16.2(2)同类二次根式-经典练习题
- 格式:doc
- 大小:294.50 KB
- 文档页数:6
第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
初中数学同步训练必刷题(人教版七年级下册16.2 二次根式的乘除)一、单选题(每题3分,共30分)1.(2022八下·威县期末)下列根式是最简二次根式的是()A.√0.5B.√8C.√17D.−√3【答案】D【知识点】最简二次根式【解析】【解答】解:A、√0.5=√12=√22,故本选项不符合题意;B、√8=2√2,故本选项不符合题意;C、√17=√77,故本选项不符合题意;D、−√3是最简二次根式,故本选项符合题意;故答案为:D.【分析】利用最简二次根式的定义对每个选项计算求解即可。
2.(2022八下·顺平期末)下列二次根式中,不是最简二次根式的为()A.√6B.√7C.√8D.√10【答案】C【知识点】最简二次根式【解析】【解答】A.√6是最简二次根式,故A不符合题意;B.√7是最简二次根式,故B不符合题意;C.√8=2√2,故C符合题意;D.√10是最简二次根式,故D不符合题意.【分析】最简二次根式满足两个条件:①被开方数中不含分母,②被开方数中不能含有开方开的尽的因数或因式;据此解答即可.3.(2022八下·巴彦期末)下列计算中,正确的是()A.√5−√3=√2B.√3×√2=√5C.√8÷√2=2D.√(−3)2=−3【答案】C【知识点】二次根式的性质与化简;二次根式的乘除法;二次根式的加减法【解析】【解答】解:A、√5与√3不是同类二次根式,不能合并,不符合题意;B、√3×√2=√6,不符合题意;C、√8÷√2=√4=2,符合题意;D、√(−3)2=√9=3,不符合题意;故答案为:C.【分析】利用二次根式的性质,二次根式的加减乘除法则计算求解即可。
4.(2022八下·安宁期末)下列无理数中,与√24相乘积为有理数的是()A.√2B.√3C.√5D.√6【答案】D【知识点】二次根式的乘除法【解析】【解答】解:∵√24=2√6,√6×√6=6,∴与√24相乘积为有理数的是√6,故答案为:D.【分析】利用二次根式的乘法计算方法逐项判断即可。
同类二次根式练习题
一、选择题
1. 同类二次根式是指具有相同的______的二次根式。
A. 被开方数
B. 根指数
C. 系数
D. 次数
2. 以下哪一项不是同类二次根式的组合?
A. √3和3√2
B. 2√7和√7
C. √2和2√2
D. √5和5√5
3. 同类二次根式的和是:
A. 3√2
B. 2√2
C. √2
D. 无法确定
4. 将同类二次根式√3+√3合并后,结果为:
A. 2√3
B. 3√3
C. √6
D. √9
二、填空题
1. 同类二次根式√2和2√2相加的结果是______。
2. 将同类二次根式√5-√5合并后,结果为______。
3. 如果√x和√x是同类二次根式,则x的值是______。
三、计算题
1. 计算并简化下列表达式:
(1) 3√2 + 2√2
(2) √8 - √2
2. 计算并合并同类二次根式:
(1) √12 + √27
(2) √18 - √2
四、应用题
1. 已知一个二次根式是√7,另一个是√28,它们是否是同类二次根式?为什么?
2. 一个几何图形的面积是√3平方厘米,如果将这个图形的边长都扩大两倍,那么新图形的面积是多少?
五、综合题
1. 一个二次根式表达式是√x+√y,如果x和y是两个不同的数,那么这个表达式能否简化?如果可以,请给出简化后的表达式。
2. 一个二次根式表达式是√a-b,如果a和b是两个相同的数,那么这个表达式的结果是什么?
