电子科技大学集成光学考点大全
- 格式:docx
- 大小:648.78 KB
- 文档页数:4
考试大纲1光的电磁理论(各向同性介质)知识要点:1)光波的电磁特性(波长或频率范围,光波区别于其它电磁波的产生、传播、探测方式,光波能量密度、能流密度矢量、光强)2)光学介质的电磁特性(折射率,透明、线性、非色散)、3)光在各向同性介质中和各向同性介质界面上的传播特性波动方程与时谐均匀平面波函数(实数,复数)及其特征量(波矢、振动矢量、复振幅、时空周期、波速、矢量性、偏振态)反射定律和折射定律、菲涅耳公式(正入射)、反射率与透射率、半波损失、附加光程差、全反射、布儒特性定律、4)光波场的频率谱(时间频谱与空间频谱、实际光波与时谐均匀平面波的关联)5)时谐均匀球面波(波函数,球面波简化为平面波的条件)选择题:1. 自然光正入射,其反射光为 。
A .椭圆偏振光B .线偏振光C .部分偏振光D .自然光2. 自然光在界面发生反射和折射,当反射光为线偏振光时,折射光与反射光的夹角必为 。
A .B θ B .C θC .3πD .2π3.全反射时,在折射率小的介质中的电场 。
A .等于零B .随离界面距离的增加按指数规律衰减C .等于常数D .随离界面距离的增加按指数规律增加4. 当光波在两种不同介质中的振幅相等时, 。
A. 其强度相等B. 其强度不相等C. 不确定D. 其强度比等于两种介质的折射率之比5. 光从折射率小介质中正入射到折射率大的介质表面时,相对于入射光的电场和磁场,反射光的 。
A .电场和磁场都无相位变化B. 电场和磁场都有π相位突变C. 电场有π相位突变,磁场无相位变化D. 电场无相位变化,磁场有π相位突变6.在相同时间内,同一单色光在空气和在玻璃中 。
A. 传播的路程相等,走过的光程相等。
B. 传播的路程相等,走过的光程不相等。
C. 传播的路程不相等,走过的光程相等。
D. 传播的路程不相等,走过的光程不相等。
7.光在界面发生反射和透射,对于入射光、反射光和透射光,不变的量是 。
A .波长B .波矢C .强度D .频率8. 同一介质中,圆偏振光的电场为E ,线偏振光的电场振幅为E ,两光的光强之间的关系为 。
试题解答一.解答题:1.答:条纹向下平移。
2.答:不能。
入射光经负透镜扩散后成虚像点于'F 点。
3.答:光波的等相位面传播速度为相速度。
复色光的合成波的等振幅面传播的速度为群速度 4.答:光栅的光强分布可视为多缝干涉受单缝衍射的调制。
当满足干涉极大的点恰好为衍射极小时,合光强为零。
主极大消失为缺极。
5.答:合成为自然光的两线偏振光的相位完全无关。
而合成为园偏振光的两线偏振光的相位差为2π±。
二.作图题:略 三.计算题:1.解:1001)15011001()14()11()1('121=--=--=γγn fmmf 100'=∴2.解:⑴.由 'D D -=ΓmmD D 40)5(8'=-⨯-=Γ-=∴⑵. ''目物f f -=Γ mmf f 258200''=--=Γ-=∴物目⑶. 082=ω mmf D f 2822003608'20=⨯⨯=⨯=∴πω物⑷.ωωtg tg '=Γ6488'2-=⨯-=∴ω⑸.由'11'1目f =-, mm22525200=+=, mm f 25'=目-1-mm5.2210225',22510225192251251'1===+=+=∴3.解:当λk =∆时干涉极大,出现亮纹.未插入玻璃片时,中央点: 0=∆,插入玻璃片后,附加光程差: tn )1(11-=∆, tn )1(22-=∆ ,对两缝产生的附加光程差为: t3.012=∆-∆=∆ ,该∆使5=∆K 宽的条纹迁移, ∴ m t t μλ853.0=⇒=,条纹向7.12=n 的那片玻璃方向迁移.4.解:当平行光垂直入射时,mmd m d 5001,sin ==λθ1sin =θ (对应于的最大谱线级),∴ 4.310589.050013=⨯==-λdm∵ 小数对级次无意义, ∴ 3=m当平行光030角入射时: 2130sin=,取1sin =θ ,λθm d =+)30sin (sin 031210589.0)1(5001-⨯⨯=+m∴ 09.5=m , 取5=m5.解:由题意,o 光和e 光均服从折射定律:too i n θθsin sin = , tee in θθsin sin =∴ '5634)512.160sin (sin1==-to θ , '636)470.160sin (sin1==-te θ∴ '1010=-=∆te to θθθ-2-。
电子科技大学光电信息学院
集成光学2011级2014年6月期末考试
一、填空题:(36分)
二、简答题:(40分)
1. 集成光学材料有有源材料,无源材料。
简述集成光学器件对材料的共同要求。
列举两种常用的集成光学材料,简述其优点及目前在哪些器件上应用最广。
2. 简述棱镜耦合法测量波导分贝损耗洗漱的详细步骤及优缺点。
3. 周期性波导,同一波导可以同向传输不同阶导模耦合,反向传输导模耦合。
简述两种耦合对周期性波导参数要求的差异。
4. 简述激光二极管的工作原理;
简述双异质结激光二极管的原理及优点;
简述DFB激光二极管的原理及优点。
5. 简述光电二极管的工作原理;
简述PIN光电二极管的原理及优点;
简述APD光电二极管的原理及优点。
三、计算题:(24分)
1. LiNbO3 , y-切-x传,电光相位调制器
(1)推到TE0、TM0模半波电压计算式,写出详细过程。
(8分)
(2)计算半波电压。
(4分)
2. 定向耦合器(12分)
(1)求实现偏振分离的最短耦合长度L。
(2)1端口TE0、TM0同模,求3端口TE0、4端口TM0相位关系。
(3)λ改变,是否还有效,为什么?
