初中数学平方差公式教育教学设计人教版
- 格式:doc
- 大小:127.00 KB
- 文档页数:8
(人教版)八年级上册《乘法公式——平方差公式》教材:义务教育课程标准实验教科书《数学》(人教版)八年级上册教学设计说明我说课的内容是:《乘法公式——平方差公式》。
本章的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。
而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。
因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。
因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。
本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。
乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
本节课设计了一系列学生活动,老师作为辅导者引领学生进入本节的知识结构中,展现了学生自主学习的特点,在思考、讨论、口答、小结等环节中掌握新知。
人教版数学八年级上册14.2.1《平方差公式》教学设计一. 教材分析人教版数学八年级上册14.2.1《平方差公式》是初中数学中的重要内容,它为学生提供了简化代数表达式和解决实际问题的一种方法。
本节课通过平方差公式的学习,使学生能够理解和掌握两个数的平方差可以表示为它们的和与差的乘积,即(a^2 - b^2 = (a + b)(a - b))。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、完全平方公式等基础知识,具备一定的观察、分析、归纳能力。
但平方差公式与完全平方公式在形式上相似,易于混淆,因此需要通过实例分析、自主探究等方式,帮助学生加深对平方差公式的理解。
三. 教学目标1.知识与技能:使学生理解和掌握平方差公式的推导过程及应用。
2.过程与方法:培养学生观察、分析、归纳的能力,提高自主探究和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.重点:平方差公式的推导和应用。
2.难点:对平方差公式与完全平方公式的区分和灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。
2.自主探究法:引导学生分组讨论,发现平方差公式的规律。
3.讲解法:对平方差公式的推导和应用进行详细讲解,引导学生理解。
4.练习法:设计不同难度的练习题,巩固所学知识。
六. 教学准备1.教学课件:制作包含动画、图片、例题的教学课件。
2.练习题:准备不同难度的练习题,用于课堂练习和课后作业。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,一件商品原价为 (200) 元,打八折后的价格为 (160) 元,请问这件商品打了几折?呈现(10分钟)引导学生思考:如何用数学公式表示这个问题?(200) 元和 (160) 元之间的差值可以表示为 (200 - 160 = 40) 元,而这个差值实际上是原价和打折后的价格的平方差。
人教版数学八年级上册《第五课时 15.2.1平方差公式》教学设计一. 教材分析人教版数学八年级上册《第五课时 15.2.1 平方差公式》是学生在学习了完全平方公式的基础上进行学习的,平方差公式是代数学习中的重要知识点,对于学生来说,理解并掌握平方差公式对于解决实际问题具有很大的帮助。
本节课主要让学生通过探究活动,发现并归纳平方差公式,提高学生的逻辑思维能力和归纳总结能力。
二. 学情分析学生在学习本节课之前,已经学习了完全平方公式,对于公式的推导和应用有一定的了解。
但是,平方差公式与完全平方公式在形式上相似,但在应用上有所区别。
学生在学习过程中,可能会将两者混淆。
因此,在教学过程中,需要帮助学生理清两者之间的关系,加深对平方差公式的理解。
三. 教学目标1.让学生通过探究活动,发现并归纳平方差公式。
2.培养学生运用平方差公式解决实际问题的能力。
3.提高学生的逻辑思维能力和归纳总结能力。
四. 教学重难点1.重点:让学生发现并归纳平方差公式。
2.难点:理解并掌握平方差公式的应用。
