北师大版平方差公式练习题精选(完整版)
- 格式:doc
- 大小:449.24 KB
- 文档页数:4
1.7 平方差公式(总分100分 时间40分钟)一、填空题:(每题4分,共24分) 1.(x+6)(6-x)=________,11()()22x x -+--=_____________.2.222(25)()425a b a b --=-. 3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5.(a-b-c-d)(a+b-c+d)=[( )+( )][( )-( )]6. 18201999⨯=_________,403×397=_________. 二、选择题:(每题6分,共18分)7.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个8.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④9.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以三、解答题:(共58分)10.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).(7分)11.计算:22222110099989721-+-++- .(7分)12.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.(6分)(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+13)=2.(8分)13.计算:2222211111(1)(1)(1)(1)(1)23499100-----. (7分)14.计算:2481511111(1)(1)(1)(1)22222+++++. (7分)15.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?(8分)16.已知3n m +能被13整除,求证33n m ++也能被13整除.(8分) 答案: 1.36-x 2,x 2-14 2.-2a 2+5b 3.x+1 4.b+c,b+c 5.a-c,b+d,a-c,b+d 6.3239981, 159991 7.D 8.C 9.D 10.16a -1 11.5050 12.(1)-36 (2)x=413.原式=22222(21)(21)(31)(31)(41)(41)(991)(991)(1001)(1001)23499100+-+-+-+-+-⨯⨯⨯⨯⨯=11011012100200⨯=⨯. 14.原式=248151111112(1)(1)(1)(1)(1)222222-+++++=1615112(1)222-+=. 15.96148248482(2)1(21)(21)-=-=+-=482424(21)(21)(21)++-=48241266(21)(21)(21)(21)(21)++++-=482412(21)(21)(21)6563+++⨯⨯∴这两个整数为65和63.16.33n m ++333273(261)32633n n n n n m m m m =⨯+=⨯+=+⨯+=⨯++∵263n ⨯能被13整除,3n m +能被13整除∴33n m ++能被13整除.。
《平方差公式》习题一、选择题1.计算:(a+2)(a-2)的结果是( )A.a2+4B.a2-4C.2a-4D.2a2.计算(a+1)2(a-1)2的结果是( )A.a4-1B.a4+1C.a4+2a2+1D.a4-2a2+13.计算:a2-(a+1)(a-1)的结果是( )A.1B.-1C.2a2+1D.2a2-14.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是( )A.a8-b8B.a6-b6C.b8-a8D.b6-a6二、填空题5.(a2+1)(a+1)(_____)=a4-1.6.观察下列各式:(a-1)(a+1)=a2-1,(a-1)(a2+a+1)=a3-1,(a-1)(a3+a2+a+1)=a4-1…根据前面各式的规律计算:(a-1)(a4+a3+a2+a+1)=_____;22012+22011+…+22+2+1=_____.7.(a+1)(a-1)(1-a2)=_____.8.(x-_____-3)(x+2y-_____)=[(_____)-2y][(_____)+2y]9.(x+2y-3)(x-2y-3)=_____-_____.10.若x2-y2=48,x+y=6,则3x-3y=_____.三、解答题11.计算: ( a-2b ) ( -2b-a ) .12.已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值13.若x2+y2=86,xy=-16,求(x-y)2.14.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.15.知(m+n)2=10,(m-n)2=2,求m4+n4的值.参考答案一、选择题1.答案:B解析:【解答】(a+2)(a-2)=a2-22=a2-4.故选B【分析】根据平方差公式展开,即可求出答案.2.答案:D解析:【解答】(a+1)2(a-1)2=[(a+1)(a-1)]2=(a2-1)2=a4-2a2+1.故选D.【分析】此题首先利用积的乘方公式把所求代数式变为[(a+1)(a-1)]2,然后利用平方差公式化简,再利用完全平方公式即可求出结果.3.答案:A解析:【解答】a2-(a+1)(a-1)=a2-(a2-1)=a2-a2+1=1.故选A.【分析】先利用平方差公式计算,再根据整式的加减运算法则,计算后直接选取答案.4.答案:C解析:【解答】(a4+b4)(a2+b2)(b-a)(a+b)=(a4+b4)(a2+b2)(b2-a2)=(a4+b4)(b4-a4)=b8-a8.故选C.【分析】多次运用平方差公式计算即可.二、填空题5.答案:(a-1)解析:【解答】a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).【分析】根据平方差公式的运算即可得出答案.6.答案:a5-1 22013-1解析:【解答】(a-1)(a4+a3+a2+a+1)=a5-1;22012+22011+…+22+2+1=1×(22012+22011+…+22+2+1)=(2-1)(22012+22011+…+22+2+1)=22013-1.