16.2(2)同类二次根式
- 格式:doc
- 大小:1.51 MB
- 文档页数:13
人教版初中数学八年级下册16.2.2 二次根式的除法同步练习夯实基础篇一、单选题:1.下列二次根式中,最简二次根式是()A.B.C.D.【答案】A【分析】满足被开方数不含有分母,被开方数不含有开得尽方的因数或因式两个条件的二次根式是最简二次根式,根据定义逐一分析即可.【详解】解:是最简二次根式,故A符合题意;,不是最简二次根式,故B不符合题意;,不是最简二次根式,故C不符合题意;,不是最简二次根式,故D不符合题意;故选A【点睛】本题考查的是最简二次根式的识别,掌握“最简二次根式的定义”是解本题的关键.2.下列计算正确的是()A.B.C.D.【答案】A【分析】根据分母有理化的方法可判断A,根据二次根式的化简可判断B,D,根据二次根式的乘方运算可判断C,从而可得答案.【详解】解:选项,原式,故该选项符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;故选:.【点睛】本题考查的是二次根式的化简,二次根式的乘方运算,分母有理化,掌握“二次根式的加减乘除乘方运算的运算法则”是解本题的关键.3.下列各式的计算中,结果为2的是()A.÷B.×C.÷D.×【答案】C【解析】略4.能使等式成立的的取值范围是()A.且B.C.D.【答案】C【分析】根据分式有意义和二次根式有意义的条件,即可求得的取值范围.【详解】解得故选C【点睛】本题考查了分式有意义和二次根式有意义的条件,二次根式的除法,掌握以上知识是解题的关键.5.如果,,那么下列各式:①,②,③,④.其中正确的个数()A.1个B.2个C.3个D.4个【答案】C【分析】先根据,得到a<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【详解】解:∵ab>0,,∴a<0.∴,①正确;∵,a<0,∴,无意义,②错误;,③正确;,④正确;正确的有3个,故选C.【点睛】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.6.已知的面积为,底边为,则底边上的高为A.B.C.D.【答案】B【分析】根据三角形的面积公式列出运算式子,再根据二次根式的除法法则即可得.【详解】解:的面积为,底边为,底边上的高为,故选:B.【点睛】本题考查了二次根式除法的应用,熟练掌握二次根式除法的运算法则是解题关键.7.已知最简二次根式与的被开方数相同,则的值为()A.1B.2C.3D.4【答案】D【分析】根据最简二次根式的被开方数相同知开方次数相同,被开方数相同,即可列出二元一次方程组,再解出即可.【详解】根据题意可知,解得:,∴.故选D.【点睛】此题考查最简二次根式的定义,解二元一次方程组,正确理解题意列出方程组是解题的关键.二、填空题:8.在二次根式;;;;;;中是最简二次根式的是______.【答案】,,【分析】根据最简二次根式的定义:如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式;判断即可.【详解】解:,不是最简二次根式;,是最简二次根式;,不是最简二次根式;,是最简二次根式;,是最简二次根式;,不是最简二次根式;,不是最简二次根式;∴是最简二次根式的有:,,,故答案为:,,.【点睛】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键.9.计算;(1)__________________;(2)_________;(3)_________;(4)=__________,(5)__________;(6)____________;(7)__________;(8)__________.【答案】(1);(2);(3);(4),(5),(6);(7),(8)【分析】根据二次根式的除法法则进行计算即可,二次根式的除法法则是:(),反过来,可得;().【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4)=,故答案为:(5),故答案为:;(6),故答案为:;(7),故答案为:;(8),故答案为:.【点睛】本题考查了二次根式的除法运算,掌握二次根数的除法法则是解题的关键.10.计算的结果是______.【答案】##【分析】把被开方数相除,根指数不变,根据法则进行运算即可.【详解】解:故答案为:【点睛】本题考查的是二次根式的除法运算,掌握“二次根式的除法运算法则”是解本题的关键.11.计算:______.【答案】【分析】根据二次根式的除法运算法则进行计算即可.【详解】解:,故答案为:.【点睛】本题考查了二次根式的除法以及二次根式的性质,熟练掌握相关运算法则是解本题的关键.12.计算=_____.