注意:在解答过程中,需要保证运算的准确性,并注意同类二次根式的合并规则。
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
16.2 二次根式的乘除 易错题分类讲义二次根式是初中数学中的重要内容,其中的概念和性质都有条件限制,同学们在运用这些概念和性质解题时,往往会忽视这些条件而导致错解.现列举六种常见的解题错误进行分析,希望能引起同学们的注意. 一、忽视二次根式a 中0≥a 这一隐含条件而造成错解例1、化简11)1(---a a 错解:)11()1(11)1(2--•-=---a a a a =a a -=--1)1(辨析:错解中忽视了11--a >0这一隐含条件,即a <1,此式的值应为负值. 正解:)11()1(11)1(2--•--=---a a a a =a a --=---1)1( 二、运用a a =2时忽视a <0这种情形,没有把22)(a a 和区别开来. 例2、化简2)21(- 错解:2)21(-=1-2 辨析:错解中没有把22)(a a 和区别开来,忽视了1-2是一个负数这种情况.平时应养成先判断a 的符号,再脱去2a 中的根号这一好的习惯.正解:因为1-2<0 所以2)21(-=21-=2-1三、运用二次根式性质时出错例3、5253• 错解:565)23(5253=⨯=• 辨析:上面错在不明确5253和的意义,也不明确二次根式乘法的运算步骤.正解:3056)55)(23(5253=⨯=⨯⨯=•四、忽视同类二次根式的定义例4、已知b a b b a ++34与是同类二次根式,则a 、b 的值是( )A 、 0a =,2b =B 、1a =,1b =C 、1b ,1a 2b ,0a ====或D 、 0b ,2a ==错解:由⎩⎨⎧+==+b a 3b 42b a 解得⎩⎨⎧==1b 1a 故选B .辨析:两个根式是同类二次根式,必须满足以下两个条件:①是最简二次根式,②被开方数相同。
而b a b 4+不是最简二次根式,故需先将其化简.正解:依题意:⎩⎨⎧+==+b a 3b 2b a 解得⎩⎨⎧==2b 0a 故选A .五、违背运算规律例5 计算:231)23(2-⨯-÷. 错解:原式=212=÷.分析:对于同一级运算,要按从左到右的顺序进行,错解中违反了这一规律. 正解:原式=2)23(2231232-=-⨯- =34256252+=-六、忽视将二次根式的计算结果化为最简二次根式例6、 计算:)3225)(65(-+。
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x p 的结果是 。
9. 当15x ≤p 5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. =成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )))020x y x x y =-+f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a p p ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x f D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a - 20.下面的推导中开始出错的步骤是( )()()()()123224==-==∴=-∴=-Q L L L L L L L L L L L L LA. ()1B. ()2C. ()3D. ()4 21. 2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x f ())21x f24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。
第十六章二次根式16.1二次根式---------第1课时二次根式的概念01根底题知识点1二次根式的定义1.以下式子不是二次根式的是( )A. 5B.3-πC.0.5D.1 32.以下各式中,一定是二次根式的是()A.-7B.3m C.1+x2D.2x3.a是二次根式,那么a的值可以是( )A.-2 B.-1 C.2 D.-54.假设-3x是二次根式,那么x的值可以为(写出一个即可).知识点2二次根式有意义的条件5.x取以下各数中的哪个数时,二次根式x-3有意义()A.-2 B.0 C.2 D.46.(2021·广安)要使二次根式2x-4在实数范围内有意义,那么x的取值范围是( )A.x>2 B.x≥2 C.x<2 D.x=27.当x是怎样的实数时,以下各式在实数范围内有意义?(1)-x;(2)2x+6;(3)x2;(4)14-3x;(5)x-4x-3.知识点3二次根式的实际应用8.一个外表积为12 dm2的正方体,那么这个正方体的棱长为( )A.1 dm B. 2 dm C. 6 dm D.3 dm9.假设一个长方形的面积为10 cm2,它的长与宽的比为5∶1,那么它的长为cm,宽为cm.02 中档题 10.以下各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有( ) A .1个B .2个C .3个D .4个11.(2021·济宁)假设2x -1+1-2x +1在实数范围内有意义,那么x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠1212.使式子1x +3+4-3x 在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个13.如果式子a +1ab 有意义,那么在平面直角坐标系中点A(a ,b)的位置在() A .第一象限B .第二象限C .第三象限D .第四象限14.使式子-〔x -5〕2有意义的未知数x 的值有 个.15.假设整数x 满足|x|≤3,那么使7-x 为整数的x 的值是 . 16.要使二次根式2-3x 有意义,那么x 的最大值是 . 17.当x 是怎样的实数时,以下各式在实数范围内有意义?(1)32x -1; (2)21-x; (3)1-|x|; (4)x -3+4-x.03 综合题18.a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长.第2课时 二次根式的性质01 根底题 知识点1a ≥0(a ≥0)1.(2021·荆门)实数m ,n 满足|n -2|+m +1=0,那么m +2n 的值为 . 2.当x = 时,式子2 018-x -2 017有最大值,且最大值为 .知识点2 (a )2=a (a ≥0)3.把以下非负数写成一个非负数的平方的形式:(1)5= (2)3.4= ; (3)16= (4)x = (x ≥0).4.计算:( 2 018)2= . 5.计算:(1)(0.8)2; (2)(-34)2; (3)(52)2; (4)(-26)2. 知识点3a 2=a (a ≥0)6.