哦呵呵……好好看课件呦!。
第四章1. 电子跃迁的种类自发辐射、受激吸收和受激辐射2. 半导体激光器效率的各种定义和表达式,会求半导体激光器的发射波长。
半导体激光器的定义:(a) 功率效率:(b)内量子效率:(c)外量子效率:(d)外微分量子效率:定义为阈值以上每对复合载流子发射的光子数,表示为半导体发射波长计算:3. DFB和DBR激光器在结构和工作上有何不同?如何求它们的发射波长?结构:DFB由靠近有源区的波导层上沿长度方向制作的Bragg衍射光栅提供周期性的折射率改变,DBR根据波导功能进行分区设计,光栅的周期性沟槽放在有源波导两外侧的无源波导上,从而避免了光栅制作过程中可能造成的晶格损伤。
工作:DFB激光器的增益区同光栅区重叠,当驱动电流改变时,输出功率和发射波长同时改变;而DBR激光器的反射器和增益区分离,所以可以分别控制DBR激光器的输出功率(通过改变流过激射区的电流)和发射波长(通过改变流过光栅段的电流)。
发射波长的求解方法:1、 假设 是允许DFB发射的模式,此时,式中m是模数,L是衍射光栅有效长度2、 DBM:4. PIN光电检测器的基本参数及定义(1) 波长响应(光谱特性)(a) 上截止波长:;(b)下截止波长(当入射光波长太短时,光子的吸收系数很强,使光电转换效率大大下降。
)(2)光电转换效率(a)量子效率:入射在检测器上的一个光子所产生对光电流有贡献的光生载流子数目。
(b) 响应度:(3)响应速度:常用响应时间(上升时间和下降时间)来表示。
输入阶跃光功率时,光生电流脉冲由前沿最大幅度的10%上升到的90%,后沿的90%下降到10%的时间定义为脉冲上升时间和下降时间。
(4)光电二极管的暗电流 暗电流是指无光照时光电二极管的电流。
暗电流的随机起伏会形成暗电流噪声,对于PIN二极管它是一个主要噪声源。
(5)工作范围(波长响应范围)5. APD的工作原理:碰撞电离、雪崩倍增(填空)光生的电子空穴对经过高电场区时被加速。
1.利用像增强器,人类突破了视见灵敏阈的限制。
2.光电技术的必要性:扩展人眼对微弱光图像的探测能力;将超快速现象存储下来;开拓人眼对不可见辐射的接收能力;捕捉人眼无法分辨的细节3.1900年普朗克( Planck )提出了光的量子属性4.爱因斯坦认为光是由光子组成的粒子流,它不仅是一份份地被吸收、辐射,而且光所具有的能量也是聚集成一份份在空间传播,具有的能量hv。
用光量子理论成功地解释了光电效应.方程5.光电技术是在人类探索和研究光电效应的进程中产生和发展起来的6.大气窗口(um):0.76-1.2;3-5;8-147.1929年,科勒制成了第一个实用的光电发射体——银氧铯光阴极。
8.红外变像管,实现了将不可见的红外图像转换成可见光图像9.人眼视觉受到的限制:灵敏度;分辨力;时间;空间;光谱10.自然界波长:10^-16m的宇宙射线到波长为10^8m的长电振荡,全波段电磁波都可成为信息的载体11.长波限,短波限;标准辐射源(或标准光源)作为输入源12.光电器件分类:单元,多元,固态,真空13.光照射到物体表面的能量将被反射、透射、和吸收。
光电器件主要利用吸收的光能。
14.光电器件利用物体吸收光能后的热效应或光电效应,光电效应可分为内光电效应和外光电效应15.转换系数G光电成像器件在法线方向输出的亮度与输入的辐照度之比值。
亮度增益光增益单色转换系数16.朗伯发光:M=3.14L--------G0=3.14G1。
;都与输入光谱分布有关17.电流响应率,电压响应率,单色灵敏度(峰值波长灵敏度,长波限)18.时间响应滞后:存在惰性环节,如荧光屏、光电导靶;直视型(荧光屏—余辉)非直(光电,电容)19.光电转换上升过程的滞后远小于下降过程的滞后20.当光电成像器件的输入辐照度(或照度)为脉冲函数时,得到的输出信号是时间的函数,取其归一化的函数脉冲响应函数。
比例函数衰减型负指数函数衰减型双曲函数衰减型21.瞬时调制传递函数系统所输出的归一化时间频谱函数与理想输出(无惰性)的归一化时间频谱函数之比。
