光学材料
- 格式:pptx
- 大小:9.00 MB
- 文档页数:94
光学原材料光学的原材料主要包括:1. 光学玻璃:包括有色光学玻璃、激光玻璃、石英光学玻璃、抗辐射玻璃、紫外红外光学玻璃、纤维光学玻璃、声光玻璃、磁光玻璃和光变色玻璃等。
2. 光学晶体:卤化物单晶,如氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶等。
还有氧化物单晶,如蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)等。
此外,制作透镜等光学元件的原材料包括石英、钠玻璃和钛酸锶等。
其中,石英透镜的优点在于防腐性强,可用于制作紫外线光学仪器。
钠玻璃透镜价格较低,适用于制作低成本光学仪器。
钛酸锶透镜的优点在于色散极小。
分析:光学原材料是制造各种光学元件的基础,其质量和性能直接影响到光学元件的质量和性能。
这些原材料包括各种玻璃、晶体、涂层材料等,下面将分别介绍它们的特点和作用。
首先是光学玻璃,它是制造各种透镜、棱镜、窗口等元件的主要材料。
光学玻璃具有高透明度、高折射率、低色散等特点,能够有效地传输和聚焦光线,使得光学元件能够发挥出最佳的性能。
此外,光学玻璃还具有优异的机械性能和化学稳定性,能够承受各种恶劣环境的影响,长期保持稳定的光学性能。
其次是光学晶体,它是制造激光器、光放大器、光调制器等元件的关键材料。
光学晶体具有优异的激光性能和光学性能,能够实现高效的光学放大和调制,是光通信、光存储、光谱分析等领域的重要原材料。
此外,光学晶体还具有优异的热学性能和机械性能,能够承受高功率激光的照射和机械应力的影响,保持长期稳定的性能。
最后是涂层材料,它是制造各种光学薄膜、滤光片、反射镜等元件的重要材料。
涂层材料具有不同的光学性质和物理性质,能够实现反射、透射、吸收、偏振等各种光学效果,扩展了光学元件的应用范围。
同时,涂层材料还具有优异的附着力和耐久性,能够长期保持稳定的性能。
综上所述,光学原材料是制造各种光学元件的关键基础,其质量和性能对光学元件的质量和性能有着至关重要的影响。
随着科技的不断发展,对光学原材料的要求也越来越高,需要不断研究和开发新的材料和技术,以满足不断增长的市场需求。
光学材料有哪些光学材料是指在光学器件中用于控制光的传播和性质的材料。
它们通常具有特定的光学特性,如透明度、折射率、色散性等。
光学材料在光学领域中有着广泛的应用,包括光学透镜、光学薄膜、光学光栅、光学纤维等。
下面我们将介绍一些常见的光学材料。
首先,玻璃是一种常见的光学材料。
它具有良好的透明性和折射率,因此被广泛应用于光学透镜、窗户、光学仪器等领域。
玻璃的折射率可以根据需要进行调整,因此在光学设计中具有很大的灵活性。
其次,半导体材料也是重要的光学材料之一。
半导体材料具有较高的折射率和色散性,因此被广泛应用于光学器件中。
例如,半导体材料可以用于制备激光器、光电探测器、光学调制器等器件,对于光通信、光储存等领域具有重要意义。
此外,光学玻璃也是一种常见的光学材料。
它具有良好的光学性能,如高透明度、低色散性等,因此被广泛应用于光学透镜、光学窗户、光学棱镜等器件中。
光学玻璃的种类繁多,可以满足不同光学器件的需求。
另外,光学塑料也是重要的光学材料之一。
与玻璃相比,光学塑料具有较低的密度和成本,因此在一些特定的应用中具有优势。
光学塑料可以用于制备光学透镜、光学棱镜、光学薄膜等器件,对于便携式光学设备、汽车车灯等领域具有重要意义。