【答案】【分析】先由二次根式有意义的条件得到:>且>再利用二次根式的除法运算法则进行运算,再化简即可得到答案.【详解】解:由题意得:>>且>故答案为:【点睛】本题考查的是二次根式有意义的条件,二次根式的除法运算,掌握二次根式的除法运算法则是解题的关键.13.计算:=___.【答案】【分析】根据二次根式的乘除运算计算即可【详解】解:.【点睛】本题主要考查了二次根式的乘除运算,准确计算是解题的关键.14.若,则代数式的值为_____________.【答案】【分析】先计算括号内分式的减法运算,再把除法转化为乘法运算,约分后可得结果,再把代入要求值的代数式,利用二次根式的除法运算可得答案.【详解】解:当时,原式【点睛】本题考查的是分式的化简求值,二次根式的除法运算,掌握“二次根式的除法运算与分式的混合运算”是解本题的关键.三、解答题:15.化简:(1).(2).(3).(4).【答案】(1)(2)(3)(4)【分析】(1)根据积的算术平方根的性质,即进行化简即可;(2)根据积的算术平方根的性质,即进行化简即可;(3)根据商的算术平方根的性质,即进行化简即可;(4)根据商的算术平方根的性质,即进行化简即可.【详解】(1)原式(2)原式(3)原式(4)原式【点睛】本题考查了二次根式的性质,熟练掌握二次根式积和商的算术平方根的性质是解题的关键.16.计算:(1);(2);(3)(,).【答案】(1)(2)(3)【分析】(1)根据二次根式的除法计算法则求解即可;(2)根据二次根式的除法计算法则求解即可;(3)根据二次根式的除法计算法则求解即可.【详解】(1)解:原式;(2)解:原式;(3)解:原式.【点睛】本题主要考查了二次根式的除法,熟知相关计算法则是解题的关键.17.计算:(1);(2).【答案】(1)(2)【分析】根据二次根式的性质和二次根式的乘除运算法则求解即可.【详解】(1)解:原式.(2)解:.【点睛】本题考查二次根式的性质和二次根式的乘除,熟练掌握二次根式的性质和二次根式的乘除,正确化简和求解是解答的关键.18.先化简,再求值:,其中.【答案】,【分析】根据分式的混合运算法则把原式化简,把x的值代入计算即可.【详解】解:当时,原式.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.能力提升篇一、单选题:1.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则空格中代表的实数为()A.B.C.D.【答案】B【分析】根据第一行和第三行列式进行计算即可得.【详解】解:由题意得:,故选:B.【点睛】本题考查了二次根式的乘法与除法的应用,理解题意,正确列出运算式子是解题关键.2.化简二次根式得()A.B.C.D.【答案】A【详解】解析:根据二次根式有意义,即,当时,,即,∴.答案:A易错:B错因:忽略根式有无意义的条件,没有考虑b的取值范围,误以为.易错警示:化简二次根式,要注意以下两点:①利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;②二次根式有意义的前提是被开方数大于等于0.3.已知,且a>b>0,则的值为()A.B.±C.2D.±2【答案】A【分析】已知a2+b2=6ab,变形可得(a+b)2=8ab,(a-b)2=4ab,可以得出(a+b)和(a-b)的值,即可得出答案.【详解】解:∵a2+b2=6ab,∴(a+b)2=8ab,(a-b)2=4ab,∵a>b>0,∴a+b=,a-b=,∴=,故选A.【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.二、填空题:4.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.5.对于任意不相等的两个数,,定义一种运算*如下:.如,那么______.【答案】【分析】根据定义的新运算的方式,把相应的数字代入运算即可;【详解】解:,故答案为:.【点睛】本题主要考查实数的运算,二次根式的化简,解答的关键是理解清楚题意,对实数的运算的相应的法则的掌握.6.已知等式成立,化简|x﹣6|+的结果为_____.【答案】4【分析】直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.【详解】解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.【点睛】此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x的取值范围是解题关键.三、解答题:7.已知和是相等的最简二次根式.求,的值;求的值.【答案】的值是,的值是;(2).【分析】(1)根据题意,它们的被开方数相同,列出方程组求出a,b的值;(2)根据算术平方根的概念解答即可.【详解】∵和是相等的最简二次根式,∴.解得,,∴的值是,的值是;(2).【点睛】考查最简二次根式的定义,根据最简二次根式的定义列出关于a,b的方程组是解题的关键.。
