《机械优化设计》第6章约束优化方法
- 格式:ppt
- 大小:8.15 MB
- 文档页数:138
机械系统优化设计中的约束与优化问题在机械工程领域,优化设计是一项关键任务。
通过对机械系统进行优化,可以提高效率、减小能耗、延长使用寿命等。
然而,在进行机械系统的优化设计时,我们必须面对各种约束和优化问题。
首先,机械系统的约束可以分为两类:设计约束和工程约束。
设计约束包括机械系统的形状、尺寸、重量等方面的限制,以及与其他系统或部件的接口要求。
这些约束是设计者必须遵守的,因为它们直接关系到机械系统的可用性和实际应用。
另一方面,工程约束包括材料强度、制造成本、可维护性等因素。
这些约束是实际工程实施时需要考虑的,因为它们关系到机械系统的可靠性和经济效益。
在优化设计中,我们通常会面临多个冲突的目标。
例如,在减小机械系统的重量的同时,要确保其强度不下降;在提高机械系统的效率的同时,要保持其成本可控。
这就引入了多目标优化问题。
多目标优化问题需要寻找一个最佳的折中方案,将各个目标在不同约束条件下进行优化,以求达到最大化总体效益的目标。
为了解决这些优化问题,我们通常使用数学建模和优化方法。
对于约束问题,我们可以使用约束优化方法,如拉格朗日乘子法和KKT条件等。
这些方法通过引入拉格朗日乘子来将约束条件融入优化问题中,从而将原问题转化为一个无约束问题。
然后,我们可以使用一般的优化算法,如梯度下降、遗传算法等,来解决这个无约束问题。
此外,在实际的机械系统优化设计中,我们还会面临一些实际的限制。
例如,制造设备和制造工艺的限制,材料的可获得性等。
这些实际限制需要考虑在内,以确保设计方案的可行性和可实施性。
另一个重要问题是机械系统的不确定性。
在机械系统的设计过程中,我们通常会面临各种形式的不确定性,如设计参数的不确定性、负载的不确定性等。
这些不确定性会对设计结果产生影响,因此需要在优化设计中进行考虑。
一种常见的方法是使用鲁棒优化方法,通过考虑不确定性的范围和分布,寻找一个鲁棒的设计方案,以确保在不同的不确定条件下系统仍然能够正常工作。
第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min 21222112221≤-+=≤-=⋅-+-=x x x g x x x g ts x x x f试从第k 次的迭代点[]T k x21)(-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点)1(+k x 。
并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。
[解] 1)确定本次迭代的随机方向:[]T TRS 0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2) 用公式:R k k S x xα+=+)()1( 计算新的迭代点。
步长α取为搜索到约束边界上的最大步长。
到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.0212212111=-⨯+=+==⨯+-=+=++R kk R k k S x x S x xαα⎥⎦⎤⎢⎣⎡=+176.1822.01k X即: 该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:)(0)(025)(124)(m in 231222211221≤-=≤-=≤-+=⋅--=x x g x x g x x x g ts x x x f试以[][][]T T T x x x 33,14,12030201===为复合形的初始顶点,用复合形法进行两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x 经判断,各顶点均为可行点,其中,为最坏点。
为最好点,0203x x2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.221132103312i i i c x Lx3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011R x x ,进行新的一轮迭代。
机械结构优化设计的多条件约束方法在工程设计中,机械结构的优化设计是一个重要的环节。
优化设计的目标是在满足各种约束条件下,使得结构的性能达到最优。
然而,由于实际工程问题的复杂性,单一的优化目标往往无法满足所有的要求。
因此,需要采用多条件约束方法来进行设计。
多条件约束方法是指在优化设计过程中,同时考虑多个设计变量和多个性能指标,以及多个约束条件。
这些指标和约束条件往往是相互矛盾的,所以需要找到一种平衡的方法来满足各种要求。
下面将介绍一些常用的多条件约束方法。