五. 教学方法采用探究式教学法,引导学生通过观察、思考、讨论等方式,自主发现并归纳平方差公式。
同时,运用对比教学法,帮助学生理解并掌握平方差公式与完全平方公式的区别和联系。
六. 教学准备1.准备相关课件,展示平方差公式的推导过程。
2.准备一些实际问题,用于巩固学生的知识。
七. 教学过程1.导入(5分钟)通过复习完全平方公式,引导学生发现完全平方公式和平方差公式的联系和区别。
2.呈现(10分钟)展示平方差公式的推导过程,引导学生观察、思考,发现平方差公式的规律。
3.操练(10分钟)让学生通过填空、解答等形式,运用平方差公式解决问题。
4.巩固(10分钟)运用对比教学法,引导学生总结平方差公式和完全平方公式的异同,加深学生对平方差公式的理解。
5.拓展(10分钟)让学生运用平方差公式解决一些实际问题,提高学生的应用能力。
6.小结(5分钟)对本节课的主要内容进行总结,帮助学生巩固所学知识。
人教版数学七年级上册《平方差公式》教学设计一. 教材分析《平方差公式》是初中数学的重要内容,人教版七年级上册第17章第二节引入。
本节课主要让学生掌握平方差公式的推导过程、公式结构及应用。
平方差公式的推导有利于培养学生的逻辑思维能力,为后续学习完全平方公式、多项式乘法等知识打下基础。
二. 学情分析七年级的学生已经掌握了整式的乘法、因式分解等基础知识,具备一定的逻辑思维能力。
但在推导平方差公式、理解公式内涵等方面还需加强。
此外,学生对数学公式的记忆往往依赖于死记硬背,缺乏深入理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
三. 教学目标1.知识与技能:让学生掌握平方差公式的推导过程、公式结构及应用。
2.过程与方法:通过观察、操作、思考、交流等方式,培养学生自主学习、合作学习的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:平方差公式的推导过程及应用。
2.难点:理解平方差公式的内涵,掌握公式的灵活运用。
五. 教学方法1.启发式教学:引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
2.小组合作:学生进行小组讨论,培养学生的合作意识。
3.案例分析:选取典型例题,让学生学会运用平方差公式解决问题。
4.归纳总结:引导学生总结平方差公式的推导过程、公式结构及应用。
六. 教学准备1.教学课件:制作课件,展示平方差公式的推导过程、应用案例等。
2.练习题:准备适量练习题,用于巩固所学知识。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的平方差现象,如正方形面积与边长的关系,引发学生对平方差公式的兴趣。
提问:你们能找出这些现象背后的规律吗?2.呈现(10分钟)展示平方差公式的推导过程,引导学生观察、思考并总结规律。
通过具体案例,让学生学会运用平方差公式解决问题。
“平方差公式”教学设计教学内容和教学课时1.教学内容:平方差公式2.教学课时:1课时地位和作用平方差公式实际是两个特殊的多项式相乘及其结果,是在学生学习和掌握了多项式乘法之后,自然过渡到的具有特殊形式的多项式乘法,是从一般到特殊的认知规律的典型范例。
对其学习和研究,不但能简化特殊的多项式乘法的计算和对一些特殊数字相乘进行简便运算,还为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法。
因此,平方差公式在初中阶段的教学和学习中具有很重要的地位,是最基本、用途最广泛的公式之一。
指导思想与理论依据本着让每一个孩子都能够享受成功的快乐的阳光教育理念,以学生主动形成认知结构为指导思想,并用布鲁纳认知发现学习理论作为理论基础,同时结合学生的认知特点和所学知识的特征,特在教学过程中重点安排了“创设情境,导入新课;自主探究,得出结论;剖析公式,发现本质”等活动,使学生经历数学知识的形成与应用过程,以达到促进学生有效学习的目的。
教学背景分析(一)教学内容分析本节课是探究平方差公式及其几何意义和运用公式进行整式的乘法运算。
学生已经有了有理数运算、代数式、一元一次方程、整式的加减及整式的乘法等知识基础,掌握了多项式乘法的法则,也经历了幂的乘法、多项式乘法法则的推导过程,有一定的逻辑思维,能够有条理地分析问题。
学生在本节经历从特殊到一般、从具体到抽象的推导过程,得到平方差公式,在提高学生观察、探究、发现、归纳的思维能力同时领会数学思想方法。
