机械优化设计实例
- 格式:doc
- 大小:497.00 KB
- 文档页数:14
机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。
2.已知条件已知数输入功p=58kw,输入转速n=1000r/min,齿数比1?]=550Mpa,许用弯用应力[曲应力u=5,齿轮的许H?]=400Mpa。
[ F3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。
由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。
单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:222222??)?0.25(b?c)(.25Db(d?d?dv?0.25)b(d??d)?02gzz1g122222222????d?)?0.257l(d8?dddc?2112 zzzz022222222??)10m(mzu?d?b.25?[m0zb?d.b?m8zbub0?1112zz12222]3228dd6d)?d?l?05bd.?005 b(mzu?10m?1..2 2zz2zz2z121式中符号意义由结构图给出,其计算公式为d?mz,d?mz2112D?umz?10m12g d?1.6d,d?0.25(umz?10m?1.6d)2z2g210z c?0.2b由上式知,齿数比给定之后,体积取决于b、z、m、l、d 和z11d 六个参数,则设计变量可取为z2TT]ddbzmxxxxx]l?[xx?[23145z61z213.2目标函数为222222f(x)?0.785398(4.75xxx?85xxx?85xx?0.92xx?xx?5231116233112222220.8xxxx?1.6xxx?xx?xx?28x ?32x)?min6646213316545约束条件的建立3.3.zz?17?,得1)为避免发生根切,应有min0??17?xg(x)21b???????maxmin d的最大值为齿宽系数2 )齿宽应满足和,dmaxmin??,,得和最小值,一般取=1.4=0.9maxmin g(x)?0.9?x(xx)?03212g(x)?x(xx)?1.4?031323)动力传递的齿轮模数应大于2mm,得g(x)?2?x?0344)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于d,得max1g(x)?xx?300?0352d?d?d5)齿轮轴直径的范围:得maxzminzz0?100?xxg()?560?x150?g(x)?570?x?g(x)?130680200?x)?x?g(69l按结构关系,应距离满足条件:撑6)轴的支?b?2??0.5d?l=20),得(可取2zminmin g(x)?x?0.5x?x?40?041610)齿轮的接触应力和弯曲应力应不大于许用值,得7.0550?xxx)?1468250g(x)?(1231170980?x)??400g(42??2212)x?0.854?10xxxx(0.169?0.6666?102223170 980g(x??400?)4?22213)x?10?0.?xxx(0.2824?0.17710394x23221??][ 8)齿轮轴的最大挠度,得不大于许用值max440?.003xxx(xx)?0g(x)?117.04 4521443??][ 9)齿轮轴的弯曲应力,得不大于许用值ww6x?102.8512124?5.5?2.4?100g(x)?()?153xxx3526x1085?12.2124?5.5?10?0?g(x)()?6163xxx3624.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab优化工具箱中的fmincon函数来求解此非线性优化问题,避免了较为繁重的计算过程。
机械优化设计案例:某生产线自动送料机构的改进
在制造领域,生产线上的自动送料机构是确保生产流程顺畅、高效的关键环节。
然而,传统的自动送料机构往往存在效率低下、易损坏、维护成本高等问题。
为了解决这些问题,我们采用了机械优化设计的方法,对某生产线上的自动送料机构进行了改进。
该自动送料机构的主要任务是将原材料从存储区输送到生产线,并确保每次输送的数量准确。
但是,在长时间使用后,传统的送料机构常常出现卡顿、输送不准确等问题。
经过分析,我们发现这些问题主要是由于机构中的某些部件设计不合理,导致机械效率降低。
为了解决这些问题,我们采用了以下优化策略:
结构优化:利用拓扑优化技术,对送料机构的主体结构进行了重新设计,使其在满足强度和刚度的同时,减轻了重量,从而减少了动力消耗。
传动系统优化:采用了新型的齿轮和链条传动系统,减少了传动过程中的摩擦和能量损失,提高了传动效率。
控制系统优化:引入了PLC和传感器技术,实现了对送料过程的精确控制,确保了每次输送的数量准确。