计算〔-5〕2的结果是( )A .-5B .5C .-25D .257.二次根式x 2的值为3,那么x 的值是( )A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2= . 9.计算:(1)49; (2)〔-5〕2; (3)〔-13〕2; (4)6-2.知识点4 代数式10.以下式子不是代数式的是( )A .3xB .3xC .x>3D .x -311.以下式子中属于代数式的有( )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2. A .5个 B .6个 C .7个 D .8个02 中档题12.以下运算正确的选项是( )13.假设a <1,化简〔a -1〕2-1的结果是( )A .a -2B .2-aC .aD .-a14.(2021·枣庄)实数a ,b 在数轴上对应点的位置如下图,化简|a|+〔a -b 〕2的结果是( )A .-2a +bB .2a -bC .-bD .b15.实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,那么m 的取值范围是( )A .m >6B .m <6C .m >-6D .m <-6 16.化简:〔2-5〕2= .17.在实数范围内分解因式:x 2-5= .18.假设等式〔x -2〕2=(x -2)2成立,那么x 的取值范围是 . 19.假设a 2=3,b =2,且ab <0,那么a -b = . 20.计算:(1)-2〔-18〕2; (2)4×10-4;(3)(23)2-(42)2; (4)〔213〕2+〔-213〕2.21.比拟211与35的大小.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.16.2 二次根式的乘除 第1课时 二次根式的乘法01 根底题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是( )A . 5B .6C .2 3D .3 22.以下各等式成立的是( )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 6 3.以下二次根式中,与2的积为无理数的是( )A .12B .12C .18D .324.计算:8×12= . 5.计算:26×(-36)= . 6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的 面积为 cm 2. 7.计算以下各题:(1)3×5; (2)125×15; (3)(-32)×27; (4)3xy·1y.知识点2 ab =a·b (a ≥0,b ≥0) 8.以下各式正确的选项是( )A .〔-4〕×〔-9〕=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2021·益阳)以下各式化简后的结果是32的结果是( )A . 6B .12C .18D .3610.化简〔-2〕2×8×3的结果是( )A .224B .-224C .-4 6D .4 611.化简:(1)100×36= ; (2)2y 3= . 12.化简:(1)4×225; (2)300; (3)16y ; (4)9x 2y 5z.13.计算:(1)36×212;(2)15ab2·10ab.02中档题14.50·a的值是一个整数,那么正整数a的最小值是( )A.1 B.2 C.3 D.515.m=(-33)×(-221),那么有( )A.5<m<6 B.4<m<5 C.-5<m<-4 D.-6<m<-5 16.假设点P(a,b)在第三象限内,化简a2b2的结果是.17.计算:(1) 75×20×12;(2)〔-14〕×〔-112〕;(3) -32×45×2;(4)200a5b4c3(a>0,c>0).18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数,在某次交通事故调查中,测得d=20 m,f=1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km/h)19.一个底面为30 cm×30 cm的长方体玻璃容器中装满水,现将一局部水倒入一个底面为正方形、高为10 cm的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm,铁桶的底面边长是多少厘米?第2课时 二次根式的除法01 根底题 知识点1a b=a b (a ≥0,b >0)1.计算:10÷2=( )A . 5B .5C .52D .1022.计算23÷32的结果是( ) A .1B .23C .32D .以上答案都不对3.以下运算正确的选项是( )A .50÷5=10B .10÷25=22C .32+42=3+4=7D .27÷3=34.计算:123= .5.计算:(1)40÷5; (2)322; (3)45÷215; (4)2a 3b ab(a>0).知识点2a b =ab(a ≥0,b >0) 6.以下各式成立的是( ) A .-3-5=35=35B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于( )A .2B . 2C .22D .128.如果〔x -1x -2〕2=x -1x -2,那么x 的取值范围是( ) A .1≤x ≤2 B .1<x ≤2 C .x ≥2 D .x >2或x ≤1 9.化简:(1)7100; (2)11549; (3)25a 49b 2(b>0).知识点3 最简二次根式 10.(2021·荆州)以下根式是最简二次根式的是( )A .13B .0.3C . 3D .2011.把以下二次根式化为最简二次根式:(1) 2.5; (2)85; (3)122; (4)2340.02 中档题12.以下各式计算正确的选项是( )A .483=16B .311÷323=1 C .3663=22D .54a 2b6a=9ab13.计算113÷213÷125的结果是( ) A .27 5B .27C . 2D .2714.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有 个. 15.如果一个三角形的面积为15,一边长为3,那么这边上的高为 . 16.不等式22x -6>0的解集是 . 17.化简或计算:(1)0.9×121100×0.36; (2) 12÷27×(-18); (3)27×123; (4)12x÷25y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.16.3 二次根式的加减 第1课时 二次根式的加减01 根底题知识点1 可以合并的二次根式1.(2021·巴中)以下二次根式中,与3可以合并的是( )A .18B .13C .24D .0.32.以下各个运算中,能合并成一个根式的是( )A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.