【分析】根据题目信息,可得:(a-1)(a n+a n-1+a n-2+…+a2+a+1)=a n+1-1,由此计算即可.7.答案:-a4+2a2-1解析:【解答】(a+1)(a-1)(1-a2)=(a2-1)(1-a2)=-a4+2a2-1;【分析】根据平方差公式分别进行计算,再合并同类项即可求出答案.8.答案:2y 3 x-3 x-3解析:【解答】(x-2y-3)(x+2y-3)=[(x-3)-2y][(x-3)+2y].【分析】本题是平方差公式的应用,通过左右对照,相同项是x-3;相反项是-2y,2y.填空即可.9.答案:(x-3)2 (2y)2.解析:【解答】(x+2y-3)(x-2y-3)=(x-3)2-(2y)2.【分析】根据平方差公式计算.10.答案:24.解析:【解答】x2-y2=(x+y)(x-y)=48,∵x+y=6,∴x-y=8,则3x-3y=3(x-y)=3×8=24.【分析】先按照平方差公式把x2-y2=48写成(x+y)(x-y)=48的形式,再由x+y=6得出x-y 的值,然后把3x-3y写成3(x-y)的形式,最好把x-y的值代入即可.三、解答题11.答案:1,12.解析:【解答】原式=(-2b)2-a2=4b2-a2.【分析】此题是-2b与a这两个数的和与这两个数的差相乘的积, 符合平方差公式, 所以就等于这两数的平方差.12.答案:(1)28;(2)20;(3)368.解析:【解答】∵x+y=6,xy=4,∴(1)x2+y2=(x+y)2-2xy=62-2×4=28;(2)(x-y)2=x2+y2-2xy=28-2×4=20;(3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.【分析】(1)利用x2+y2=(x+y)2-2xy计算即可;(2)利用(x-y)2=x2+y2-2xy计算即可;(3)利用x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2计算即可.13.答案:118.解析:【解答】∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16,∴(x-y)2=86-2×(-16)=118.【分析】根据完全平方公式得到(x-y)2=x2+y2-2xy,然后把x2+y2=86,xy=-16代入计算即可.14.答案:x+y=-7或x+y=6.解析:【解答】x2+xy+y=14①,y2+xy+x=28②,∴①+②,得:x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)-42=0,∴(x+y+7)(x+y-6)=0,∴x+y+7=0或x+y-6=0,解得:x+y=-7或x+y=6.【分析】由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值.15.答案:28.解析:【解答】(m+n)2=10,(m-n)2=2,∴m2+2mn+n2=10,m2-2mn+n2=2,相减得:4mn=8,∴2mn=4,∴m4+n4=(m2+n2)2-2(mn)2=[(m+n)2-2mn]2-8=[10-4]2-8=36-8=28.【分析】根据已知求出2mn的值,把m4+n4化成含有(m+n)2和2mn的形式,代入即可.。
平方差公式【目标导航】1.知道平方差公式的结构特征;2.知道平方差公式是多项式乘法的特殊情况;3.会正确运用平方差公式进行计算.【问题探究】一.探究计算下列多项式的积,你能发现什么规律?(1) (x +1)(x - 1)= ;(2) (m +2)(m - 2)= ;(3) (2011江苏连云港)分解因式:x 2-9=_ ▲ .(4) (a +b )(a -b )= .语言表述(4)式:.这个公式叫做(乘法的)平方差公式二.平方差公式的几何解释:三.例题例1先判断下列各式满足平方差公式的结构特征,然后运用平方差公式计算:(1) (3x +2)(3x -2);(2) (b +2a )(2a -b );(3) (-x +2y )(-x -2y ).例2运用平方差公式计算:(1) 102×98 (2)52115312⨯ 例3计算:(1)(2x-y)(y+2x)-2(3x-2y)(-2y-3x)-(-2x-3y)(2x-3y)(2)))()((22y x y x y x ++-(3))161)(41)(21)(21(42a a a a +++-(4) (2011江苏无锡)a(a-3)+(2-a)(2+a)【课堂操练】一.填空1.(2011常州市)分解因式:______92=-x212.(-a -b )(a -b )=3.(2011广东株洲)当x=10,y=9时,代数式x 2-y 2的值是4.=+---)21)(21(b b 5.(x -1) =21x -6.(a +b ) =22a b -二.判断:7.(0.5a-0.1)(0.5a+0.1)=1.025.02-a8.(a-b)(a+b)4422)(b a b a -=+9.2222)1()1()1(-=--a a a 10.y x y x y x y x y x --=+++884422))()(( 11.22)())((c b a c b a c b a -+=+--++ 12.5523233333)()())((b a b a b a b a -=-=-+三.选择13.下列各式:①(x-2y)(2y+x) ② (x-2y)(-x-2y) ③(-x-2y)(x+2y) ④ (x-2y)(-x+2y)其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④14.等式)43(22y x --( )=44916x y -中括号内应填入下式中的( )A.2243y x -B.2234x y -C.2243y x --D.2243y x +15.若52022-=+=-y x y x 且,则x -y 的值是( )A.5B.4C.-4D.以上都不对16.计算)())()((4422b a b a b a b a +-++-等于( )A.42aB.42bC.42a -D.42b -17.))((n m n m b a b a +-等于( )A.n m b a22- B.22n m b a - C.n m b a 22+ D.m n a b 22-2218.)43)(34()23)(32(y x x y x y y x +--+-的计算结果为( )A 221325x y - B.22213y x +C.222513y x -D.222513y x +四.