维护性优化:设计了易于拆卸和维护的结构,减少了维护时间和成本。
经过上述优化后,新的自动送料机构的性能得到了显著提升。
与传统的送料机构相比,新的机构在输送速度、准确性、使用寿命和维护成本等方面都有了显著的优势。
经过实际生产验证,新的自动送料机构不仅提高了生产效率,还降低了生产成本,为企业带来了显著的经济效益。
1 / 8例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% (%87%10040005698=⨯⨯) 方案一 下0个零件①,7个零件②,利用率91% (%91%10040007518=⨯⨯) 方案二下4个零件①,2个零件②,利用率96% (%96%100400025184698=⨯⨯+⨯) 方案三下3个零件①,3个零件②,利用率91% ( %91%100400035183698=⨯⨯+⨯) 方案四 (1)下2个零件①,5个零件②,利用率99% (%99%100400055182698=⨯⨯+⨯) 方案五下1个零件①,6个零件②,利用率95% (%95%100400065181698=⨯⨯+⨯) 方案六从式(1)可知,用4m长的圆钢总共有6种下料方法。
现用1X 、2X 、3X 、4X 、5X 、6X 分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
2 / 8表1 下料方案Tab.1 Cutting material plan 原钢种类(m )数量零件① 零件② 方 案 4 1X5 0 方案一 4 2X0 7 方案二 4 3X 4 2 方案三 4 4X 3 3 方案四 4 5X 2 5 方案五 46X16方案六表示为数学模型就是Min 654321654321),,,,,(X X X X X X X X X X X X f +++++= (2)51X +43X +34X +25X +6X ≥4000 (3) 72X +23X +43X +55X +66X ≥3600 (4) X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)3 / 8式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。
机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。
本文将介绍几个经典的机械优化设计实例。
第一个实例是汽车发动机的优化设计。
汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。
一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。
例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。
此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。
第二个实例是飞机机翼的优化设计。
飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。
机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。
例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。
第三个实例是电机的优化设计。
电机是广泛应用于各种机械设备和电子产品中的核心动力装置。
电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。
例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。
总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。
通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。
这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。
机械最优化设计及应用实例
机械最优化设计是指基于数学模型和优化算法,通过对机械系统的设计参数进行优化,以使系统满足一定的性能指标或者达到最优的设计目标。
以下是机械最优化设计的一些应用实例:
1. 汽车设计:汽车是一个复杂的机械系统,涉及到多个设计参数,如引擎排量、车身重量、气动设计等。
通过机械最优化设计,可以优化汽车的燃料效率、行驶稳定性等性能指标。
2. 飞机设计:飞机的设计涉及到多个参数,如机翼形状、机身结构等。
通过机械最优化设计,可以优化飞机的升力、阻力等性能指标,提高飞机的飞行效率和安全性。
3. 增材制造:增材制造是一种先进的制造技术,通过逐层加工材料来制造复杂的结构。