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
人教版数学八年级下册16.2第2课时《二次根式的除法》说课稿一. 教材分析人教版数学八年级下册16.2第2课时《二次根式的除法》这一节,主要让学生掌握二次根式相除的方法。
在此之前,学生已经学习了二次根式的性质和二次根式的乘法。
本节课的内容是在此基础上进行的,目的是让学生能够运用二次根式的除法解决实际问题,提高他们的数学应用能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于二次根式的性质和乘法有一定的了解。
但是,他们在处理二次根式的除法问题时,可能会感到困惑,对于如何将除法问题转化为乘法问题,以及如何在计算过程中保持二次根式的简洁性,还需要进一步引导和培养。
三. 说教学目标1.让学生掌握二次根式相除的基本方法。
2.培养学生将实际问题转化为数学问题的能力。
3.提高学生解决实际问题的数学应用能力。
四. 说教学重难点1.教学重点:二次根式相除的方法和步骤。
2.教学难点:如何将除法问题转化为乘法问题,以及在计算过程中的简洁性处理。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次根式除法的方法。
2.利用多媒体手段,展示二次根式除法的运算过程,帮助学生直观理解。
3.采用小组合作学习的方式,让学生在讨论中互相学习,共同进步。
六. 说教学过程1.导入新课:回顾二次根式的性质和乘法,引出二次根式的除法。
2.探究新知:学生自主尝试解决二次根式的除法问题,教师引导学生将除法问题转化为乘法问题,并讲解运算过程。
3.例题讲解:教师选取典型例题,讲解二次根式除法的步骤和方法。
4.巩固练习:学生独立完成练习题,教师及时给予反馈和指导。
5.拓展应用:学生分组讨论,将二次根式除法应用于实际问题,分享解题过程和心得。
6.总结归纳:教师引导学生总结二次根式除法的方法和步骤,以及注意事项。
七. 说板书设计板书设计要清晰、简洁,突出二次根式除法的方法和步骤。
主要包括以下内容:1.二次根式除法的定义。
2.二次根式除法的步骤。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。
在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。
教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。
但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。
2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。
2.教学难点:学生对混合运算的法则的理解和运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。
通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。
六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。
2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。
3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。
4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。
16.2(2)同类二次根式
初中数学电子教案
年级课题日期八年级(上)16.2(2)同类二次根式2008.9
教学目标知识与技能
理解同类二次根式的概念和意义,能判断同类二次根式,并
能合并同类二次根式.
经历观察、推理、类比、交流等数学活动过程,学会用二次
根式的性质解决问题,总结合并同类二次根式的方法.
通过对合并同类二次根式方法的探讨,培养学生类比、知识迁移的能力.
过程与方法
情感态度
与价值观
教材分析教学重点同类二次根式的概念,合并同类二次根式的方法.
教学难点合并同类二次根式的方法.
相关链接
化简二次根式、最简二次根式、合并同类项、二次根式的运算.
教学内容教学过程教后记
新课探索一 观察 思考
二次根式2
1328、、、
501、18
1化成最简二次根式,所得结果有什么相同之处?
新课探索二
例题1 下列二次根式中,哪些是同类二次根式?