假设最简二次根式2x +1和4x -3能合并,那么x 的值为( )A .-12B .34C .2D .54.假设m 与18可以合并,那么m 的最小正整数值是( )A .18B .8C .4D .2知识点2 二次根式的加减5.(2021·桂林)计算35-25的结果是( )A . 5B .2 5C .3 5D .66.以下计算正确的选项是( )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是( )A .1B .-1C .-3- 2D .2- 3 8.计算2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,那么长方形的周长为 . 10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,这个三角形的周长是 cm . 11.计算:(1)23-32; (2)16x +64x ; (3) 125-25+45; (4) 27-6-13.02 中档题12.假设x 与2可以合并,那么x 可以是( )A .0.5B .0.4C .0.2D .0.1 13.计算|2-5|+|4-5|的值是( )14.计算412+313-8的结果是( ) A.3+ 2B. 3C.33D.3- 215.假设a ,b 均为有理数,且8+18+18=a +b 2,那么a = ,b = . 16.等腰三角形的两边长分别为27和55,那么此等腰三角形的周长为 .17.在如下图的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,那么两个空格中的实数之和为 . 18.计算:(1)18+12-8-27;(2) b 12b 3+b 248b ; (3)(45+27)-(43+125);(4) 34(2-27)-12(3-2).19.3≈1.732,求(1327-413)-2(34-12)的近似值(结果保存小数点后两位).第2课时二次根式的混合运算01根底题知识点1二次根式的混合运算1.化简2(2+2)的结果是( )A.2+2 2 B.2+2C.4 D.3 2 2.计算(12-3)÷3的结果是( )A.-1 B.-3C. 3 D.1 3.(2021·南京)计算:12+8×6的结果是.4.(2021·青岛)计算:(24+16)×6=.5.计算:40+55=.6.计算:(1)3(5-2);(2)(24+18)÷2;(3)(2+3)(2+2);(4)(m+2n)(m-3n).知识点2二次根式与乘法公式7.(2021·天津)计算:(4+7)(4-7)的结果等于.8.(2021·包头)计算:613-(3+1)2=.9.计算:(1)(2-12)2;(2)(2+3)(2-3);(3)(5+32)2.10.(2021·盐城)计算:(3-7)(3+7)+2(2-2).02中档题11.a=5+2,b=2-5,那么a2 018b2 017的值为( )A.5+2 B.-5-2 C.1 D.-112.按如下图的程序计算,假设开始输入的n值为2,那么最后输出的结果是( )A.14 B.16 C.8+5 2 D.14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233);(3)(46-412+38)÷22;(4)24×13-4×18×(1-2)0.14.计算:(1)(1-5)(5+1)+(5-1)2;(2)(3+2-1)(3-2+1).15. a=7+2,b=7-2,求以下代数式的值:(1)ab2+ba2;(2)a2-2ab+b2;(3)a2-b2.小专题(一) 二次根式的运算类型1 与二次根式有关的计算 1.计算:(1)62×136; (2)(-45)÷5145;(3)72-322+218; (4)(25+3)×(25-3).2.计算:(1)334÷(-12123); (2)(6+10×15)×3;(3)354×(-89)÷7115; (4)(12-418)-(313-40.5);(5)(32-6)2-(-32-6)2.3.计算:(1)(2 018-3)0+|3-12|-63; (2) |2-5|-2×(18-102)+32.类型2 与二次根式有关的化简求值4.a =3+22,b =3-22,求a 2b -ab 2的值.5.实数a ,b ,定义“★〞运算规那么如下:a ★b =⎩⎨⎧b 〔a ≤b 〕,a 2-b 2〔a>b 〕,求7★(2★3)的值.6.x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.7.(2021·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2.章末复习(一) 二次根式01 根底题知识点1 二次根式的概念及性质1.(2021·黄冈)在函数y =x +4x中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-4 2.(2021·自贡)以下根式中,不是最简二次根式的是( ) A.10 B.8 C. 6D. 23.假设xy <0,那么x 2y 化简后的结果是( )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是( )A .10B .15C .20D .25 5.(2021·十堰)以下运算正确的选项是( )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=36.计算5÷5×15所得的结果是 .7.计算:(1)(2021·湖州)2×(1-2)+8; (2)(43+36)÷23;(3)1232-275+0.5-3127; (4)(32-23)(32+23).知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保存小数点后两位)02 中档题 9.把-a-1a中根号外面的因式移到根号内的结果是( ) A .-aB .- aC .--aD . a10.x +1x =7,那么x -1x的值为( )A. 3B .±2C .± 3D.711.在数轴上表示实数a 的点如下图,化简〔a -5〕2+|a -2|的结果为 .12.(2021·青岛)计算:32-82= . 13.计算:(3+2)3×(3-2)3= . 14.x =5-12,那么x 2+x +1= . 15.16-n 是整数,那么自然数n 所有可能的值为 . 16.计算:(1)(3+1)(3-1)-16+(12)-1; (2)(3+2-6)2-(2-3+6)2.17.x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.。
同类二次根式
一、选择题
1.是同类二次根式的是( )
2.下面说法正确的是( )
A.被开方数相同的二次根式一定是同类二次根式
C D.同类二次根式的根指数为2的根式
3.( )
C
4.