机械最优化设计可以用来优化增材制造的工艺参数,如激光功率、扫描速度等,以实现高质量、高效率的制造过程。
4. 结构优化:机械系统的结构设计是一个关键的环节,通过机械最优化设计,可以优化结构的刚度、强度、耐久性等性能指标,提高系统的工作性能和使用寿命。
5. 机器人设计:机器人是一种复杂的机械系统,涉及到多个参数,如关节结构、连杆长度等。
通过机械最优化设计,可以优化机器人的运动性能、负载能力等指标,提高机器人的工作效
率和精度。
总之,机械最优化设计在各个领域具有广泛的应用,可以提高机械系统的性能和效率,推动科技进步和工业发展。
第八章机械优化设计实例机械优化设计是指通过优化设计方法和技术,提高机械产品的性能、降低成本和改善产品的可靠性和可维修性。
在本章中,我们将介绍两个机械优化设计实例,分别是汽车发动机和风力发电机的优化设计。
汽车发动机的优化设计是目前汽车行业的热点问题。
传统的汽车发动机具有功率输出低、能效低和排放高等问题。
为解决这些问题,可以通过优化设计改善发动机的气缸设计、燃烧室设计和可变气门技术等。
例如,通过增加气缸数和减小气缸直径来提高发动机的功率输出和燃烧效率;通过优化燃烧室形状和喷射系统来提高燃烧效率和降低排放;通过采用可变气门技术来提高发动机的响应速度和燃烧效率。
风力发电机的优化设计是提高风力发电机转化效率的重要途径。
传统的风力发电机的转化效率较低,主要是由于叶片的设计不合理和气动噪声等。
为此,可以通过优化叶片的形态和材料,改善气动性能和降低噪声水平。
例如,通过增加叶片的长度和调整叶片的弯曲角度来提高叶片的气动效率;通过选择具有良好耐候性和强度的材料来延长叶片的使用寿命。
此外,还可以通过改进整个风力发电机的结构和控制系统,提高发电机的运行稳定性和可靠性。
以上两个实例都是典型的机械优化设计案例,通过采用优化设计方法和技术,可以显著提高机械产品的性能和质量,降低生产成本和维护成本,同时还可以减少对环境的影响,提高产品的竞争力和市场占有率。
机械优化设计的核心是在设计阶段充分考虑产品的性能、成本和可靠性等因素,通过系统性的优化设计方法和工具,找出最佳设计方案。
优化设计的过程包括问题定义、设计参数选择、设计方案生成和评估等。
其中,设计参数的选择是非常重要的,设计参数的合理选择可以显著影响产品性能和成本。
在实际的优化设计中,可以使用模拟软件和实验方法进行参数优化和设计方案评估。
在机械优化设计实例中,我们提到了汽车发动机和风力发电机的优化设计。
这两个实例都是当今社会中具有重要意义的机械产品,它们的性能和质量对整个行业的发展和进步起着重要的推动作用。
机械优化设计实例------以曲柄摇杆机构为例例8-5.设计一曲柄摇杆机构,要求曲柄l 1从φ0转到φm =φ0+90时,摇杆l3的转角最佳在线已知的运动规律:ΨE =Ψ0+2/3π(φ-φ0)2且已知l 1=1,l 4=5,φ0为极位角,其传动角允许在45<=γ<=135范围内变化。
解 1. 数学模型的建立该机构的运动简图如上图。
在这个问题中,已知l 1=1,l 4=5且φ和φm 不是独立参数,它们可由下式求出:⎥⎦⎤⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡++-+=3232202232201025)1(arccos )1(1025)1(arccos l l l l l l ψϕ所以该问题只有两个独立参数l 2,l 3。
因此设计变量为:[][]TTl l x x x 3221==将输入角分成30等份,并用近似公式计算,可得目标函数的表达式:[]∑=---=30112)()()(i i i Ei i x f ϕϕψψ式中 ,其计算公式为时的去机构实际输出角—当—i ϕϕψ=ii i i βαπψ--=式中()21i 21i412421i i 2i 4i 21242i i 2i 21222i 3i 2232i i )10cos 26(cos l 2l l l r 10r 24r arccos l 2r l l r arccos x 2r x x r arccos l 2r l l r arccos ϕϕβα-=-+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=20i 0Eii Ei 32)(由下式计算时的理想输出角,其值为当ϕϕπψψϕϕψ-+==约束函数按曲柄存在条件对传动角的限制来建立,得g1(x)=-x1<=0 g2(x)=-x2<=0 g3(x)=6-x1-x2<=0 g4(x)=x1-x2-4<=0 g5(x)=x2-x1-4<=0g6(x)=x1^2+x2^2-1.414x1*x2-16<=0 g7(x)=36-x1^2-x2^2-1.414 x1*x2<=02.