首先,多目标优化是一种常用的多条件约束方法。
多目标优化的目标是寻找一组非劣解,即不存在其他解能在所有目标函数上同时取得更好的值。
这样的解集称为帕累托前沿。
通过选择不同的非劣解,设计者可以根据优先级制定合适的设计方案。
其次,约束方法是一种常见的多条件约束方法。
约束方法的思想是将多个约束条件转化为一个综合的约束函数,并将其作为一个目标函数进行优化。
通过调整综合约束函数的权重,可以实现不同约束条件之间的平衡。
然而,这种方法存在一个问题,即如何确定综合约束函数的权重。
一种常用的方法是使用加权系数法,根据不同约束条件的重要性分配不同的权重。
另外,最优化方法也是一种常见的多条件约束方法。
最优化方法的思想是将多个目标函数和约束条件转化为一个综合的优化问题,在满足约束条件的前提下,寻找使得综合目标函数取得最优值的设计变量。
最优化方法可以采用数学规划方法进行求解,如线性规划、非线性规划等。
除了上述方法,还有一些其他的多条件约束方法。
例如,灰色关联分析方法可以通过对设计变量和性能指标之间的关联度进行评价,从而确定最优设计方案。
遗传算法是一种模拟自然界遗传过程的优化方法,通过进化的过程搜索全局最优解。
模糊综合评价方法可以将模糊数学理论引入到多条件约束问题中,通过对设计变量和性能指标进行模糊综合评价,得到最优解。
综上所述,机械结构优化设计的多条件约束方法有多种选择。
根据具体的设计需求和问题特点,可以选择适合的方法进行设计。
机械设计中的多目标多约束优化方法研究引言机械设计中的优化问题一直是研究者们关注的焦点之一。
在实际应用中,我们常常面临多个相互矛盾的目标和多个约束条件。
如何找到一个满足多个目标和约束条件的最优设计方案是一项具有挑战性的任务。
本文将就机械设计中的多目标多约束优化方法进行研究和探讨。
一、传统的多目标优化方法1. 单目标优化方法的问题在传统的机械设计中,通常采用单目标优化方法来求解设计问题。
但是,这种方法只能得到一个最优解,在多目标问题中显得力不从心。
由于多个目标之间可能存在着冲突和矛盾,通过单目标优化方法很难找到一个满足所有目标的解。
因此,我们需要引入多目标优化方法来解决这个问题。
2. 多目标优化方法的发展多目标优化方法主要有三大类:加权法、约束法和演化算法。
加权法是指将多个目标函数通过加权求和的方式转化为单目标问题,再进行优化求解。
约束法是指将多个目标函数通过加权和约束的方式转化为单目标问题,再进行优化求解。
演化算法是指通过模拟自然进化过程,生成一组可能的解,然后再进行选择和进化,最终得到一组近似最优解。
二、多目标多约束优化方法的研究1. 多目标进化算法多目标进化算法是一种较为常用的方法,它主要包括非支配排序遗传算法(NSGA)、非支配排序遗传算法II(NSGA-II)、多目标粒子群优化算法(MOPSO)等。
这些算法能够有效地寻找到一组近似最优解,并提供给决策者进行选择。
例如,在机械设计中,我们可以通过一组近似最优解来选取满足多个目标的设计方案。
2. 多目标约束方法多目标约束方法是指在满足多个约束条件的前提下,寻找到一个满足多个目标的最优解。
常见的方法有加权函数法、约束法以及置换法等。
这些方法可以将多个目标函数和约束条件一起考虑,通过一系列的优化算法得到一个相对最优的设计方案。
例如,在机械设计中,我们需要考虑多个目标,如材料的强度、成本的最小化以及重量的减少,同时还需要满足制造工艺的要求等。
三、案例分析以某工程机械设计为例,我们希望设计一款满足多个目标和约束条件的挖掘机。
8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。
[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ设可靠度为90%,可靠性系数 868.0=r k ; 工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328dD F ka πτα=式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328dD F k m sm πτ=式中s k ――应力修正系数,计算公式为dD C k s /615.01615.012+=+= m F ――平均载荷,其值为N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为 计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D dD F ka a =⋅==ππτα328 计算平均应力幅m τ:21312246.74512.1212615.01x x x d D F Dd dD F k m m sm +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :mms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002从而得到弹簧的疲劳强度约束条件为012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g3)根据对弹簧中径的要求,得到约束条件50222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算:mm N h F F K /2.4016.1027268012=-=-=0H ――弹簧的自由高度,按下式计算: 当mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-=于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。
《机械优化设计》教学大纲大纲说明课程代码:3335047总学时:48学时(讲课40学时,上机8学时)总学分:3课程类别:专业模块选修课适用专业:机械设计制造及其自动化专业预修要求:高等数学、线性代数、BASIC或其它适于科学计算的高级语言、工程力学、机械设计基础一、课程的性质、目的、任务:机械优化设计是在电子计算机广泛应用的基础上发展起来的一门先进技术.它是根据最优化原理和方法,以电子计算机为计算工具,寻求最优设计参数的一种现代设计方法。
该课程是为高年级设置的专业课,可供机械类或近机类专业的学生学习。
该课程的主要目的和任务在于培养学生:1)了解和基本掌握机械优化设计的基本知识2)扩大视野,并初步具有应用机械优化设计的基本理论和基本方法解决简单工程实际问题的素质。
二、课程教学的基本要求:课堂讲授:课堂讲授主要以导学式教学为主,启发引导学生的学习兴趣,通过实例及典型例题加深学生对课堂内容的理解。
实践性环节基本要求:本课程的实践性环节主要是上机编制和调试程序(8学时)1)目的和要求上机调试并通过教材上已有的或是自行编制的计算程序,达到巩固某些基本的重要算法的目的2)内容编制并调试一维收索方法、无约束优化方法、约束优化方法及机械零件设计优化计算程序,上机练习并输出计算结果。
课程考核要求:期末考试成绩占总成绩的60—70%,平时成绩占30-40%。
三、大纲的使用说明:课程总学时:课堂教学+上机时数 = 40+8大纲正文第一章绪论学时:1学时(讲课1学时)本章讲授要点:1)明确本课程的研究对象、内容、性质、任务;2)明确优化的含义、机械优化设计的内容及目的.重点:了解机械优化设计的一般过程。
难点:机械优化设计的一般步骤。
第二章优化设计概述学时:3学时(讲课3学时)本章讲授要点:通过机械设计优化问题示例,使学生了解机械优化设计的基本概念和基本术语、优化设计的数学模型、优化问题的几何描述、优化设计的基本方法。
重点:掌握可行域与非可行域、等值线(面)的概念及在优化方法中的重要意义。
机械结构优化设计中的多目标多约束优化方法研究随着科技的不断进步和发展,机械结构优化设计在工程领域中扮演着越来越重要的角色。
如何通过优化设计方法实现结构的多目标多约束优化成为了研究的热点。
本文将就机械结构优化设计中的多目标多约束优化方法进行探讨。
首先,我们需要明确多目标多约束优化的概念。
传统的优化设计通常只关注单一的目标和约束条件,而在实际工程中,结构的优化往往涉及到多个目标和约束条件。
多目标优化设计需要在不同目标之间寻找一个平衡点,使得各个目标尽可能得到满足。
多约束优化设计则要求结构要满足多个约束条件,如强度、刚度、重量等。
因此,多目标多约束优化设计需要综合考虑多个因素,以达到最优设计方案。
在机械结构优化设计中,常用的多目标多约束优化方法包括遗传算法、粒子群算法、模拟退火算法等。
这些方法通过不同的策略和搜索算法,寻找最优解。
以遗传算法为例,它模拟了生物进化的过程,通过选择、交叉和变异等操作,从初始的随机种群中寻找最优解。
而粒子群算法则是模拟鸟群或鱼群的行为,在搜索空间中通过个体的位置和速度来寻找最优解。
模拟退火算法则是模拟金属退火的过程,通过温度降低的方式逐渐接近最优解。
这些方法在寻找多目标多约束优化问题上都取得了一定的成果。
除了这些传统的多目标多约束优化方法外,还有一些新兴的方法被应用在机械结构优化设计中。
例如,基于人工神经网络的优化方法、基于模糊逻辑的优化方法等。
这些方法通过模拟人类的思维和决策过程,将模糊不确定性纳入到优化模型中,能够更好地处理多目标多约束问题。
在实际应用中,机械结构优化设计中的多目标多约束问题常常具有非线性、离散和高维的特点,给优化过程带来了很大的挑战。
因此,如何选择适当的优化方法,并合理定义目标函数和约束条件,成为了研究者们关注的焦点之一。
此外,还需要考虑到计算资源和时间的限制,以及不同的设计阶段对优化设计方法的要求。
因此,机械结构优化设计中的多目标多约束优化方法研究仍然存在许多待解决的问题。