最后,纳米材料也是近年来备受关注的光学材料。
纳米材料具有特殊的光学性能,如表面等离子共振效应、量子大小效应等,因此被广泛应用于光学传感、光学增强等领域。
纳米材料可以通过控制其形貌、结构等参数来调控其光学性能,具有很大的潜力。
总的来说,光学材料在现代光学技术中起着至关重要的作用。
不同的光学材料具有不同的光学性能,可以满足不同光学器件的需求。
随着光学技术的不断发展,相信光学材料将会有更广阔的应用前景。
光学材料手册【原创版】目录1.光学材料的定义和分类2.光学材料的应用领域3.光学材料的性能指标4.光学材料的发展趋势正文一、光学材料的定义和分类光学材料是指在光学领域中具有特定光学性能和应用价值的材料。
根据其性质和用途,光学材料可分为以下几类:1.透镜材料:用于制造光学透镜,如玻璃、塑料和晶体等。
2.反射镜材料:用于制造反射镜,如金属薄膜和玻璃等。
3.光学薄膜材料:用于制造光学薄膜,如金属膜、介质膜和复合膜等。
4.光学晶体材料:具有特定光学性能的晶体材料,如激光晶体、光纤晶体等。
5.光学塑料材料:用于制造光学零件的塑料材料,如聚光学材料、光敏塑料等。
二、光学材料的应用领域光学材料广泛应用于以下领域:1.光学仪器:显微镜、望远镜、摄影镜头等。
2.光通信:光纤、光缆、光开关等。
3.光显示:液晶显示器、投影仪、显示器等。
4.光存储:光盘、光存储器等。
5.光能源:太阳能电池、光热发电等。
6.光学传感器:光电传感器、光纤传感器等。
7.照明:灯具、光源等。
三、光学材料的性能指标光学材料的性能指标主要包括:1.折射率:表示材料对光的传播速度的影响。
2.色散:表示材料对不同波长光的折射率差异。
3.透光率:表示材料对光的透过能力。
4.反射率:表示材料对光的反射能力。
5.光学均匀性:表示材料内部光学性能的一致性。
6.抗光损伤性:表示材料对光的损伤抵抗能力。
7.热稳定性:表示材料在高温下的光学性能稳定性。
四、光学材料的发展趋势光学材料的发展趋势主要表现在以下几个方面:1.高性能:追求更高的折射率、更低的色散、更高的透光率等性能指标。
2.轻量化:发展轻质、高强度的光学材料,以满足光学器件的轻量化需求。
3.环保化:研究绿色、环保的光学材料制造工艺,以减少对环境的影响。
4.智能化:开发具有自适应、可调谐等智能特性的光学材料。
光学材料有哪些光学材料是一种能够影响和控制光的传播和性质的材料。
它们在光学器件、光学通信、激光技术、光学传感器等领域中发挥着重要作用。
光学材料的种类繁多,下面将介绍其中一些常见的光学材料。
首先,我们来谈谈玻璃。
玻璃是一种常见的光学材料,其主要成分是二氧化硅。
玻璃具有透明、坚硬、耐腐蚀等特点,因此被广泛应用于光学器件的制造中。
在光学领域,玻璃可以用来制造透镜、棱镜、窗户等光学元件。
其次,还有光学晶体。
光学晶体是一种具有非线性光学特性的材料,它可以在光学器件中实现光的频率加倍、波长变换等功能。
光学晶体通常由铁电晶体、非线性光学晶体、光学玻璃等材料制成,广泛应用于激光技术、光通信、光学成像等领域。
另外,光学薄膜也是一种重要的光学材料。
光学薄膜是将一层或多层材料沉积在基底上形成的薄膜结构,可以通过控制薄膜的厚度和折射率来实现对光的反射、透射、吸收等性质的调控。
光学薄膜广泛应用于激光器、光学滤波器、光学镜片等光学器件中。
此外,光学陶瓷也是一种具有广泛应用前景的光学材料。
光学陶瓷具有高熔点、高硬度、高抗腐蚀性等特点,可以用于制造高性能的光学器件。