程序代码根据上述数学模型写出其程序代码 (1)function y=f(x) Pi=3.1416;c0=acos(((1+x(1))^2-x(2)^2+25)/(10*(1+x(1)))); d0=acos(((1+x(1))^2-x(2)^2-25)/(10*x(2))); y=0; for i=0:30;c=c0+Pi*i/60;r=(26-10*cos(c))^0.5;a=acos((r^2+x(2)^2-x(1)^2)/(2*r*x(2))); b=acos((r^2+24)/(10*r)); d=Pi-a-b;de=d0+2*(c-c0)^2/(3*Pi); y0=(d-de)^2*(Pi/60); y=y0+y;end………………………………….%建立f 文件计算目标函数的表达式(2)function [c1,c2]=nonlin(x)c1=[x(1)^2+x(2)^2-1.414*x(1)*x(2)-16;36-x(1)^2-x(2)^2-1.414*x(1)*x(2)]; c2=[];………………………..%建立nonlin 文件(3)A=[-1 -1;1 -1;-1 1];b=[-6;4;4]; lb=[0 0]; ub=[];Aeq=[]; beq=[];x0=[4 3];……………………….%给定初始搜索点[x,fval]=f mincon(@f,x0,A,b,Aeq,beq,lb,ub,@nonlin)…………..%建立约束优化条件并求最优解三运算结果及说明运用MA TLAB计算出结果跟课本运算结果最优解大致相同,但最优解的值有所区别,通过分析我认为其原因:由于Pi的值取的精度不同,初始点取得不同,导致运算的结果会有所区别,同时函数值即最优解的值比较小,而函数值变化浮动比较大。
机械优化设计作业一、优化设计问题的提出预制一无盖水槽,现有一块长为4m,宽为3m的长方形铁板作为原材料,想在这块铁板的四个角处剪去相等的正方形以制成无盖水槽,问如何剪法使水槽的底面积最大?二、建立问题的数学模型为了建成此无盖水槽,可设在这块铁板的四个角处剪去相等的正方形的边长为X,所建造水槽的底面积为S,分析问题有次问题变成在约束条件:X≥04-2X≥03-2X≥0限制下,求目标函数:S(X)=(4-2X)(3-2X)=4-14X+12的最大值。
由此可得此问题的数学模型为:Min S(X)=4约束条件:( =-X ≤0 ( = -(4-2X )≤0( =-(3-2X )≤0 算法为黄金分割法。
四、外推法确定最优解的搜索区间用外推法确定函数S (X )=4 索区间。
设初始点 , =S( )=12; = +h=0+1=1, =S( )=2;比较 和 ,因为 < h=2h=2x1=2, = +h=1+2=3, 比较 和 ,因为 > ,面,故搜索区间可定为[a,b]=[1,3]。
五、算法框图六、算法程序#include <math.h>#include <stdio.h>double obfunc(double x){double ff;ff=4*X*X-14*X+12;return(ff);}void jts(double x0,double h0,double s[],int n,double a[],double b[]) {int i;double x[3],h,f1,f2,f3;h=h0;for(i=0;i<n;i++)x[0]=x0;f1=obfunc(x[0]);for(i=0;i<n;i++) x[1]=x[0]+h*s[i];f2=obfunc(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)x[2]=x[0];f3=f1;for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}for(;;){h=2.0*h;for(i=0;i<n;i++)x[2]=x[1]+h*s[i];f3=obfunc(x[2]);if(f2<f3)break;else{for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=x[2];b[i]=x[0];}elsefor(i=0;i<n;i++){a[i]=x[0];b[i]=x[2];}printf("%4d",n);}double gold(double a[],double b[],double eps,int n,double xx) double f1,f2,ff,q,w;double x[3];for(i=0;i<n;i++){x[0]=a[i]+0.618*(b[i]-a[i]);x[1]=a[i]+0.382*(b[i]-a[i]);}f1=obfunc(x[0]); f2=obfunc(x[1]);do{if(f1>f2){for(i=0;i<n;i++){b[i]=x[0];x[0]=x[1];}f1=f2;for(i=0;i<n;i++)x[1]=a[i]+0.382*(b[i]-a[i]);f2=obfunc(x[1]);}else{for(i=0;i<n;i++){a[i]=x[1];x[1]=x[0];}f2=f1;for(i=0;i<n;i++)x[0]=a[i]+0.618*(b[i]-a[i]);f1=obfunc(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx=0.5*(a[i]+b[i]);ff=obfunc(xx);printf("xx=ff=%5.2f,,,,%5.2f",xx,ff);return(ff);}void