(二)学生情况分析本节课,通过学生自主合作学习,能够分析出平方差公式的结构特征,会利用数形结合思想,理解平方差公式,在运算中,了解公式中字母的广泛含义。
教学目标(1)学生经历平方差公式的探索及推导过程,发展推理能力。
(2)掌握平方差公式的结构特征,会运用公式进行简单的乘法运算。
(3)了解平方差公式的几何意义,体会数形结合思想。
第十四章整式的乘法与因式分解14.2乘法公式14.2.1平方差公式一、教学目标1.理解22a b a b a b +−=−()(),能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.二、教学重点及难点重点:理解平方差公式的基本结构和特征,会用符号表示公式,能用文字语言表述公式内容.难点:利用数形结合的数学思想方法解释平方差公式,及平方差公式的变式运用.三、教学用具电脑、多媒体、课件四、相关资源图片五、教学过程(一)提出问题问题1 计算下列多项式的积,你能发现什么规律?(1)11x x +−()()= ;(2)22m m +−()()= ;(3)1122a b a b +−()()= ; (4)2121x x +−()()= .设计意图:承前启后,为本节内容的引入作铺垫,让学生在每个算式的计算中进一步巩固多项式乘法法则,体会多项式乘法与本节内容的关系——“一般到特殊”.追问1:上述问题中相乘的两个多项式有什么共同点?追问2:相乘的两个多项式的各项与他们的积中的各项有什么关系?追问3:你能将发现的规律用式子表示出来吗?追问4:你能对发现的规律进行推导吗?师生活动:学生观察并独立思考,尝试着进行概括,发现相乘的两个多项式均为相同的两个数的和、两个数的差的形式,而且这两个多项式的积恰好是这个数的平方差.设计意图:让学生经历具体到抽象的过程,即经历观察、抽象、概括、推理的过程,从中体会研究数学问题的基本思想方法——“具体到抽象”.(二)合作探究,形成知识问题2:探究前面所得的式子22a b a b a b +−=−()(),被称为乘法的平方差公式,你能将平方差公式用文字语言表述吗?师生活动:学生回答问题,相互补充.可得到:两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.设计意图:让学生将符号语言转化为文字语言,发展学生的语言表达能力.问题3:你能根据图中图形的面积说明平方差公式吗?a-bHGB(1)长方形AMHG 的长和宽分别是什么?怎样求面积?(2)如果长方形AMHG 中的一部分长方形FEHG 被分割下来,并补到长方形MBCD 的位置,就形成多边形ABCDEF ,此时多边形ABCDEF 的面积又可以怎样表示?(3)上述两种方法表示的面积有什么关系?师生活动:教师提出问题,学生先独立思考,然后小组交流,学生代表展示求解过程. 设计意图:通过探究活动,让学生认识平方差公式的几何意义,使学生更好地理解这一公式,并在此过程中体会数形结合思想.(三)初步应用,巩固知识【例1】运用平方差公式计算:(1)5454x x +−()(); (2)33x y x y −+−−()()解:(1)2225454542516x x x x +−=−=−()()();(2)22223339x y x y x y x y −+−−=−−=−()()()(). 设计意图:让学生熟悉公式的结构特征,并运用公式进行计算.练习1:下面各式运用平方差公式对不对?如果不对,应当怎样改正?(1)22232323x a x b x a +−=−()()()();(×)(2)22232323a b a b a b −−=−()()()();(×)(3)2222x x x +−=−()();(×)(4)2323294a a a −−−=−()().(×)师生活动:学生独立思考,并说明答案,对错误的问题相互交流、订正答案.设计意图:通过正误辨析与纠错、改错,让学生进一步理解平方差公式的结构特征,准确运用公式进行计算.问题4:从例题1和练习1中,你认为运用公式解决问题时应注意什么?师生活动:进一步通过练习加深对平方差公式的理解,两数(式)的和与这两数(式)的差的积,即两因式中,有两个数(式)相等,有两个数(式)互为相反数.设计意图:引导学生深入分析平方差公式的结构特征,明确a ,b 的意义,在运用公式进行计算时一定要抓住关键——括号内的数有前后不变的数和前后互为相反数的数.