在光学通信、激光雷达、光学测量等领域,光学陶瓷都有着重要的应用价值。
最后,还有光学塑料。
光学塑料是一种具有优异光学性能的塑料材料,其透明度、折射率、色散性能等均优于普通塑料材料。
光学塑料通常用于制造眼镜、光学透镜、光学棱镜等光学元件。
综上所述,光学材料种类繁多,包括玻璃、光学晶体、光学薄膜、光学陶瓷、光学塑料等。
它们在光学器件的制造和应用中发挥着重要作用,为光学技术的发展提供了坚实的基础。
随着科技的不断进步,相信光学材料将会有更广阔的应用前景。
光学材料的种类与特性分析光学材料是指在光学领域中应用的材料,它们对光的传播和相互作用具有特殊的性质。
光学材料的种类繁多,每种材料都有其独特的特性和应用领域。
一、透明材料透明材料是指能够使光线通过并且不发生明显散射的材料。
常见的透明材料包括玻璃、水晶、塑料等。
透明材料具有良好的光学透过性和折射性能,被广泛应用于光学仪器、光纤通信等领域。
二、吸收材料吸收材料是指能够吸收光线并将其转化为热能或其他形式能量的材料。
常见的吸收材料包括染料、颜料、半导体材料等。
吸收材料的特性使其在太阳能电池、激光器、光敏材料等方面有着广泛的应用。
三、散射材料散射材料是指能够将入射光线按照一定规律散射的材料。
常见的散射材料包括磨砂玻璃、乳胶等。
散射材料的特性使其在照明、光学涂料等领域有着重要的应用。
四、非线性光学材料非线性光学材料是指在高光强下,其光学性质随光强的变化而发生非线性变化的材料。
常见的非线性光学材料包括非线性晶体、有机分子等。
非线性光学材料具有光电效应、光学非线性效应等特性,被广泛应用于激光技术、光纤通信等领域。
五、光学陶瓷材料光学陶瓷材料是指通过陶瓷工艺制备的具有光学性能的材料。
光学陶瓷材料具有高硬度、高熔点、低热膨胀系数等特点,被广泛应用于高温、高压、强辐射等恶劣环境下的光学器件。
光学材料的特性不仅取决于其化学成分,还与其微观结构和制备工艺有关。
例如,玻璃的光学性能与其成分、制备工艺以及冷却速度等因素密切相关。
同样,非线性光学材料的非线性效应与其分子结构、晶体结构以及外界光场的强度有关。
除了上述常见的光学材料,还有一些新型光学材料正在不断涌现。
例如,纳米材料、光子晶体等具有特殊结构的材料,具有优异的光学性能和应用潜力。
此外,多功能光学材料也受到越来越多的关注,这些材料不仅具有传统光学材料的特性,还具备其他功能,如电磁屏蔽、防护等。
光学材料的发展离不开科学研究和技术进步。
随着材料科学、纳米技术、光学工程等领域的不断发展,新型光学材料的开发和应用前景将更加广阔。
光学材料手册一、光学材料的概述光学材料是指那些具有特殊光学性能,可以用于制造光学元件、光学系统和光学器件的物质。
光学材料在科学技术、国防、民用等领域具有广泛的应用。
二、光学材料的分类1.透明光学材料:如玻璃、塑料、晶体等,具有良好的光透射性能。
2.光学薄膜材料:如金属薄膜、介质薄膜等,具有调节光透射、反射、折射等性能。
3.光学纤维材料:如石英光纤、塑料光纤等,用于光通信、光学传感等领域。
4.光学晶体材料:如石英、锂niobate 等,具有良好的光学性能和电学性能。
5.光学玻璃材料:如硼硅酸盐玻璃、氟化玻璃等,具有高折射率、低光学损耗等特点。
三、光学材料的性能与参数1.折射率:光学材料的一个重要性能参数,影响光在材料中的传播速度和光透射性能。
2.光透射率:指光通过材料时的透射程度,与材料的透明度、颜色等有关。
