概率论 4.3 随机变量序列的收敛性(先)
- 格式:ppt
- 大小:338.50 KB
- 文档页数:17
§4.2随机变量序列的两种收敛性在上一节中,我们从频率的稳定性出发,引入了n η=∑=n i i n 11ξ−→−p a (n ∞→) 即随机变量序列{}n η依概率收敛于常数a 这么一个概念。
我们自然可以把所讨论的问题推广到a 不是一个常数,而是一个随机变量这样的情形,于是需要引入下面的定义。
定义4.2 设有一列随机变量1η,2η,3η,…,n η,如果对任意的ε>0,都有 lim ∞→n P ()εηη<-n (4.6)则称随机变量序列{}n η依概率收敛于η,并记作lim ∞→n r η−→−p η 或n η−→−p η (n ∞→) 由此可知,前一节中讨论过的大数定律只是上述依概率收敛的一种特殊情况。
我们已经知道分布函数全面地描述了随机变量的统计规律,如果已知n η−→−p η(n ∞→),那么它们相应的分布函数n F (x )与F (x )之间的关系会有什么样的关系呢?一个猜测是,对所有的x ,都有n F (x )→ F (x )(n ∞→)成立,这个猜测对不对呢?让我们看一个很简单的例子。
例4.2 设η,n η都是服从退化分布的随机变量,且P (η=0)=1,P (n η=-n 1)=1,n=1,2,… 于是对任给的ε>0,当n>ε1时有 P (ηη-n ≥ε)=P (n η≥ε)=0所以n η−→−p η (n ∞→) 成立。
又设η,n η的分布函数分别为F (x ),n F (x ),则F (x )=⎩⎨⎧≤>0,20,1x xF (x )=⎪⎩⎪⎨⎧-≤->n x n x 1,21,1 显然,当x ≠0时,lim ∞→n n F (x )= F (x )成立,当x=0时,lim ∞→n n F (0)=lim ∞→n 1=1≠0= F (0) 这个简单的例子表明,一个随机变量序列依概率收敛于某一个随机变量,相应的分布函数列不一定是在每一点上都收敛于这个随机变量的分布函数的。
Dvoretzky’s 收敛定理一、概述Dvoretzky’s 收敛定理是概率论中的一个重要定理,它描述了随机变量序列的收敛性质,对于理解随机序列的极限行为具有重要意义。
本文将对Dvoretzky’s 收敛定理进行深入剖析,旨在帮助读者全面了解该定理的内容、证明过程和应用领域。
二、Dvoretzky’s 收敛定理的表述Dvoretzky’s 收敛定理描述了随机变量序列的收敛性质,在正式表述如下:对于一个随机变量序列X1, X2, …, Xn,在满足一定条件下,这个序列可以在概率意义下收敛于一个常数或者一个随机变量。
具体而言,若满足以下条件:1. 随机变量序列的方差有界:存在一个正数C,使得对于所有的n,有Var(Xn) <= C。
2. 随机变量序列的"距离"有限:对于任意的i≠j,有E|Xi - Xj| <=d(i,j),其中d(i,j)是一个随机变量序列的"距离"函数。
那么,这个随机变量序列在概率意义下收敛于一个常数或者一个随机变量。
三、Dvoretzky’s 收敛定理的证明Dvoretzky’s 收敛定理的证明是通过利用概率论和数学分析的方法来完成的。
主要思路是采用刻画随机变量序列的距离函数,配合方差有界的条件,最终利用概率的收敛性质来推断序列的收敛性。
具体证明过程如下:1. 定义随机变量序列的距离函数d(i,j),并使得该距离函数满足E|Xi - Xj| <= d(i,j)。
2. 利用方差有界的条件,推导出随机变量序列的均值序列收敛到一个常数。
3. 利用概率的性质,证明了随机变量序列在概率意义下的收敛性。
四、Dvoretzky’s 收敛定理的应用Dvoretzky’s 收敛定理在概率论和统计学中有着广泛的应用。
主要体现在以下几个方面:1. 随机变量序列的收敛性分析:Dvoretzky’s 收敛定理可以用来分析随机变量序列的收敛性,对于理解随机序列的极限行为具有重要意义。
概率论中的随机过程收敛性分析概率论中的随机过程收敛性分析是一种重要的研究方法,它在许多领域中都得到了广泛应用。
本文将从理论和实际应用角度,对随机过程的收敛性进行分析和讨论。
一、概率论中的随机过程随机过程是概率论中的一个基本概念,它描述了一系列随机变量的演化过程。
随机过程可以分为离散时间和连续时间两种情况。
在离散时间中,随机过程由一系列随机变量构成,例如随机游走;在连续时间中,随机过程由一个连续的随机函数构成,例如布朗运动。