【例题2】计算:(1)2215y y y y +−−−+()()()(); (2)102×98. 解:原式 原式=(100+2)(100-2)24669x bx ax ab=−+−224129a ab b =−+22224x x =−=−222(2)(3)49a a =−−=−22445y y y =−−+−()2210021000049996=−=−==师生活动:师生共同分析得出:(1)中的前两个多项式的积可以直接利用平方差公式,后两个多项式的积不具备平方差公式的结构特征,不能用此公式;(2)是两个数乘积的简捷计算,这两个因数恰好可以分解成两个数(100与2)的和与这两个数的差,且这两个数的平方容易计算.设计意图:使学生将平方差公式的知识迁移到新的问题情境中,既巩固新知,又能培养学生分析和解决问题的能力.(四)综合应用,深化提高练习2:运用平方差公式计算:(1))33a b a b +−()(); (2)3232a a +−+()();(3)51×49; (4)34342332x x x x +−−+−()()()()解:(1)33a b a b +−()(); (2)3232a a +−+()();2222(3)9a b a b =−=− 222(2)349a a =−=−(3)51×49; (4)34342332x x x x +−−+−()()()().2(501)(501)501250012499=+−=−=−= 222222(3)4(6496)91664663510x x x x x x x x x x ⎡⎤=−−−+−⎣⎦=−−+−+=−− 师生活动:找四名学生板书,其他学生在练习本上完成,教师巡视,指导,师生交流. 设计意图:通过同类项题的练习,帮助学生更好地理解平方差公式,较熟练地运用平方差公式进行有关计算.六、课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么?41y =−+设计意图:通过小结,使学生梳理本节课所学的内容,把握本节课的主要内容,平方差公式及平方差公式的运用.本图片资源介绍了平方差公式及其特点,适用于平方差公式的教学.若需使用,请插入图片【知识点解析】平方差公式.七、板书设计14.2.乘法公式第1课时 平方差公式平方差公式 :22a b a b a b +−=−()() 两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.。
人教版数学八年级上册15.2.1《平方差公式》教学设计一. 教材分析《平方差公式》是人在教版数学八年级上册15.2.1节的内容,它是学生学习代数式求值、解方程、不等式等知识的基础。
平方差公式既是一种特殊的乘法公式,也是一种重要的恒等变形手段。
它不仅在数学教学中占有重要地位,而且在日常生活和生产实践中也有广泛的应用。
通过学习平方差公式,学生可以培养自己的观察、分析、归纳能力,为后续学习更复杂的数学知识奠定基础。
二. 学情分析学生在学习《平方差公式》之前,已经学习了有理数的乘法、完全平方公式等知识,对代数式有一定的认识。
但平方差公式的推导过程需要学生具有一定的逻辑思维能力和归纳总结能力。
通过学情分析,我发现学生在学习过程中容易混淆平方差公式和完全平方公式,因此在教学过程中需要加以区分和引导。
三. 教学目标1.知识与技能目标:学生能正确记忆并运用平方差公式进行计算。
2.过程与方法目标:学生通过观察、分析、归纳等方法,理解并推导出平方差公式。
3.情感态度与价值观目标:学生培养对数学的兴趣,增强自信心,培养合作和探究的精神。
四. 教学重难点1.重点:平方差公式的推导和运用。
2.难点:平方差公式的灵活运用和与完全平方公式的区分。
五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。
2.引导发现法:引导学生观察、分析、归纳平方差公式的推导过程。
3.小组合作学习:学生分组讨论,培养合作和探究的精神。
六. 教学准备1.教学课件:制作平方差公式的课件,以便进行直观展示。
2.练习题:准备一些有关平方差公式的练习题,用于巩固所学知识。
3.教学黑板:准备一块黑板,用于板书平方差公式。
七. 教学过程1.导入(5分钟)通过一个生活实例,如正方形的面积和长方形的面积的计算,引出平方差公式。
激发学生的学习兴趣,引发思考。
2.呈现(10分钟)引导学生观察、分析生活实例中的数量关系,引导学生发现并总结平方差公式的规律。