main(){int n=1;double a[1],b[1],xx;double s[]={1},x0=0;double eps1=0.001,h0=0.1;jts(x0,h0,s,n,a,b);gold(a,b,eps1,n,xx);七、程序运行结果与分析(1)程序运行结果(截屏)(2)结果分析、对与函数S(X)=(4-2X)(3-2X)=4-14X+12,令(X)=8X-14=0可解的X=1.75,说明程序运行结果正确。
例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% () 方案一下0个零件①,7个零件②,利用率91%()方案二下4个零件①,2个零件②,利用率96% ()方案三下3个零件①,3个零件②,利用率91%() 方案四(1)下2个零件①,5个零件②,利用率99%()方案五下1个零件①,6个零件②,利用率95% ()方案六从式(1)可知,用4m长的圆钢总共有6种下料方法.现用、、、、、分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
表1 下料方案Tab。
1 Cutting material plan原钢种类(m)数量零件①零件②方案4 5 0 方案一4 0 7 方案二4 4 2 方案三4 3 3 方案四4 25 方案五4 1 6 方案六表示为数学模型就是(2)5+4+3+2+≥4000 (3)7+2++5+6≥3600 (4)X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
例题用数学语言描述为:在约束条件(3)、(4)和(5)的限制下,求目标函数(2)达到最小值时的数值。
(二)选择合适的优化方法。
由于本题数学模型中的目标函数和所有约束函数都是设计变量的线性函数,因此该问题为典型的线性规划问题,优化方法选用单纯性法。
(三)上机计算,求得最优解。
计算程序使用DCXF。
EXE。
具体程序使用方法请大家参看《机械优化设计上机实验指导书》。
上机求得结果为:(四)結果分析分析与评判率由88 。
5%提高到97%,提高了法二利用Mathcad 2001软件求解(具体求解过程参看:Mathcad 讲义提纲和“Mathcad在工程技术中的应用讲座")思考题:平板下料问题,如果已知平板材料长和宽分别为a和b,如果需要尺寸如图示矩形、椭圆、圆和平行四边形分别为N1、N2、N3和N4个,问如何进行下料使所需要的平板数量最少?。
机械优化设计实例压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p 一定时d i、d2和丨分别取何值时管状压杆的体积或重量最小?(内外直径分别为d i、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I ――材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d i、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:2)min = oiia F(兀屯小=扌一材)「压杆的最优化设计也㈤皿也2亟刍-皿。
4勿(忙)=韵佃1 dJ = P -卩匕型—瘩辽(茁—町)I2~M?嵐二(工)==止皿_£]玉o血(兀)=呂.SJ =右 ~ ^lmax —°3) .3 ■■' -J」j -工—二.g$ (光)~ & (£) —^2 2JHK—"」^W = ^W = U-/^ogO劭刘罚函数:反耐皿上严)二7寓-町)f +円{[诡[o,[cr]- + mm[ Q/]『+nun[ Q 鶴『+min[ 0,?]3 + ■■■)传递扭矩的等截面轴的优化设计2、目标函数?r 讪(為4-d「)―^—胡解:1、设计变量:冈区I以轴的重量 最轻作为目标函数:3、约束条件:T = —<[r]1)要求扭矩应力小于许用扭转应力,即:-匕式中: ' --------- 轴所传递的最大扭矩一「一一抗扭截面系数。
对实心轴 疋勿(匿)二內⑴二兰拿-罔空J7EZ2)要求扭转变形小于许用变形。
即:式中:G ――材料的剪切弹性模数32M T 13)结构尺寸要求的约束条件:若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与 扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴, 疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。
