bD .a 与b 相交 答案 D5.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =ba.如果方程不止一个根,不妨设x 1,x 2是它的两个不同的根,即ax 1=b , ①ax 2=b . ②①-②,得a (x 1-x 2)=0.因为x 1≠x 2,所以x 1-x 2≠0,所以应有a =0,这与已知矛盾,故假设错误. 所以,当a ≠0时,方程ax =b 有且只有一个根. [呈重点、现规律]1.反证法证明的基本步骤是什么? (1)假设命题结论的反面是正确的;(反设)(2)从这个假设出发,经过逻辑推理,推出与已知条件、公理、定义、定理、反设及明显的事实矛盾;(推谬)(3)由矛盾判定假设不正确,从而肯定原命题的结论是正确的.(结论) 2.反证法证题与“逆否命题法”是否相同?反证法的理论基础是逆否命题的等价性,但其证明思路不完全是证明一个命题的逆否命题.反证法在否定结论后,只要找到矛盾即可,可以与题设矛盾,也可以与假设矛盾,与定义、定理、公式、事实矛盾.因此,反证法与证明逆否命题是不同的.一、基础过关1.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是( )①与已知条件矛盾 ②与假设矛盾 ③与定义、公理、定理矛盾 ④与事实矛盾 A .①② B .①③ C .①③④ D .①②③④ 答案 D2.否定:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数答案 D解析自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c”中都是奇数或至少有两个偶数.3.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有( )A.0个B.1个C.2个D.3个答案 B解析①错:应为a≤b;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.4.用反证法证明命题:“a、b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除答案 B解析“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”.5.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c中存在偶数”时,否定结论应为( )A.a,b,c都是偶数B.a,b,c都不是偶数C.a,b,c中至多一个是偶数D.至多有两个偶数答案 B解析 a ,b ,c 中存在偶数即至少有一个偶数,其否定为a ,b ,c 都不是偶数. 6.“任何三角形的外角都至少有两个钝角”的否定应是_______________________________________________________________________________________. 答案 存在一个三角形,其外角最多有一个钝角解析 “任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.7.设二次函数f (x )=ax 2+bx +c (a ≠0)中,a 、b 、c 均为整数,且f (0),f (1)均为奇数.求证:f (x )=0无整数根.证明 设f (x )=0有一个整数根k ,则ak 2+bk =-c .①又∵f (0)=c ,f (1)=a +b +c 均为奇数, ∴a +b 为偶数,当k 为偶数时,显然与①式矛盾;当k 为奇数时,设k =2n +1(n ∈Z ),则ak 2+bk =(2n +1)·(2na +a +b )为偶数,也与①式矛盾,故假设不成立,所以方程f (x )=0无整数根. 二、能力提升8.已知x 1>0,x 1≠1且x n +1=x n ·(x 2n +3)3x 2n +1(n =1,2,…),试证:“数列{x n }对任意的正整数n 都满足x n >x n +1”,当此题用反证法否定结论时应为( ) A .对任意的正整数n ,有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1 D .存在正整数n ,使x n ≤x n +1 答案 D解析 “任意”的反语是“存在一个”.9.设a ,b ,c 都是正数,则三个数a +1b ,b +1c ,c +1a( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 答案 C解析 假设a +1b <2,b +1c <2,c +1a<2,则(a +1b )+(b +1c )+(c +1a)<6.又(a +1b )+(b +1c )+(c +1a )=(a +1a)+(b +1b)+(c +1c)≥2+2+2=6,这与假设得到的不等式相矛盾,从而假设不正确,所以这三个数至少有一个不小于2.10.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是________.答案 a ≤-2或a ≥-1解析 若两方程均无实根,则Δ1=(a -1)2-4a 2=(3a -1)(-a -1)<0, ∴a <-1或a >13.Δ2=(2a )2+8a =4a (a +2)<0, ∴-2<a <0,故-2<a <-1.若两个方程至少有一个方程有实根, 则a ≤-2或a ≥-1.11.已知a +b +c >0,ab +bc +ca >0,abc >0. 求证:a >0,b >0,c >0. 证明 用反证法:假设a ,b ,c 不都是正数,由abc >0可知, 这三个数中必有两个为负数,一个为正数, 不妨设a <0,b <0,c >0,则由a +b +c >0, 可得c >-(a +b ),又a +b <0,∴c (a +b )<-(a +b )(a +b ),ab +c (a +b )<-(a +b )(a +b )+ab ,即ab +bc +ca <-a 2-ab -b 2,∵a 2>0,ab >0,b 2>0,∴-a 2-ab -b 2=-(a 2+ab +b 2)<0,即ab +bc +ca <0, 这与已知ab +bc +ca >0矛盾,所以假设不成立. 因此a >0,b >0,c >0成立.12.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14.证明 假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )a ·(1-b )b ·(1-c )c >143,①又因为0<a <1,所以0<a (1-a )≤(a +1-a2)2=14.同理0<b (1-b )≤14,0<c (1-c )≤14,所以(1-a )a ·(1-b )b ·(1-c )c ≤143②①与②矛盾,所以假设不成立,故原命题成立. 三、探究与拓展13.已知f (x )是R 上的增函数,a ,b ∈R .证明下面两个命题: (1)若a +b >0,则f (a )+f (b )>f (-a )+f (-b ); (2)若f (a )+f (b )>f (-a )+f (-b ),则a +b >0. 证明 (1)因为a +b >0, 所以a >-b ,b >-a , 又因为f (x )是R 上的增函数, 所以f (a )>f (-b ),f (b )>f (-a ),由不等式的性质可知f (a )+f (b )>f (-a )+f (-b ). (2)假设a +b ≤0, 则a ≤-b ,b ≤-a , 因为f (x )是R 上的增函数, 所以f (a )≤f (-b ),f (b )≤f (-a ), 所以f (a )+f (b )≤f (-a )+f (-b ), 这与已知f (a )+f (b )>f (-a )+f (-b )矛盾, 所以假设不正确, 所以原命题成立.。