应用平方差公式计算:19. 59.8×60.220. 2001×1999 21. 74197320⨯ 22. (1-mn )(mn +1) 23. )5675)(752.1(x y y x ---24. (2011福建福州)分解因式:225x -25.(2011浙江省舟山)分解因式:822-x【课后巩固】五.运用平方差公式计算:(1)2004×2002-22003(2)1.03×0.97 (3)2222482521000- (4)20062004200520052⨯- 六.计算: (5))14)(21)(12(2++-a a a(6))214)(214(22+-y x y x(7))237)(237(22y x y x --- (8))9)(3)(3(2+-+x x x(9))2)(2())((y x y x y x y x +-++-+(10)(x +2y )(x -2y )-(x -4y )(x +4y )+(6y -5x )(5x +6y )七.先化简,再求值:(11)(2011宁波市)先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5(12).(x +2)(2-x )+x (x +1) 其中x =-1.(13).(2011浙江绍兴)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中1,12a b =-=. 八.(14)如果0)5()3(42=+-+-+y x y x ,求22y x -的值.(15).解不等式组:(3)(3)(2)1(25)(25)4(1)x x x x x x x x +--->⎧⎨---<-⎩ ① ② 【课外拓展】(16).填空:(a -b +c )( a +b -c )=( )2-( )2(3a -4b +5c )(-3a -4b +5c )= ( )2- ( )2(17).观察下列等式:① 4×2=32-12;② 4×3=42-22;③ 4×4=52-32;④ ( )×( )=( )2-( )2;……则第4个等式为 ;第n 个等式为 .(n 是正整数)(18).平方差公式的特征:左边为两个数的和乘以这两个数的差.右边为这两个数的平方差.公式的常见变形:位置变化:)2132)(3221(a b b a -+ 符号变化:(-3x -2y )(3x -2y )指数变化:))((2121+-+--+n m n m b a b a系数变化:(4a+4b )(a-b )因数变化:309×291较复杂的变化:(3x +2y -1)(3x -2y +1)(19).运用平方差公式计算:22222212979899100-++-+-)12()12)(12)(12(3242++++)10011()2511)(1611)(911)(411(----- 参考答案:【问题探究】一.探究1.(1)x ²-1; (2)m ²-4;(3)【答案】(x -3)(x +3); (4)a ²-b ²;两数和与两数差的相乘,等于完全相同的项的平方减去绝对值相同而符号相反的项的平方所得的差.二.平方差公式的几何解释:图1(1)的阴影部分的面积为22a b -;图1(2)的阴影面积为()()a b a b +-;(2)比较两个图形,有()()a b a b +-=22a b -,此即为“平方差公式”从而验证了平方差公式(a +b )(a -b )= a ²-b ².三.例题例1(1) 解:原式=9 x ²-4(2)解:原式=(x -3)2+3(x -3)= 4a ²-b ²(3)解:原式=(2x +3)(2x -3)= x ²-4y ²例2(1)解:原式=(100+2) ×(100-2)= 100²-2²=9996(2)解:原式=(12+35)(12-35) =1431625例3 (1)= 4x²-y²-2(4x²-9y²)-2(9y²-4x²)=26x ²-18y ²(2)解:原式= x 4-y 4(3)解:原式=(1-4a ² ) (1+4a ² ) (1+16 a 4 )=1-256a 8(4)【答案】解:原式=a ²-3a +4-a 2=-3a +4【课堂操练】1. (x +3) (x -3)2. b ²-a ²3. 194. b ²-145. (-1-x )6. (-a +b )二、判断题7.(错误)8. ( 正确)9. ( 正确)10. ( 错误 )11. ( 错误 )12. ( 错误 )三、选择题13.A 14.A 15.C 16.D 17.A 18.C四、计算:19. 解:原式=(60+0.2) ×(60-0.2)= 60²-0.2²=3599.620. 解:原式=(2000+1) ×(2000-1)= 2000²-1²=3999999921. 解:原式=(20+37) ×(20-37) = 20²-(37)² =399404922. 解:原式=1-m ²23. 解:原式=(57y ) ² -(1.2x )²= 2549y ²-2536x ²24.解:原式= (x +5) (x -5)25. 解:原式=2(x+2)(x-2)【课后巩固】(1)解:原式=(2003+1)(2003-1)-2003²=-1(2)解:原式=(1+0.03) ×1-0.03)=0.91(3)解:原式=1000²(250+248)(250-248)=1(4)解:原式=2005 2005²- (2005+1)(2005-1)=2005六、(5)解:原式= 16 a 4-1(6)解:原式= 16 y ²x 4-14(7)解:原式= 94y ²x 4 -49 (8)解:原式= x 4 -81(9)解:原式= x 2 -y 2+4y 2-x 2=3 y ²(10)解:原式= x 2 -4y 2-x 2+16y 2+36y 2-25x 2=48y ²-25 x ²七(11)解:原式=a 2-4+a -a 2=a -4当a =5时,原式=5-4=1(12)解:原式=4-x ²+ x ²+x =4+x当x =-1时,原式=4-1=3(13)原式=4a ²-b ²当a=1 2,b =1时,原式=0. 八(14)解:因为(x +y -3) ²+(x -y +5) 4=0.