第8章_机械优化设计实例1.引言机械优化设计是用于提高机械系统性能的重要方法之一、本章将介绍两个机械优化设计实例,分别是电动车的电动机设计和汽车发动机排气系统设计。
通过对这两个实例的分析和优化,可以了解到机械优化设计的基本原理和方法。
2.电动车的电动机设计电动车的电动机是其动力系统的核心部件,其设计和性能直接影响到电动车的续航里程、加速性能和整车效率等。
在进行电动机设计时,需要考虑功率、转速范围、效率等因素。
在优化设计电动机时,首先需要确定其电机类型,常见的有直流电机(DC motor)、异步电机(Asynchronous motor)和同步电机(Synchronous motor)等。
根据电动车的使用条件和要求,选择合适的电机类型。
其次,需要确定电动机的参数,如磁极数、线圈匝数、齿槽数等。
通过改变这些参数,可以改变电动机的转速范围和功率输出等性能。
同时,还需要优化电动机的效率,提高其能量利用率。
最后,还需要对电动机进行热设计,确保其工作时不会过热。
通过合理的散热设计和冷却系统,可以有效降低电动机的温度,提高其稳定性和寿命。
3.汽车发动机排气系统设计汽车发动机排气系统是排放控制和动力性能的重要组成部分,其设计直接影响到发动机的功率输出和排放性能。
在进行排气系统设计时,需要考虑排气阻力和噪声等因素。
优化排气系统设计的方法之一是通过改变排气管的形状和长度来降低排气阻力。
通过数值模拟和实验测试,可以确定最佳的排气管尺寸和形状,以提高发动机的功率输出和燃烧效率。
另一方面,还可以通过改变排气系统的消声器和消音器等部件来降低排气噪声。
通过优化消声器的结构和材料,可以有效降低排气系统的噪声水平,提高车辆的驾驶舒适度。
此外,还需要考虑排气系统对发动机的冷却效果。
通过合理设计排气系统的散热器和风道等部件,可以提高发动机的冷却效果,降低发动机的温度,提高整车的性能和可靠性。
4.结论机械优化设计是提高机械系统性能的重要手段之一、通过上述两个机械优化设计实例的分析,可以看出在机械优化设计中需要考虑多个方面的因素,如功率、效率、排气阻力、噪声等。
机械优化设计实例
压杆的最优化设计
压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的
尺寸限制值,求在p一定时d1、d2和l分别取何值时管状压杆的体积或重
量最小?(内外直径分别为d1、d2)两端承向轴向压力,并会因轴向压力
达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不
超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I——材料的惯性矩,EI为抗弯刚度
1、设计变量
现以管状压杆的内径d1、外径d2和长度l作为设计变量
2、目标函数
以其体积或重量作为目标函数
3、约束条件
以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:
1)
2)
3)
罚函数:
传递扭矩的等截面轴的优化设计解:1、设计变量:
2、目标函数
以轴的重量最轻作为目标函数:
3、约束条件:
1)要求扭矩应力小于许用扭转应力,即:
式中:——轴所传递的最大扭矩
——抗扭截面系数。
对实心轴
2)要求扭转变形小于许用变形。
即:
扭转角:
式中:G——材料的剪切弹性模数
Jp——极惯性矩,对实心轴:
3)结构尺寸要求的约束条件:
若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴,应采用疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。
二级齿轮减速器的传动比分配
二级齿轮减速器,总传动比i=4,求在中心距A最小下如何
分配传动比?设齿轮分度圆直径依次为d1、d2、d3、d4。
第一、二
级减速比分别为i1、i2。
假设d1=d3,则:
七辊矫直实验
罚函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题。
其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。
考虑到本优化程序要处理的是一个兼而有之的问题,故采用混合罚函数法。
一)、优化过程
(1)、设计变量
以试件通过各矫直辊时所受到的弯矩为设计变量:
(2)、目标函数
以矫直机的驱动功率为目标函数
式中:——矫直速度,mm/s
——矫直辊直径,mm
——传动效率
——作用在辊子上的总传动力矩
——轧件弯曲变形所需的转动力矩,N.mm
——克服轧件与辊子间滚动摩擦所需的转动力矩,N.mm
——克服辊子轴承的摩擦及支承辊与工作辊间的滚动摩擦所需力矩,N.mm
上式表明,编制程序时也可以把目标函数简化为求弯矩和的最小值。
简化问题,可以将程序中的目标函数改为
(3)、不等式约束
首先,试件应满足咬入条件,即
式中:——一、二辊之间的相对压下量