第一章概论1.1集成光学的概念集成光学的理论基础是光学和光电子学,涉及波动光学与信息光学、非线性光学、半导体光电子学、晶体光学、薄膜光学、导波光学、耦合模与参量作用理论、薄膜光波导器件和体系等多方面的现代光学内容;其工艺基础则主要是薄膜技术和微电子工艺技术。
1.2集成光学的特点离散光学元件系统的缺点:体积和重量大、稳定性差和光束的调准困难。
集成光学系统的优点:①光波在光波导中传播,光波容易控制和保持其能量②集成化带来的稳固定位。
对振动和温度等环境因素的适应性比较强,最大优点。
③器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。
④功率密度高。
⑤体积小、重量轻。
集成光路代替集成电路的优点:1.带宽增加;2.光子器件中光子运动速度比电子器件中运动速度高得多,且没有导线电容和电感对频率的限制;3.实现“波分多路复用”;4.实现多路开关;5.尺寸小,重量轻,功耗小6.成批制备经济性好,可靠性高。
7.降低成本(制造、应用、维护、升级)1.4 研究集成光学的意义(开放题)1.信息光电子技术改变着人类的生存和发展方式,在未来的信息社会中必将扮演重要的角色,成为21世纪的基石和支柱之一。
2.信息光电子技术也是保障国防安全的核心技术之一。
3.光电子技术在信息领域的应用中迅速发展且有独特的优势。
4.集成光学集中并发展了光学和微电子学的固有技术优势,将传统的由分立器件构成的庞大的光学系统变革为集成光学系统。
5.集成光学系统作为现代光电子学的一个重要分支,研究集成光学十分重要。
第二章平面介质光波导和耦合模理论用于集成光学中的光波导根据结构分为平板波导和条形波导。
平面波导(仅在x方向具有折射率差)条形光波导(在x、y方向上限制光场)平板波导由三层介质构成:波导层:中间层,介质折射率n1最大覆盖层:上包层,折射率n3<n1衬底层:下包层,折射率n2<n1。
n2=n3,称为对称型平板波导。
反之,称为非对称型波导。
在集成光学中使用的最多的是埋入型波导。
电⼦科技⼤学半导体集成电路原理复习⼤纲第⼀章●微电⼦:在电⼦电路和系统的超⼩型化和微型化过程中逐渐形成和发展起来的学科。
●集成电路:⽤半导体⼯艺把电路的有源器件、⽆源器件以及互连布线以相互不可分离的状态制作在半导体或绝缘材料基⽚上,最后封装在⼀个管壳内,构成⼀个完整的、具有特定功能的电路、组件或系统。
●集成度:在单块晶⽚上或单个封装中构成的IC所包含的最⼤元器件数量(包括有源器件和⽆源器件)。
●特征尺⼨:器件中最⼩线条宽度(最⼩线条宽度与线条间距之和的⼀半)。
●摩尔定律:集成电路芯⽚的集成度每两年增加⼀倍。
●集成电路的⼏种主要分类⽅法:按照集成度的不同分类(SSI/MIS/LSI/VLSI/GSI);按照电路功能和所处理信号的不同分类(数字IC/模拟IC);所采⽤的晶体管的不同(双极型IC/MOS IC)●了解微电⼦集成电路技术的发展趋势:继续沿着摩尔定律前进、开发⽚上系统SOC、研发量⼦器件和纳⽶器件。
●提⾼集成度的主要途径有:提⾼微细加⼯技术、增⼤芯⽚⾯积、使⽤⼤圆⽚晶圆、简化电路结构、。
●IC(integrated circuit)、VLSI(very large scale-integration)、ULSI(ultra large scale-integration)、SOC(system-on-chip)、IP(intellectual property)、MEMS(micro-electronic-mechanical system)、CD(critical dimension)、SIP(system in package)。
●定⽐例缩⼩定律:CE(等⽐例缩⼩器件的尺⼨,增加跨导、减⼩电容,电源电压同时缩⼩相同倍数,但是阈值电压不可能缩得太⼩,漏源耗尽区宽度不可能按⽐例缩⼩,电源电压的标准改变会带来很⼤的不便)、CV(保倍)。
持电源电压不变)、QCE(器件尺⼨缩⼩K倍,⽽电源电压只缩⼩K第⼆章●饱和型逻辑IC:关态对应截⽌态,开态对应饱和态。