3.光学损耗:光在材料中传播过程中能量的衰减,与材料的吸收、散射等有关。
4.光学均匀性:指材料的光学性能在空间和时间上的稳定性。
5.机械强度:光学材料在加工和使用过程中的力学性能。
四、光学材料的制备与加工1.制备方法:包括熔融法、溶胶-凝胶法、化学气相沉积法等。
2.加工技术:如光学加工、精密加工、化学腐蚀等,用于制备光学元件和器件。
五、光学材料的应用1.光学元件:如透镜、反射镜、光栅等,用于光学系统中的成像、分光等。
2.光学仪器:如望远镜、显微镜、干涉仪等,应用于科学研究和实际生产。
3.光通信:光纤、光放大器等,实现信息的高速传输。
4.光学显示:如投影仪、显示器等,用于图像显示和虚拟现实等领域。
5.光学存储:如光盘、蓝光盘等,用于信息的存储和读取。
六、光学材料的发展趋势与展望1.技术创新:新型光学材料的研发,提高光学性能和降低成本。
2.产业应用:光学材料在电子信息、生物医学、新能源等领域的广泛应用。
3.国际化合作:加强国际间光学材料研究和产业发展的交流与合作。
综上所述,光学材料具有广泛的应用领域,其性能和制备技术不断取得突破。
光学材料及其光学性质研究光学材料指的是能对光进行一定的作用的材料,包括透明材料、光学玻璃、光学陶瓷、半导体材料等等。
这些材料的光学性质被广泛运用在通信、显示、光学存储、光学传感等领域。
一、光学材料的分类根据光学性质的不同,可以将光学材料分为荧光材料、非线性光学材料、量子点材料等几类。
荧光材料是指当这些材料受到激发后,会发射出比入射光更长波长的光。
其中较为常见的是荧光粉,它可用于显示领域中的荧光灯和荧光屏幕。
非线性光学材料是指光在这些材料中的传输和导致响应的方式不符合线性关系,在材料中会产生倍频、和频和差频等非线性效应。
这类材料主要应用于调制光的强度和频率等光学器件中。
量子点材料是指由少量原子构成的纳米结构,其所表现出来的光学特性源于尺寸量子限制。
量子点材料具有可调节的波长、高效的荧光等特性,在显示、生物医学成像等领域具有广泛应用。
二、光学材料的光学性质光学性质包括色散、透射率、光学吸收、光学发射等。
其中色散是指光在材料中传播时,波长和折射率的关系;透射率是指光进入材料后,能透过材料并出射到另一侧的能力;光学吸收是指材料能够吸收光的能力,其中能量被转化为材料的内部能和激发电子的动能;光学发射是指材料因光激发而导致的光发射。
三、光学材料在实际应用中的应用在通信领域,光学材料被广泛用于光纤通信中的测量仪表、光学信号处理器以及光学脉冲压缩等关键技术。
在显示领域,量子点材料可以制成发光二极管、荧光调制器等显示器件,其表现出来的纯净发光和可调的波长,可以满足当前液晶显示技术无法实现的局限性。
在生物医学成像领域,荧光材料被广泛应用于生物标记和显微成像。
随着技术的不断进步,许多新型的光学材料,如荧光量子点材料、磁性光学材料等也已经广泛应用于生物医学领域。
总之,光学材料及其光学性质的研究和应用,对于当今技术领域的进步起到了重要作用。
随着科技的不断发展,我们相信这个领域还有着巨大的潜力可以挖掘。
光学材料有哪些
光学材料是指在光学器件中用以改变光的传播、分布、调制和探测等性能的材料。
光学材料的种类繁多,按照其光学性质可以分为透明材料和非透明材料两大类。
透明材料包括玻璃、水晶、塑料等,而非透明材料则包括金属、半导体等。
在实际应用中,光学材料被广泛应用于光学通信、光学成像、激光器件、光学传感器等领域。
首先,透明材料是光学器件中常见的材料之一。
其中,玻璃是一种常见的透明
