齐次线性方程组解的结构(精)培训资料
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
齐次线性方程组解的结构
在学习齐次线性方程组解的结构之前,我们先来学习一下概念:向量空间.
线性方程组的向量表示
设有齐次线性方程组,记:
,,
则方程组可写成向量形式: Ax=0.
若为此方程组的解,则称为该方程组的解向量.
定义:若S为此线性方程组的全体解向量的集合,可以证明有:
(1)若,则;(2)若,则.
所以集合S是一个向量空间,我们称S为该齐次线性方程组的解空间.
对于齐次线性方程组,其向量方程形式为:Ax=0,
它的解向量可用通式表示为:
=1,
,(其右端的都是解向量:若取k
1
其余的k为0,即可看出ξ
为解向量,...。
)
1
故我们可以说,Ax=0的解向量为某n-r个线性无关的解向量的线性组合。
(注:
对此我们不加证明)
定义:齐次线性方程组的任何n-r个线性无关的解向量都称为此齐次方程组的一组基础解系.
注:这任意n-r个线性无关的解向量是齐次线性方程组解空间中的一个最大线性无关组。
是解空间的一个基。
设为方程组的一个基础解系,则方程组的解可表示为:
,其中k
1,k
2
,...,k
n-r
为任意实数.这个式子称为方
程组的通解。
例:求解方程组:
解:因为,故原方程的解向量可由任意3-2=1个线性无关的解向量的线性组合表示.
通过解方程可知为此方程组的一解向量,故原方程组的通解为:(k为任意实数。
§3齐次线性方程组解的结构齐次线性方程组是指系数矩阵为零矩阵的线性方程组。
其一般形式为:a₁₁x₁+a₁₂x₂+...+a₁ₙxₙ=0a₂₁x₁+a₂₂x₂+...+a₂ₙxₙ=0...aₙ₁x₁+aₙ₂x₂+...+aₙₙxₙ=0其中,aₙ(1≤n≤m,1≤i≤n)是方程组的系数。
对于齐次线性方程组,我们可以运用矩阵和向量的线性代数理论来推导其解的结构。
首先,我们将齐次线性方程组的系数矩阵记为A,行向量xT=(x₁,x₂,...,xₙ),则方程组可表示为Ax=0。
根据矩阵乘法的定义,我们有A·xT=(a₁₁x₁+a₁₂x₂+...+a₁ₙxₙ,a₂₁x₁+a₂₂x₂+...+a₂ₙxₙ,...,aₙ₁x₁+a ₙ₂x₂+...+aₙₙxₙ)=bT其中,bT是m维零向量。
这样,我们可以将齐次线性方程组的解的结构转化为求解矩阵A的零空间结构。
我们知道,零空间是矩阵A对应的齐次方程Ax=0的解的集合,也称为核空间。
零空间可以通过对系数矩阵A进行行变换化简,得到其对应的阶梯形矩阵U,进而求解。
接下来,我们来看零空间的结构。
假设U是矩阵A的阶梯形矩阵,其形式如下:a₁₁a₁₂a₁₃...a₁ₙ...a₁ₙ0a₂₂a₂₃...a₂ₙ...a₂ₙ00a₃₃...a₃ₙ...a₃ₙ...000aₙₙ...aₙₙ0000...aₙₙ其中,aᵢⱼ(1≤i≤p≤m,j>i)是U的主对角元素。
通过行变换,我们可以将U化简为如下形式:100...0...a₁ₙ₋ₙ₊₁a₁ₙ₋ₙ₊₂...a₁ₙ010...0...a₂ₙ₋ₙ₊₁a₂ₙ₋ₙ₊₂...a₂ₙ001...0...a₃ₙ₋ₙ₊₁a₃ₙ₋ₙ₊₂...a₃ₙ...000...1...aₙₙ₋ₙ₊₁aₙₙ₋ₙ₊₂...aₙₙ000...0...00 0其中,aᵢ(p<i≤n)是自由变量。
我们可以看出,自由变量的个数等于未知数的个数减去主元的个数。
齐次线性方程组解的
结构(精)
齐次线性方程组解的结构
在学习齐次线性方程组解的结构之前,我们先来学习一下概念:向量空间.
线性方程组的向量表示
设有齐次线性方程组,记:,,则方程组可写成向量形式: Ax=0.
若为此方程组的解,则称为该方程组的解向量.
定义:若S为此线性方程组的全体解向量的集合,可以证明有:
(1)若,则;(2)若,则.
所以集合S是一个向量空间,我们称S为该齐次线性方程组的解空间.
对于齐次线性方程组,其向量方程形式为:Ax=0,
它的解向量可用通式表示为:
=1,其余的k
,(其右端的都是解向量:若取k
1
为0,即可看出ξ
1
为解向量,...。
)
故我们可以说,Ax=0的解向量为某n-r个线性无关的解向量的线性组合。
(注:对此我们不加证明)
定义:齐次线性方程组的任何n-r个线性无关的解向量都称为此齐次方程组的一组基础解系.
注:这任意n-r个线性无关的解向量是齐次线性方程组解空间中的一个最大线性无关组。
是解空间的一个基。
设为方程组的一个基础解系,则方程组的解可表示为:
,其中k
1,k
2
,...,k
n-r
为任意实数.这个式子称为方程组的通
解。
例:求解方程组:
解:因为,故原方程的解向量可由任意3-2=1个线性无关的解向量的线性组合表示.
通过解方程可知为此方程组的一解向量,故原方程组的通解为:(k为任意实数。