)
0(),0(2,,27
1,
24,123
3
4
〉-〉a ab a b a b a
1.学生观察,所化得的最简二次根式的共同特点
2.师:这些二次根式我们称为同类二次根式,请说出什么叫同类二次根式?
3.生:都是最简二次根式、被开方数相同
1.师:被开方数都不同,所以都不是同类二次根式,对吗? 2.生:判断之前我们必须先化简
3.聪明。
请学生化简后再判断。
注意隐含条件,加深概念的理解.
教学内容
教学过程
教后记
新课探索三 试一试 计算:
27
12)2(;2322)1(++
新课探索四
例题2 合并下列各式中的同类二次根式: ;323
1
32122)1(++-
xy b xy a xy +-3)2(
1.请同学尝试第(1)小题,再让学生说说是怎么想得。
2.师:你觉得同类二次根式的加
法和我们所学过的哪个知识很相像
3.生答:合并同类项; 4.师:法则?
5.生答:字母和指数不变,系数
相加减。
6.师:那么同类二次根式的加法呢? 7.生答:被开方数和根指数不变,系数相加减。
8.第(2)题只要化成最简二次根
式后,就能判断能否加减
1.利用加法交换律,边画线边心算合并,写答案,
合并同类二次根式的规律就是系数相加减
请同学笔记本上书写
注意先判断是否为同类二次根式,再合并其系数.
注意系数不能是带分数
和小数
教学内容
教学过程
教后记
课内练习一
1、下列各组二次根式中,属同类二次根式的是( )
632与A
3231与B
2118与
C
a
a D
84与
2、在2
72
16、、48-中,与2是同类二次根式的是______。
课内练习二
3、判断下列各组中的二次根式
是不是同类二次根式:
;18
1
2,50,32)1( )
2(;8,22,423x x x
)0(3
),0(3,3)3(23
2
〉〉y xy a x a x
学生思考后
请说出你选择的理由
学生思考后
你的化简结果及答案
学生动笔尝试后,回答,并提醒
注意格式
教学内容
教学过程
教后记
课内练习三
4、合并下列各式中的同类二次根式:
;542
5
53)1(-+
b a b a 2
1642)2(+
-+
本课小结
1、同类二次根式:
几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
2、合并同类二次根式: 合并同类二次根式,类似于合并同类项。
学生动笔尝试,三项及以上合并,
可以按提取公因式法书写 计算仔细
本节课我们学习了哪些知识点?
教学内容教学过程教后记
布置作业
1、n 取4,6,8,12,16,18
中的数_____时,
2n 和是同类二次根式。
2、下列各组二次根式中,不是
同类二次根式的组是( )
A
23xy x 与 B
23455y x x 与 C
yz x y x z 943与 D
y x xy 11+与
3、将下列各组根式先化成最简
二次根式,再判断它们是否是同
类二次根式:
x x 48)1(与
)0,0()2(2〉〉b a a
c c ab 与 )0(32)3(〉s s
t t s 与 )0(231)
4(〉〉+--+n m n m n m n m n m 与
教学内容 教学过程 教后记
4、合并下列各式中的同类二次
根式:
(1)5103521553543-++- (2))6
165()323(n m n m ---
5、二次根式8化简后为22,即228=;二次根式
98化简后为23
2,即23298=。
(1)请举出一些二次根式,经
过化简后可表示成2a (其中a
是有理整数)的形式。
(2)设计两个二次根式,经过
化简后可表示为2a (其中a 是
有理数)的形式,且它们合并后
的结果为253。
教学内容 教学过程 教后记
拓展练习 1、如果最简二次根式n n m 2+与n m +3是同类二次根式,那么m,n 的值为( )
A 23,21==n m
B 2,0==n m
C 2,02
3,21====n m n m 或 D 0,2==n m
2、若-17≤≤x ,化简
12491422++-+-x x x x
题目条件看清
注意同类二次根式除了被开方数相同之外,根指数也要相同
会将根号内化成完全平方,注
意性质的运用。