材料,具有良好的光学性能和机械性能,因此被广泛应用于光学镜片、光学棱镜、光学窗口等器件中。
此外,水晶也是一种重要的透明材料,其晶体结构使得其具有优异的光学性能,被广泛应用于激光器件、光学滤波器等领域。
此外,塑料作为一种轻便、易加工的材料,也被广泛应用于光学镜片、眼镜镜片等领域。
其次,非透明材料在光学器件中同样扮演着重要的角色。
金属是一种常见的非
透明材料,其优异的导电性和热导性使得其被广泛应用于反射镜、光学滤波器等器件中。
此外,半导体材料也是一种重要的非透明材料,其在光电器件中具有重要的应用,如光电二极管、激光二极管等。
除此之外,光学材料还包括了一些特殊的功能材料,如光学陶瓷、光学纤维、
光学薄膜等。
这些材料具有特殊的光学性能,被广泛应用于光学通信、光学成像、激光器件等领域。
总的来说,光学材料的种类繁多,每种材料都具有独特的光学性能,被广泛应
用于光学器件中。
随着科学技术的不断发展,相信光学材料会在更多领域展现出其重要的作用,为人类的生活带来更多的便利和创新。
光学材料的研究与应用光学材料是一种特殊的材料,它能够改变光的传播方向、色散、偏振等光学特性,广泛应用于光学器件和光学通信领域。
它具有高折射率、低散射、高光学透明度、高热稳定性等特点,在当今时代具有非常重要的价值和作用。
本文将深入探讨光学材料的研究和应用,为读者呈现光学材料的多样性和应用前景。
一、光学材料的种类1. 晶体光学材料晶体光学材料具有优良的光学性能,如高光学透明度、较高的折射率和色散。
晶体被广泛应用于光学器件和光通讯领域。
例如,锂铌酸铋晶体、铁电晶体、III-V族半导体材料等。
2. 光散射材料光散射材料是指光在这种材料中被散射,这种材料通常具有快速的响应时间和高的动态光学稳定性。
例如,光纤、玻璃、金属等。
3. 水晶材料水晶材料具有出色的光学性能,非常透明,具有优异的热稳定性和机械稳定性。
水晶材料被广泛应用于激光器、光学检测器和光学元件等方面。
4. 非晶态材料非晶态材料是指没有长程有序性结构的材料,通常是各种玻璃。
该类材料通常具有优越的光学特性和优良的光学性能,如宽带透明和快速响应等,适合应用于高速传输和信息处理等领域。
二、光学材料的应用1. 光学器件光学器件是一种能够控制和操纵光的材料,包括透镜、光栅、分光器等等。
例如,焦距透镜、聚焦透镜等,广泛应用于光学仪器、光电器件和天文仪器。
2. 光通信光通信也是光学材料广泛应用的领域之一。
光材料具有高折射率、低散射、高光学透明度等特点。
例如,光纤通信系统,将信息转化为光信号并通过光纤传输,光纤具有非常高的光透明度,可以有效地扩大通信的范围,提高通信质量。
3. 光学调制和激光器光学调制和激光器也是光学材料的重要应用领域。
调制可以将信息传递到光信号中。
激光器利用光学材料产生激光,激光器具有高的单色性、相干性和方向性,广泛应用于光学器件、医疗、工业制造和军事等领域。
4. 光学传感器光学传感器是广泛应用在检测、测量和监测等领域的传感器,它具有非常高的分辨率和灵敏度。
光学材料手册
【实用版】
目录
1.光学材料的概述
2.光学材料的分类
3.光学材料的应用
4.光学材料的发展趋势
正文
一、光学材料的概述
光学材料是指具有光学性能的材料,它可以引导、传输、反射、吸收和变换光波。
在现代科技领域,光学材料被广泛应用于成像、显示、照明、通信等众多领域。
根据其光学性能和使用环境的不同,光学材料可分为多种类型。
二、光学材料的分类
1.根据光学性能分类