所以x +y -3=0,x -y +5=0,故x =-1, y =4x ²-y ²= (x +y ) +(x -y )= -15(15)解:解不等式①得x>5;解不等式②得x>254所以原不等式组的解集为x>254【课外拓展】(16)a ²-(b -c )²(5c -4b ²)-(3a )²(17)4×5=62-424×n =(n +1)2-(n +1)2;(18)解:原式=(23b +12a )-(23b +12a ) =49b ²-14a ² 解:原式=(-2y -3x )(-2y +3x )=4y ²-9x ²解:原式=a 2(m -1)-b 2(n +2)解:原式=4(a+b )(a-b )=4a ²-b ²解:原式=(300+9) ×(300-9)= 300²-9²=59919解:原式=(3x)²-(2y -1)²= 9x ²-4y ²+4y -1(19)解:原式= (100+99) ×(100-99)+ (98+97)(98+97)+…+(2+1)(2-1) =5050解:原式=(2-1)(2+1)(22+1)…(232+1)=264-1.解:原式=(1+12)(1-12)(1+13)(1-13)(1+14)(1-14)…(1+110)(1-110) =32×12×43×23×54×34×…×1110×910=1120。
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。
平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。
下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。
(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。
下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。
北师大版数学七年级下册第一章1.5平方差公式课时练习一、选择题1.(2x+1)(2x-1)等于()A.4x2-1 B.2x2-1 C.x2-1 D.2x2+1答案:A解析:解答:(2x+1)(2x-1)=4x2-1,故A项正确.分析:根据平方差公式可完成此题.2.(x+5y)(x-5y)等于()A.x2-5y2 B.x2-y2 C.x2-25y2 D.25x2-y2答案:C解析:解答:(x+5y)(x-5y)=x2-25y2 ,故C项正确.分析:根据平方差公式可完成此题.3.(m+5)(m-5)等于()A.m2-5 B.m2-y2 C.m2-25 D.25m2-5答案:C解答:(m+5)(m-5)=m2-25,故C项正确.分析:根据平方差公式可完成此题.4.(x+6y)(x-6y)等于()A.x2-6y2 B.x2-y2 C.x2-36y2 D.36x2-y2答案:C解析:解答:(x+5y)(x-5y)=x2-25y2 ,故C项正确. 分析:根据平方差公式可完成此题.5.(2x+y2 )(2x-y2 )等于()A.x2-y4 B.x2-y2 C.4x2-y4 D.4x2-y2答案:C解析:解答:(2x+y2 )(2x-y2 )=4x2-y4 ,故C项正确. 分析:根据平方差公式可完成此题.6.下面计算正确的是()A.(a+b)(a-b)=2a+2bB.b5 + b5 = b10C.x5·x5=x25D.(y-z)(y+z)=y2-z2解析:解答:A项计算等于a2-b2;B项计算等于2b5;C项计算等于x10 ;故D项正确.分析:根据平方差公式与同底数幂的乘法法则可完成此题.7.下面计算错误的是()A.(y-z)(y+z)=y2-z2B.(m-n)(m+n)=n2-mC.x5·x20 = x25D.y3·y5=y8答案:B.解析:解答: B项为(m-n)(m+n)=m2-n2;故B项错误.分析:根据平方差公式与同底数幂的乘法法则可完成此题.8.(2y-3z)(2y+3z)等于()A. y2-z2B.2y2-3z2C.4y2-9z2 D.y2-z2答案:C解析:解答:(2y-3z)(2y+3z)=4y2-9z2,故C项正确.分析:根据平方差公式可完成此题.9. (y+3z)(3z-y)等于()A.y2-z2B.y2-9z2C. 9z2-y2 D.y2-z2答案:C解析:解答:(y+3z)(3z-y)=9z2-y2,故C项正确.分析:根据平方差公式可完成此题.10. (x+3ab)(x-3ab)等于()A.x2-9a2b2B.x2-9ab2C. x2-ab2 D.x2-a2b2答案:A解析:解答:(x+3ab)(x-3ab)=x2-9a2b2,故A项正确. 分析:根据平方差公式与积的乘方法则可完成此题.11. (c+a2b2)(c-a2b2)等于()A.c-ab2B. c2-a4b4C.c2-ab2 D.c2-a2b2答案:B解析:解答:(c+a2b2)(c-a2b2)=c2-a4b4,故B项正确. 分析:根据平方差公式与积的乘方法则可完成此题.12. [c+(a2)2][c-(a2)2]等于()A .c-a2 B..c2-a8 C.c2-a2 D.c2-a4答案:B解析:解答:[c+(a2)2][c-(a2)2]=c2-a8,故B项正确.分析:根据平方差公式与幂的乘方法则可完成此题.13. [(c2)2+(a2)2][(c2)2-(a2)2]等于()A .c-a2 B..4c2-a8 C.c8-a8 D.c2-a4答案:C解析:解答:[(c2)2+(a2)2][(c2)2-(a2)2]=c8-a8,故C项正确.分析:根据平方差公式与幂的乘方法则可完成此题.14. [(c·c2)+(a·a2)][(c·c2)-(a·a2)]等于()A .c3-a3 B.c2-a8 C.c5-a5 D.c6-a6答案:D解析:解答:[(c·c2)+(a·a2)][(c·c2)-(a·a2)]=c6-a6,故D 项正确.分析:先由同底数幂的乘法法则计算出c·c2=c3 和a·a2=a3 ,再根据平方差公式与幂的乘方法则可完成此题.15.(d+f)·(d-f)等于()A .d3-f3 B.d2-f 2 Cd5-f5 D.d6-f6答案:B解析:解答:(d+f)·(d-f)=d2-f 2,故B项正确. 分析:根据平方差公式可完成此题.二、填空题16.(5+x2)(5-x2)等于;答案:25-x4解析:解答:(5-x2)(5-x2)=25-x4分析:根据平方差公式与幂的乘方法则可完成此题. 17.(-x+2y)(-x-2y)等于;答案:x2-4y2解析:解答:(-x+2y)(-x-2y)=x2-4y2分析:根据平方差公式与积的乘方法则可完成此题.18.(-a-b)(a-b)等于;答案:b2-a2解析:解答:(-a-b)(a-b)=b2-a2分析:根据平方差公式可完成此题.19.102×98等于;答案:9996解析:解答:102×98=(100+2)×(100-2)=10000-4=9996分析:根据平方差公式可完成此题.20.