——试件与矫直辊之间的滑动摩擦系数
其次,要保证试件每经过一个矫直单元,实现一次反向弯曲,且弯矩值在极限范围内,即
式中:——使试件产生反向弯曲的最小弯矩值,N.mm
为了使试件变形充分、均匀,在经过第一、第二个矫直单元时反弯曲率值与原始曲率值应尽量接近。
也就是说,前几个矫直单元采用大变形矫直方案。
试件从最后一个矫直辊中出来后,要满足质量要求,符合国家有关标准,即有
式中:——有关标准规定的残余曲率值,对于本试件
(4)、等式约束
应满足
式中:、、、——分别为相邻两辊之间的相对压下量
二)、优化数据
以原始曲率半径为2000mm的08F双层焊管为例,得到优化矫直力矩为
优化矫直力为
分别对原始双层曲率半径为1500mm、2500mm和3000mm的断面系数相同的08F双层卷焊管进行矫直力矩优化,得到的优化值与原始曲率半径为2000mm的值相差不大。
5级齿轮传动的传动比分配
在指挥仪及精密仪器中,常用如图所
示的多级减速器。
为了提高运动精度,不仅
要求减重,还要求转动惯量小。
已知总减速比为i,假定各级小齿轮参
数相同,各级减速比分别为,
且有。
下面推导转动惯量和
中心距的表达式。
解: 1.总转动惯量
式中为小齿轮转动惯量,。
若令等于下式右端括号内各项,即
当一定时,对求极小,则必为极小,称传动的转动惯量系数。
2.中心距
式中为小齿轮分度圆直径。
令等于下式右端括号内各项,则一定下,对求极小,必使亦极小,这意味着重量亦小。
称中心距系数,即
本问题要求减速器重量和转动惯量小,这是双目标优化问题,设计变量为,可用线形加权法构造双目标转化为单目标无约束优化问题,即
式中、为权因子,表明设计者对(标志转动惯量)和(标志重量)的重要程度而选定的系数,一般有,例如选,等。
选取不同、求解,可了解它们对传动比分配的影响,从中选设计者认为满意的解。
曲柄摇杆机构运动规律的最优化设计(复合形法)
当曲柄由其初始位置转到时,要求摇杆由其极限角开始按下列规律运动:
并且其传动角(机构的连杆与摇杆之间的夹角)的最大值及最小值应分别不大于、
不小于其许用值,即;。
1.确定设计变量
考虑到机构杆长按比例变化时不会改变其运动规律,因此在计算时常取曲柄为单位长度,即,而其他杆长则按比例取为的倍数;机架长常由结构布置事先给定,分析上图得关系式:
因此,仅,为独立变量,是二维最优化设计问题,
2.建立目标函数
可根据期望与偏差为最小的要求,来建立目标函数:
式中——期望输出角
——实际输出角
由右图求得
摇杆与BD连线夹角
机架与BD连线夹角
BD连线长度
式中(单位长度)、为已定常量。
3.给定约束条件
曲柄与机架处于共线位置时:
及得约束条件:
4.设计变量的可行域
曲柄存在的条件:
得约束条件:
取单位长度即,只有和为起作用约束,它们是两个椭圆方程。
最后的数学模型为
这是一个带有不等式约束具有两个设计变量的小型最优化设计问题,可采用直接法来求解。
曲柄摇杆机构
如图所示,当曲柄AB整周转动时,连杆BC上一点M实现给定轨迹,轨迹坐标方程为
要求确定各构件的长度,使点M的实际轨迹与给定轨迹间的偏差最小。
解:1.确定设计变量:
取各构件的杆长为设计变量,即
2.建立目标函数:
按连杆上点M实际实现的轨迹与要求实现的轨迹的均方偏差最小的原则建立目标函数,其函数形式可表达为,
式中,(s表示将曲柄转角分成s等份);
,为连杆上点M第j个位置所要求实现的坐标值;为点M实际实现的坐标值。
与可按下列公式计算得到:
式中,
其中第三式中的根号前的正负号应参照运动连续性来选取。
3.确定约束条件:
首先要保证曲柄AB能作整周回转。
若结构上要求,则可取下列约束条件(曲柄存在条件):
其次考虑机构具有较好的传力性能,按最小传动角大于写成的约束条件为
综上所述,这一优化设计问题的数学模型可表示为
求设计变量,使
满足于约束条件
4.计算结果:
以为例,计算结果为:
初始步长TT=0.01TT=0.05TT=0.1
0.062830.062150.08434
简化的机床主轴
当跨距l,外伸端a 求轴的内、外径d、D取何值的时候,主轴重量最轻?
解:1、确定设计变量
由于材料一定时,主轴内孔只与机床型号有关,所以设计变量为:
x = [ x 1x2x3]T=[l D a]T
2、目标函数:
考虑主轴最轻,所以
式中:ρ——材料密度
3、约束条件:
由于主轴刚度是一个重要的性能指标,其外伸端的挠度y不得超过规定值y0所以可依此建立性能的约束:
在外力F给定的情况下,挠度,
所以:
由于机床主轴对刚度要求比较高,当满足刚度要求时,强度有富裕,所以这里可以不考虑应力约束条件。
边界的约束条件由具体机床结构与主轴材料而定:
即:也即:
例子:d=30mm,F=15000N,y-5-5,r0设计变量x1 x2x3
初始值480100120
下限值3006090
上限值650140150
解:采用内点惩罚函数法解,代入已知数据后,经过17次迭代,计算收敛,最优解为:x* = [300.036 75.244 90.001]T
f(x*) = 11.37。