(1)折射率较高的光学材料:如光学玻璃、光学晶体等;
(2)折射率较低的光学材料:如光学塑料、光学涂层等;
(3)线性光学材料:如光学玻璃、光学晶体等;
(4)非线性光学材料:如激光晶体、光子晶体等。
2.根据使用环境分类
(1)大气光学材料:如光学玻璃、光学晶体等;
(2)真空光学材料:如光学玻璃、光学晶体等;
(3)半导体光学材料:如 LED、激光二极管等。
三、光学材料的应用
1.光学成像:如摄影镜头、显微镜物镜等;
2.光学显示:如显示器、投影仪等;
3.光学通信:如光纤、光开关等;
4.光学照明:如 LED 灯、光学反射器等;
5.光学传感:如光电传感器、光纤传感器等。
四、光学材料的发展趋势
1.高性能光学材料:具有高折射率、低损耗、大口径等性能;
2.新型光学材料:如光子晶体、超材料等具有特殊光学性能的材料;
3.绿色环保光学材料:采用环保材料和技术制备的光学材料;
4.可持续发展光学材料:具有可持续发展理念的光学材料生产和应用。
综上所述,光学材料在科技领域具有广泛的应用前景,未来发展趋势可观。
光学材料特性介绍光学材料是指在光学领域中使用的材料,其具有特殊的光学性质和特性。
光学材料广泛应用于光学仪器、光纤通信、激光技术、光电子学和光学传感等领域。
下面将介绍几种常见的光学材料及其特性。
1.玻璃玻璃是最常见的光学材料之一,具有良好的光学性能。
玻璃有着高透明度和较高的折射率,能够有效传输光线。
此外,玻璃还有良好的耐热性和化学稳定性,能够在不同环境条件下长时间使用。
不同类型的玻璃具有不同的特性,例如石英玻璃具有较高的热稳定性和耐腐蚀性,适用于高温和腐蚀性环境;光纤玻璃具有良好的光传导性能,广泛应用于光纤通信领域。
2.半导体材料半导体材料是一类能在导电和绝缘之间转变的材料,具有独特的光学特性。
常见的半导体材料包括硅、锗和氮化镓等。
半导体材料具有直接能隙和间接能隙两种类型,直接能隙材料的能带间隙较小,可以吸收和发射光子,广泛应用于激光器、光电二极管和太阳能电池等领域。
间接能隙材料的能带间隙较大,光子吸收能力较弱,常用于半导体器件的基底材料。
3.晶体材料晶体材料具有有序的原子结构和周期性的晶格,其光学性能受晶体结构的影响。
晶体材料具有较高的折射率和良好的光学透明性,能够产生衍射、偏光和干涉等现象。
不同晶体材料具有不同的光学性能,例如石英晶体具有高透明度和高硬度,适用于光学仪器制造;锗和硅晶体具有特殊的光学性能,适用于红外光学器件制造。
4.液晶材料液晶材料是一类介于液体和晶体之间的材料,具有特殊的光学特性。
液晶材料可以通过施加外部电场或温度变化来改变其分子的排列方式,从而改变光的传输及偏振性质。
液晶材料广泛应用于显示技术,例如液晶显示器和液晶投影仪。
5.光学聚合物光学聚合物是一类具有特殊的光学性能和可塑性的材料。
光学聚合物具有较低的折射率和消色差效果,能够实现高清晰度和广角的光学成像。
此外,光学聚合物具有良好的透光性和耐腐蚀性,广泛应用于光学镜头、透镜和眼镜镜片等领域。
总之,光学材料具有多样的特性,用途广泛。
光学材料有哪些光学材料是一类用于操控光的性质和传播特性的材料。
根据基本光学性质的不同,光学材料可以分为吸收材料、散射材料、反射材料和折射材料等。
1. 吸收材料:吸收材料可以吸收一定范围的光,将光能量转化为其他形式的能量,如热能。
常见的吸收材料包括颜料、染料和黑色物体等。
吸收材料在太阳能利用、光热转换和激光器等领域有着广泛的应用。
2. 散射材料:散射材料可以将入射的光线随机地反射或折射到各个方向,使光传播方向发生改变。