(a+2b+2c)(a+2b-2c)等于;答案:(a+2b)2-4c2解析:解答:(a+2b+2c)(a+2b-2c)=(a+2b)2-4c2分析:根据平方差公式可完成此题.三、计算题21.(a-b)(a+b)(a2+b2)答案:a4-b4解析:解答:解:(a-b)(a+b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4分析:根据平方差公式可完成此题.22.(3a-b)(3a+b)-(a2+b2)答案:8a2-2b2解析:解答:解:(3a-b)(3a+b)-(a2+b2)=9a2-b2-a2-b2)=8a2-2b2分析:先根据平方差公式计算,再合并同类项法则可完成此题.23.(a-b)(a+b)-(a2+b2)答案:-2b2解析:解答:解:(a-b)(a+b)-(a2+b2)=a2-b2-a2-b2=-2b2分析:先根据平方差公式计算,再合并同类项法则可完成此题.24.2(a-b)(a+b)-a2+b2答案:a2-b2解析:解答:解:2(a-b)(a+b)-a2+b2=2a2-2b2-a2+b2=a2-b2分析:先根据平方差公式计算,再合并同类项法则可完成此题.25.(3a-b)(3a+b)-(2a-b)(2a+b)答案:5a2解析:解答:解:(3a-b)(3a+b)-(2a-b)(2a+b)=9a2-b2-4a2+b2=5a2分析:先根据平方差公式计算,再合并同类项法则可完成此题.一、选择题1.(2x-1)2等于()A.4x2-4x+1 B.2x2-2x+1 C.2x2-1 D.2x2+1答案:A解析:解答:(2x-1)2=4x2-4x+1 ,故A项正确.分析:根据完全平方公式可完成此题.2.(x+5y)2等于()A.x2-5y2 B.x2+10x+25y2 C.x2+10xy+25y2 D.x2+x+25y2 答案:C解析:解答:(x+5y)2=x2+10xy+25y2 ,故C项正确.分析:根据完全平方公式可完成此题.3.(m-5)2 等于()A.m2-5 B.m2-52 C.m2-10m+25 D.25m2-5答案:C解析:解答:(m-5)2 =m2-10m+25,故C项正确.分析:根据完全平方公式可完成此题.4.(x+5y)2 等于()A.x2-5y2 B.x2-10y+5y2 C.x2+10xy+25y2 D.x2-y+25y2答案:C解析:解答:(x+5y)2 =x2+10xy+25y2 ,故C项正确.分析:根据完全平方公式可完成此题.5.(2x-y2 )2 等于()A.2x2-4xy2+y4 B.4x2-2xy2+y4 C.4x2-4xy2+y4 D.4x2-xy2+y4 答案:C解析:解答:(2x+y2 )2 =4x2-4xy2+y4 ,故C项正确.分析:根据完全平方公式可完成此题.6.下面计算正确的是()A.(a+b)(a-b)=2a+2bB.b5+b5 =b10C.x5 .x5= x25D.(y-z)2=y2-2yz+z2答案:D解析:解答:A项计算等于a2-b2;B项计算等于2b5;C项计算等于x10 ;故D项正确.分析:根据完全平方公式与同底数幂的乘法法则可完成此题.7.下面计算错误的是()A.(y-z).(y+z)=y2-z2B.(m-n)2=n2-m2C.(y+z)2=y2+2yz+z2D.(y-z)2=y2-2yz+z2答案:B.解析:解答: B项为(m-n)2=m2-2mn+n2;故B项错误.分析:根据完全平方公式与平方差公式可完成此题.8.(2y-3z)2 等于()B.4y2-12yz+z2 B..y2-12yz+9z2C.4y2-12yz+9z2 D..4y2-6yz+9z2 答案:C解析:解答:(2y-3z)2=4y2-12yz+9z2,故C项正确.分析:根据完全平方公式可完成此题.9 (3z-y)2 等于()A.9z2-y+y2B.9z2-yz+y2C. 9z2-6yz+y2 D.3z2-6yz+y2A.答案:C解析:解答:(3z-y)2 =9z2-6yz+y2,故C项正确.分析:根据完全平方公式可完成此题.10 (x+3ab)2 等于()A.x2+6xab+9a2b2B.x2+6ab+9a2b2C.x2+xab+9a2b2D.x2+6xab+a2b2答案:A解析:解答:(x+3ab)2 =x2+6xab+9a2b2,故A项正确.分析:根据完全平方公式与积的乘方法则可完成此题.11 (c-a2b2)2等于()A .c-ab2 B..c2-2a2b2c+a4b4 C.c-a2b2c+a4b4 D.c2-2abc+a4b 答案:B解析:解答:(c-a2b2)2=c2-2a2b2c+a4b4 ,故B项正确.分析:根据完全平方公式与积的乘方法则可完成此题.12 [c-(a2)2]2等于()A.c-a2B.c2 -2a4c+a8C.c2 -a2 D.c2-a4答案:B解析:解答:[c-(a2)2]2=c2-2a4c+a8 ,故B项正确.分析:根据完全平方公式与幂的乘方法则可完成此题.13. [(c2)2+(a2)2]2等于()A .c8+2ac4+a8 B.c8+2a4c+a8 C.c8+2a4c4+a8 D.c8+a4c4+a8 答案:C解析:解答:[(c2)2+(a2)2]2=c8+2a4c4+a8 ,故C项正确. 分析:根据完全平方公式与幂的乘方法则可完成此题.14.(c+a)2等于()A.c3 -a3B.a2+2ac+c2C.c5-a5 D.c2-2ac+a2答案:B解析:解答:(c+a)2=a2+2ac+c2,故B项正确.分析:根据完全平方公式与幂的乘方法则可完成此题.15.(d+f)2等于()A .d3-f3 B.d2+2df+f 2 C.d2-2f+f 2 D.d2-df+f 2答案:B解析:解答:(d+f)2=d2 -2df+f 2 ,故B项正确.分析:根据完全平方公式可完成此题.二.填空题.1.(5-x2)2等于;答案:25-10x2+x4解析:解答:(5-x2)2=25-10x2+x4分析:根据完全平方公式与幂的乘方法则可完成此题. 2.(x-2y)2等于;答案:x2-8xy+4y2解析:解答:(x-2y)2=x2-8xy+4y2分析:根据完全平方公式与积的乘方法则可完成此题.3.(3a-4b)2等于;答案:9a2-24ab+16b2解析:解答:(3a-4b)2=9a2-24ab+16b2分析:根据完全平方公式可完成此题.4.1022等于;答案:10404解析:解答:1022=(100+2)2=10000+400+4=10404分析:根据完全平方公式可完成此题.5.