10=,则x 的值是( ) B.±2 D.±4
、
二、填空题
5.___________.
6.若最简二次根式____,____.a b ==
7._____a =
8.,则它的周长是__________cm.
9.已知33
______.x y y xy ==+=则x 11.已知21________.
x x x -+=则
三、解答题
(12)
]
(14)
1622x (15)0)>
{
- (17)430)ab >
1、在15,
6
1
,
2
11
,40中最简二次根式的个数是………………( )
A .1个
B .2个
C .3个
D .4个 2、下列各组二次根式中是同类二次根式的是………………( ) A .
2
112与
B .2718与
C .
3
13与
D .5445与
3、下列各式正确的是………………( ) (
A .a a =2
B .a a ±=2
C .a a =2
D .22a a =
4、下列各式中①a ②1+b ③2a ④32+a ⑤122++x x ⑥12
-x 一定是二次根
式的有( )个。
A 1 个 B )2个 C ) 3个 D ) 4个 5、若1<x <2,则()2
13-+
-x x 的值为………………( )
A .2x-4
B .-2
C .4-2x
D .2
6、(10与()9乘积的结果是………………( )。
A 、
B 、
C 、
D 、 7、下列运算中,错误的是( )
3 C.= 16925+=
8、如果1122=+-+a a a ,那么a 的取值范围是…………( ) A .0=a B .1=a C .1≤a D .10==a a 或
^
9、若x x x x -•-=
--32)3)(2(成立。
则x 的取值范围为:
( ) A )x ≥2 B )x ≤3 C )2≤x ≤3 D ) 2<x <3
10、已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那么这个三角形的最大边c 的取值范围是…………………( )
A .8>c
B .148<<c
C .86<<c
D .142<<c
1、当x_________x __________时,式子
3
1
-x 有意义。
2、36的算术平方根是。
请写出两个与是同类的二次根式的根式________。
3
)2 =____________,当a ≥0
=_____________。
5
)
)=__________;6、已知xy <0
= ;
7、最简二次根式b a 34+与162++-b b a 是同类二次根式,则a = ,b = . 8、已知5的整数部分是a ,小数部分是b ,则b
a 1
-
的值为__________。
。
9
、把二次根式__________。
10、若22)2()2(-=-x x ,则x 的范围是 。
三、解答题
1、计算下列各式:(每题4分,共16分)
(1
(2)2
2)25()25(--+ (3
)(
(2005
2006
22+
2、已知:实数a ,b 在数轴上的位置如图所示,
a b -
a b
&
8、甲、乙两人对题目“化简并求值:
21122-++a a a ,其中5
1=a ”有不同的解答,甲的解答是:
549211)1(12112
22
=-=-+=-+=-++a a a a a a a a a a a ,乙的解答是:
5111)1(121122
2
==-+=-+=-++a a a a a a a a a a ,谁的解答是错误的为什么(5分)
1.下列化简中,正确的是( ).
2
2
5315.7243116
2336
B C D =⨯==+====⨯=
2
). A .1 B .2 C .3 D .4 3.化简二次根式
).
A
..B C D -?
4.计算
2的结果是( ). A .1 B .2
32
3
..n n
n C D m m m
5.当a>0
).
A .
B .
C .-
D .-
6
x 的取值范围为________.
8
=_______(x ≥1). 9.
_______. 10.把根号外的因式移到根号内:(x -3
.
11.若a 、b 、c
=________. 三、解答题
12
; 13.
14.已知0<a<2b
.
15.已知三角形的一边长为
17.已知a 、b
(b -=0,求a 2008-b 2008的值.
19.下列二次根式是最简二次根式的是( )A
14 B 48 C
b
a
D
44+a
21.先将
x
x x
x x 222
3-÷--化简,然后选一个合适的x 值,代入式子求值。