散射材料常用于照明系统、显示器件和光学器件中,以提高光的均匀分布和观察角度的范围。
3. 反射材料:反射材料可以将入射的光线反射出去,使光线的能量和信息得以传递。
常见的反射材料有金属薄膜、反射镜和光学玻璃等。
反射材料广泛应用于光学仪器、光纤通信和光学传感器等领域。
4. 折射材料:折射材料是光学器件中最重要的材料之一。
折射材料的基本特性是将光线在交界面上发生偏折和改变传播方向。
常见的折射材料包括玻璃、水、塑料和晶体等。
折射材料广泛应用于透镜、光纤和偏振器等光学器件中。
除了以上几种基本的光学材料外,还有一些特殊的光学材料,如光子晶体、光学陶瓷和光学纤维等。
光子晶体是一种由周期性结构构成的材料,具有特殊的光学性质,可以用于光学滤波器和光学存储等领域。
光学陶瓷是一种具有高温稳定性和耐腐蚀性的特殊陶瓷材料,常用于制造高功率激光器和高温光学器件。
光学纤维是一种通过内部全反射实现光传输的特殊材料,广泛应用于通信和传感等领域。
总之,光学材料是一类具有特殊光学性质和应用的材料。
不同类型的光学材料在吸收、散射、反射和折射等方面具有不同的特点和应用,对于光学器件的设计和光学技术的发展起着重要的作用。
第四章 光学材料光学材料包含光学玻璃、工程塑料、天然晶体、人工晶体,以及若干种金属,如锆、银、金、镍、锗、铍及其若干金属和非金属氧化物。
作为光学材料,必须满足一些基本要求,如要具有良好的机械性能和化学稳定性,可加工性,具有均匀的折射率分布等。
用作镜头的光学材料,最重要的性能是折射率和透过率,这两个物理量都随波长变化,是波长的函数。
折射率随波长的变化称为色散。
影响光学材料透过率的主要因素有界面的反射损失和材料的吸收损失。
对反射用的光学材料而言,反射率是最重要的指标。
光学镀膜是在光学元件(透镜、棱镜、反射镜等)表面镀上单层或多层金属或非金属薄膜以改善光学性能,例如:增透膜,反射膜,半反半透膜,以及其它特殊用途的膜层。
§1.透射光学材料的特性一.光能的反射和吸收损失根据菲涅尔公式,光由普通介质材料表面反射的系数为:⎥⎦⎤⎢⎣⎡+-++-=)(tan )(tan )(sin )(sin 21/2/2/2/2I I I I I I I I R 式中I 和/I 是入射角和折射角。
当光垂直入射时:2/2/)()(n n n n R +-=式中:n 和/n 透镜表面前后介质的折射率。
对于透镜来说,表面的反射是一种光能损失。
对于由k 个表面组成的光学系统,不计材料的吸收损失时,其透过率为:kkt R T 11)1(=-=在光学系统中,胶合面两边介质的折射率差通常小于0.3,因此,反射损失通常小于%5.0,可以忽略不计。
光经过光学材料时,光能量难免不被吸收,光经过厚度为x mm 的光学材料,如果只计吸收,其透过率为axxet K -==2式中:a 为材料的吸收系数如果把光学材料表面的反射损失和材料内部的吸收损失均考虑在内,则光学系统的透过率是其表面透过率和材料内部透过率的乘积:axk xket t t K T T -⋅=⋅==1211上面只是适用于各反射面的反射率相同的情况。
对于空气中的单透镜来说,两个反射面(折射面)的反射率以及透过率不同,则透过率为212211R R K K T T T -=如果忽略材料的内部吸收(1=K ),则单透镜: 21211R R T T T -=二. 折射率光学材料的折射率是光学材料的另一个重要的指标参数,它是波长的函数,如图4-1所示。