(2b-2c)2等于;答案:4b2-8bc+4c2解析:解答:(2b-2c)2=4b2-8bc+4c2分析:根据完全平方公式可完成此题.三、计算题6.982+(a-b)2答案:9604+a2+2ab2+b2解析:解答:解:982+(a-b)2=(100-2)2+a2+2ab2+b2=10000-400+4+a2+2ab2+b2=9604+a2+2ab2+b2分析:根据完全平方公式可完成此题.7.(3a-b)(3a+b)-(a+b)2答案:8a2-2b2-2ab解析:解答:解:(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-b2-2ab=8a2-2b2-2ab 分析:先根据完全平方公式与平方差公式分别计算,再合并同类项法则可完成此题.8.(a-b)2 -3(a2+b2)答案:-2a2-2ab-2b2解析:解答:解:(a-b)2-(a2+b2)=a2-2ab+b2-3a2-3b2=-2a2-2ab-2b2分析:先根据完全平方公式计算,再合并同类项法则可完成此题.9.2(a2+b2)-(a+b)2答案:a2-2ab+b2解析:解答:解:(a-b)(a+b)-a2+b2=2a2-2b2-a2-2ab-b2=a2-2ab+b2分析:先根据完全平方公式计算,再合并同类项法则可完成此题.10.(3a-b)(3a+b)-(2a-b)2答案:5a2+4ab-2b2解析:解答:解:(3a-b)(3a+b)-(2a-b)2=9a2-b2-4a2+4ab-b2=5a2+4ab-2b2分析:先根据完全平方公式与平方差公式分别计算,再合并同类项法则可完成此题.。
1.5平方差公式同步测试一.选择题1.化简(m2﹣n2)﹣(m+n)(m﹣n)的结果是()A.﹣2m2B.0C.2m2D.2m2﹣2n22.有下列各式:①(a+b)(a﹣x);②(x+1)(1﹣x);③(﹣a﹣b)(a+b);④(x﹣y)(y﹣x).其中可以用平方差公式计算的是()A.①②B.②③C.②D.④3.(2a+3b)2﹣(2a﹣3b)2的计算结果是()A.4a2﹣9b2B.4a2+9b2C.24ab D.﹣24ab4.计算(0.7x+0.2a)(﹣0.2a+0.7x),结果等于()A.0.7x2﹣0.2a2B.0.49x2﹣0.4a2C.0.49x2﹣0.14ax﹣0.04a2D.0.49x2﹣0.04a25.计算(﹣)(3a+2b)的结果是()A.a2﹣b2B.a2﹣b2C.(4a2﹣9b2)D.(4a2+5ab﹣9b2)6.如果M(2a+3b)=4a2﹣9b2,那么M(﹣2a﹣3b)的结果是()A.4a2﹣9b2B.4a2+9b2C.﹣4a2+9b2D.﹣4a2﹣9b27.计算(3a﹣)()(3a+)等于()A.81a4+B.81a4﹣C.81a4+D.81a4+8.在(x+y+a﹣b)(x﹣y+a+b)的计算中,第一步正确的是()A.(x+b)2﹣(y﹣a)2B.(x2﹣y2)(a2﹣b2)C.(x+a)2(y﹣b)2D.(x﹣b)2﹣(y+a)29.为了应用平方差公式计算(2x+y+z)(y﹣2x﹣z),下列变形正确的是()A.[2x﹣(y+z)]2B.[2x+(y+z)][2x﹣(y+z)]C.[y+(2x+z)][y﹣(2x+z)]D.[z+(2x+y)][z﹣(2x+y)]10.计算(a4+b4)(a2+b2)(b﹣a)(a+b)的结果是()A.a8﹣b8B.a6﹣b6C.b8﹣a8D.b6﹣a6二.填空题11.20002﹣2001×1999=.12.(a﹣b)•(a+b)=a2﹣.13.填空:(1)(x+)(x﹣)=x2﹣36;(2)(m+)(m﹣)=m2﹣25n2;(3)(a+b)()=b2﹣a2;(4)()(1﹣x2)=x4﹣1.14...(判断对错)15.计算(1﹣)(1﹣)•…•(1﹣)的结果是.三.解答题16.计算:(1)(a+2)(a﹣2);(2)(3a+2b)(3a﹣2b);(3)(﹣x﹣1)(1﹣x);(4)(﹣4k+3)(﹣4k﹣3)17.你能利用如图中的面积关系解释平方差公式吗?18.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…请你根据这一规律计算:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1);(2)213+212+211+…+22+2+1.参考答案一.选择题1.解:原式=m2﹣n2﹣(m2﹣n2)=m2﹣n2﹣m2+n2=0.故选:B.2.解:①总共4个数,出现了三个不同的数,不可以用平方差公式计算;②1与x的和与1与x的差的积,可以用平方差公式计算;③(﹣a﹣b)(a+b)=﹣(a+b)(a+b),不可以用平方差公式计算;④(x﹣y)(y﹣x)=﹣(y﹣x)(y﹣x),不可以用平方差公式计算.综上,可以用平方差公式计算的只有②.故选:C.3.解:原式=(2a+3b+2a﹣3b)(2a+3b﹣2a+3b)=4a•6b=24ab.故选:C.4.解:原式=0.49x2﹣0.04a2.故选:D.5.解:原式=(3a﹣2b)(3a+2b)=(9a2﹣4b2)=a2﹣b2,故选:B.6.解:∵M(2a+3b)=4a2﹣9b2,∴M(﹣2a﹣3b)=﹣M(2a+3b)=﹣(4a2﹣9b2)=﹣4a2+9b2.故选:C.7.解:(3a﹣)()(3a+)=(3a﹣)(3a+)()=(9a2﹣)(9a2﹣)=(9a2﹣)2=81a4﹣a2+.故选:C.8.解:(x+y+a﹣b)(x﹣y+a+b)=[(x+a)+(y﹣b)][(x+a)﹣(y﹣b)]=(x+a)2﹣(y﹣b)2,故选:C.9.解:根据题意分析:2x、z异号,y同号;∴(2x+y+z)(y﹣2x﹣z)=[y+(2x+z)][y﹣(2x+z)];故选:C.10.解:(a4+b4)(a2+b2)(b﹣a)(a+b),=(a4+b4)(a2+b2)(b2﹣a2),=(a4+b4)(b4﹣a4),=b8﹣a8.故选:C.二.填空题11.解:20002﹣2001×1999=20002﹣(2000+1)×(2000﹣1)=20002﹣(20002﹣1)=20002﹣20002+1=1.故答案为:1.12.解:(a﹣b)•(a+b)=(a)2﹣(b)2=a2﹣b2.故答案为b2.13.解:(1)(x+6)(x﹣6)=x2﹣36;故答案为:6;6;(2)(m+5n)(m﹣5n)=m2﹣25n2;故答案为:5n;5n;(3)(a+b)(b﹣a)=b2﹣a2;故答案为:b﹣a;(4)(﹣x2﹣1)(1﹣x2)=x4﹣1.