二、收敛性的定义和分类收敛性是随机过程分析中一个关键的概念。
对于离散时间和连续时间的随机过程,我们分别讨论它们的收敛性。
1. 离散时间随机过程的收敛性离散时间随机过程的收敛性可以通过序列的极限来刻画。
对于离散时间随机过程{Xn},如果存在一个随机变量X,使得当n趋向于无穷大时,Xn以概率1收敛于X,那么我们称随机过程{Xn}以概率1收敛于X。
此外,我们还可以使用均方收敛和依分布收敛来描述离散时间随机过程的收敛性。
2. 连续时间随机过程的收敛性连续时间随机过程的收敛性可以通过极限过程来刻画。
对于连续时间随机过程{X(t)},如果存在一个随机过程X(t),使得当t趋向于无穷大时,X(t)以概率1收敛于X(t),那么我们称随机过程{X(t)}以概率1收敛于X(t)。
类似地,我们还可以使用均方收敛和依分布收敛来描述连续时间随机过程的收敛性。
三、收敛性分析的应用随机过程的收敛性分析在许多领域中都有着广泛的应用。
下面介绍几个典型的应用场景。
1. 随机游走的收敛性分析随机游走是一种重要的离散时间随机过程,它在金融学、经济学等领域中得到广泛应用。
通过对随机游走的收敛性分析,可以研究其收敛性质,例如稳定性、收敛速度等,为实际问题的解决提供理论依据。
2. 布朗运动的收敛性分析布朗运动是一种重要的连续时间随机过程,它在物理学、金融学等领域中具有重要意义。
通过对布朗运动的收敛性分析,可以研究其性质和行为,例如时序相关性、自回归性等,为实际问题的建模和分析提供理论支持。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is asequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship. This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows: 1. Convergence of random variables the concept of theory; 2. the convergence of several random variables between; From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: 41 几种收敛性定义 42 依概率收敛与依分布收敛的关系 53 r阶收敛与几乎处处收敛的关系 114 依概率收敛与r阶收敛的关系 135 几乎处处收敛与依概率收敛和依分布收敛的关系 17总结 19四种收敛性 19四种收敛蕴涵关系 19致谢 21参考文献 22引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
概率空间•几乎必然收敛(almost sure convergence)–随机变量序列收敛到,同时}{n X X {li – a.s. 1}{lim ==∞→X X P n n X X =lim XX −→−.s .a 表示为或者n n ∞→n →)}()(lim :{ςςςX X n n =∞→•依概率收敛(convergence in probability)–随机变量序列以及满足对任意}{n X X li ε–p. 0}||{lim=>-∞→εX X P n n X X =lim XX −→−.p 表示为p 或者n n ∞→n →也有可能的数值极大|X X n -|•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者n n ∞→n →•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞<}{2X E 几乎必然收敛或依概率收敛都不能确保均方收敛•以概率分布收敛(convergence in distribution)–随机变量序列以及满足在任意连续的x}{n X X li )()(limx F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim XX n −→−d.•依据特征函数判断收敛–XX n −→−d.––)}({)}({X f E X f E n →)t ()t (XX nΦ→Φ.s .a ⇒XX −→−.p(Cauthy criteria)在不知道极限的情况下,判定随机变量序列收敛随机变量序列的收敛特性。