故答案为:﹣x2﹣114.解:原式=x4﹣25y4,错误,故答案为:×15.解:原式=(1+)(1﹣)(1+)(1﹣)•…•(1+)(1﹣)=××××××…××=.故答案为:三.解答题16.解:(1)原式=a2﹣22=a2﹣4;(2)原式=(3a)2﹣(2b)2=9a2﹣4b2;(3)原式=(﹣x)2﹣12=x2﹣1;(4)原式=(﹣4k)2﹣32=16k2﹣9.17.解:由图形边长之间的关系可得,矩形A的长为,宽为,由面积之间的关系可得,S大正方形﹣S小正方形=4S矩形A,即,a2﹣b2=4××=(a+b)(a﹣b),故有,a2﹣b2=(a+b)(a﹣b),或(a+b)(a﹣b)=a2﹣b2,18.解:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1;(2)由(1)中规律可知,213+212+211+…+22+2+1=(2﹣1)(213+212+211+…+22+2+1)=214﹣1.。
4.3 公式法第1课时平方差公式1.以下多项式能用平方差公式分解的因式有〔〕〔1〕a2+b2 (2)x2-y2 (3)-m2+n2 (4)-a2b2 (5)-a6+42以下因式分解正确的选项是〔〕A .9a2+4b22-t2=(-s+t)(-s-t)2+(-n)2=(m+n)(m-n) D.-9+4y2=(3+2y)(2y-3)3.对于任整数n.多项式〔4n+5〕2-9都能〔〕A.被6整除B.被7整除C.被8整除 D。
被6或8整除n+3-x n+1分解因式,结果是〔〕n〔x3n(x3-1) n+1(x2-1〕 D. X n+1(x+1)〔x-1〕5.在边长为a的正方形中挖去一个边为b的小正方形〔a>b〕( 如图甲〕,把余下的局部拼成一个长方形(如图乙〕,根据两个图形中阴影局部的面积相等,可以验证〔〕A.(a+b)2=a2+2ab+b2B.(a-b)2= a2-2ab+b2C. a2+b2=(a+b)(a-b)D. (a+2b〕(a-b)= a2+ab-2b26.以下分解因式中错误是〔〕A. a22=(1+2b)(1-2b)2-64b2=(9a+8b)(9a-8b) D.(-2b)2-a2=(-2b+a)(2b+a)7.化简〔a+1〕2-〔a-1〕2的结果是〔〕A.2B.4C.4aD.2a2+28.假设a,b,c是三角形的三边之长,那么代数式a2-2bc+c2-b2的值〔〕情况均有可能二、细心填一填2-144y2=2-02=1,22-12=3,32-22=5,42-32=7…试用n的等式表示这种规律为〔n ≥1且为正整数〕12m2n2-8=12、分解因式 x²-y²-3x-3y=13、运用公式法计算:1812-6123022-1822结果是14、ab=2,那么〔a+b〕2-〔a-b〕2的值是15、假设|2a-18|+〔4-b〕2=0,那么am2-bn2分解因式为16、假设m2-n2=6且m-n=3,那么m+n=17、〔1-122〕〔1-132〕 (1)192〕〔1-1102〕=18、设n是任意正整数,带入式子n3-n中计算时,四名同学算出如下四个结果,其中正确的结果可能是〔〕。
平方差公式1、利用平方差公式计算: 3利用平方差公式计算(1)(m+2) (m-2) (1)(1)(-41x-y)(-41x+y) (2)(1+3a) (1-3a) (2)(x-2y)(x+2y)(3) (x+5y)(x-5y) (3)(-m+n)(-m-n)(4)(y+3z) (y-3z) (4)(-4k+3)(-4k-3)2、利用平方差公式计算 4、利用平方差公式计算(1)(5+6x)(5-6x) (1)(a+2)(a-2)(2)(ab+8)(ab-8) (2)(3a+2b)(3a-2b)(3)(m+n)(m-n)+3n 2 (3)(-x+1)(-x-1)5、利用平方差公式计算(1)803×797 (2)398×4026.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-57.(-2x+y )(-2x -y )=______.8.(-3x 2+2y 2)(______)=9x 4-4y 4.9.(a+b -1)(a -b+1)=(_____)2-(_____)2.10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.11.计算:(a+2)(a 2+4)(a 4+16)(a -2).平方差公式练习题精选(含答案)一、基础训练1.下列运算中,正确的是( )A .(a+3)(a-3)=a 2-3B .(3b+2)(3b-2)=3b 2-4C .(3m-2n )(-2n-3m )=4n 2-9m 2D .(x+2)(x-3)=x 2-62.在下列多项式的乘法中,可以用平方差公式计算的是( )A .(x+1)(1+x )B .(12a+b )(b-12a ) C .(-a+b )(a-b ) D .(x 2-y )(x+y 2) 3.对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n )(3+n )的整数是( )A .3B .6C .10D .94.若(x-5)2=x 2+kx+25,则k=( )A .5B .-5C .10D .-105.9.8×10.2=________; 6.a 2+b 2=(a+b )2+______=(a-b )2+________.7.(x-y+z )(x+y+z )=________; 8.(a+b+c )2=_______.9.(12x+3)2-(12x-3)2=________. 10.(1)(2a-3b )(2a+3b ); (2)(-p 2+q )(-p 2-q ); (3)(x-2y )2; (4)(-2x-12y )2. 11.(1)(2a-b )(2a+b )(4a 2+b 2);(2)(x+y-z )(x-y+z )-(x+y+z )(x-y-z ).12.有一块边长为m 的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n ,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?二、能力训练13.如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )A .4B .2C .-2D .±214.已知a+1a =3,则a 2+21a,则a+的值是( ) A .1 B .7 C .9 D .11 15.若a-b=2,a-c=1,则(2a-b-c )2+(c-a )2的值为( )A .10B .9C .2D .116.│5x-2y │·│2y-5x │的结果是( )A .25x 2-4y 2B .25x 2-20xy+4y 2C .25x 2+20xy+4y 2D .-25x 2+20xy-4y2 17.若a 2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a 2+b 2;(2)若已知a+b=10,a 2+b 2=4,ab 的值呢?19.解不等式(3x-4)2>(-4+3x )(3x+4).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2 (3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2 (3)(-21a+5b)2 (4)(-43x-32y)2 3 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-(2x+3)2 (a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。
5已知x ≠0且x+1x =5,求441x x +的值. 二、完全平方式1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于( )2 四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= .6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
2、已知2a -b =5,ab =23,求4a 2+b 2-1的值.3、已知16x x -=,求221x x +,441x x +4、0132=++x x ,求(1)221x x +(2)441x x +六、利用乘法公式进行计算(1)972; (2)20022; (3)992-98×100;(4)49×51-2499. (5))200011)(199911()311)(211(2222----Λ七、“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x =________. 已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A.0 B .1 C .2 D .34、已知2=x 时,代数式10835=-++cx bx ax ,当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小练习:1.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x 1)n 、(y 1)n一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等2、已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .3、若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )A .M>NB . M<NC . M=ND .无法确定4.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .65.若4,222=+=-y x y x ,则20022002y x+的值是( ). A .4 B .20022 C . 22002 D .42002 6.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+7.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= (2)若a-b=3,则a 3-b 3-9ab = . 8.已知x 2-5x +1=0,则x 2+21x =________. 平方差公式同步检测练习题1.(2004·青海)下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x 2-6C.(x+y)2=x 2+y 2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算正确的是( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x-3y)=x 2-3y 23.(2003·河南)下列计算正确的是( )A.(-4x)·(2x 2+3x-1)=-8x 3-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a-1)(4a-1)=1-16a 2D.(x-2y)2=x 2-2xy+4y 24.(x+2)(x-2)(x 2+4)的计算结果是( )A.x 4+16B.-x 4-16C.x 4-16D.16-x 45.19922-1991×1993的计算结果是( )A.1B.-1C.2D.-26.对于任意的整数n ,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a +1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 28.99×101=( )( )= .9.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.10.多项式x 2+kx+25是另一个多项式的平方,则k= .11.(a +b)2=(a -b)2+ ,a 2+b 2=[(a +b)2+(a -b)2]( ),a 2+b 2=(a +b)2+ ,a 2+b 2=(a -b)2+ .12.计算.(1)(a +b)2-(a -b)2; (2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2; (4)1.23452+0.76552+2.469×0.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值14.已知a +a 1=4,求a 2+21a 和a 4+41a的值. 15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.。