点集拓扑学(1)
- 格式:docx
- 大小:2.16 MB
- 文档页数:24
河北师大点集拓扑习题与参考答案(1)点集拓扑学练习题一、单项选择题(每题1分)1、未知x?{a,b,c,d,e},以下集族中,()就是x上的流形.①t?{x,?,{a},{a,b},{a,c,e}}②t?{x,?,{a,b,c},{a,b,d},{a,b,c,e}}③t?{x,?,{a},{a, b}}④t?{x,?,{a},{b},{c},{d},{e}}答案:③2、设x?{a,b,c},下列集族中,()是x上的拓扑.①t?{x,?,{a},{a,b},{c}}②t?{x,?,{a},{a,b},{a,c}}③t?{x,?,{a},{b},{a,c}}④t?{x, ,{a},{b},{c}}答案:②3、未知x?{a,b,c,d},以下集族中,()就是x上的流形.①t?{x,?,{a},{a,b},{a,c,d}}②t?{x,?,{a,b,c},{a,b,d}}③t?{x,?,{a},{b},{a,c,d}}④t?{x,?,{a},{b}}答案:①4、设x?{a,b,c},下列集族中,()是x上的拓扑.①t?{x,?,{b},{c},{a,b}}②t?{x,?,{a},{b},{a,b},{a,c}}③t?{x,?,{a},{b},{a,c}}④t {x,,{a},{b},{c}}答案:②5、未知x?{a,b,c,d},以下集族中,()就是x上的流形.①t?{x,?,{a,b},{a,c,d}}②t?{x,?,{a,b},{a,c,d}}1③t?{x,?,{a},{b},{a,c,d}}④t?{x,?,{a},{c},{a,c}}答案:④6、设x?{a,b,c},下列集族中,()是x上的拓扑.①t?{x,?,{a},{b},{b,c}}②t?{x,?,{a,b},{b,c}}③t?{x,?,{a},{a,c}}④t?{x,?,{a},{b },{c}}答案:③7、未知x?{a,b,c,d},流形t?{x,?,{a}},则{b}=()①φ②x③{b}④{b,c,d}答案:④8、未知x?{a,b,c,d},流形t?{x,?,{a}},则{b,c,d}=()①φ②x③{b}④{b,c,d}答案:④9、未知x?{a,b},流形t?{x,?,{a}},则{a}=()①φ②x③{a}④{b}答案:②10、已知x?{a,b},拓扑t?{x,?,{a}},则{b}=()①φ②x③{a}④{b}答案:④11、未知x?{a,b,c,d},流形t?{x,?,{a}},则{a}=()①φ②x③{a,b}④{b,c,d}答案:②12、未知x?{a,b,c,d},流形t?{x,?,{a}},则{c}=()2①φ②x③{a,c}④{b,c,d}答案:④13、设x?{拓扑t?{x,?,{a},{b,c,d}},则x的既开又闭的非a,b,c,d},空真子集的个数为()①1②2③3④4答案:②14、设x?{拓扑t?{x,?,{a},{b,c}},则x的既开又闭的非空真a,b,c},子集的个数为()①1②2③3④4答案:②a,b,c},15、设x?{流形t?{x,?,{b},{b,c}},则x的既上开又闭合的非空真子集的个数为()①0②1③2④3答案:①16、设x?{a,b},拓扑t?{x,?,{b}},则x的既开又闭的子集的个数为()①0②1③2④3答案:③17、设x?{a,b},拓扑t?{x,?,{a},{b}},则x的既开又闭的子集的个数为()①1②2③3④4答案:④a,b},{b,c}}18、设x?{a,b,c},流形t?{x,?,{a},{b},{,则x的既上开又闭的非空真子集的个数为()①1②2③3④4答案:②19、在实数空间中,有理数集q的内部q?是()①?②q③r-q④r3答案:①20、在实数空间中,有理数集q的边界?(q)就是()①?②q③r-q④r21、在实数空间中,整数集z的内部z?就是()①?②z③r-z④r22、在实数空间中,整数集z的边界?(z)就是()①?②z③r-z④r23、在实数空间中,区间[0,1)的边界就是()①?②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界就是()①?②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的内部就是()①?②[0,1]③{0,1}④(0,1)4答案:④答案:①答案:②答案:③答案:③答案:④26、设x是一个拓扑空间,a,b是x的子集,则下列关系中错误的是()①d(a?b)?d(a)?d(b)②a?b?a?b③d(a?b)?d(a)?d(b)④a?a答案:③27、设x是一个拓扑空间,a,b是x的子集,则下列关系中正确的是()①d(a?b)?d(a)?d(b)②a?b?a?b③d(a?b)?d(a)?d(b)④a?a答案:①28、设x是一个拓扑空间,a,b是x的子集,则下列关系中正确的是()①d(a?b)?a?b②a?b?a?b③d(a?b)?d(a)?d(b)④d(d(a))?a?d(a)答案:④29、已知x是一个离散拓扑空间,a是x的子集,则下列结论中正确的是()①d(a)??②d(a)?x?a③d(a)?a④d(a)?x答案:①30、已知x是一个平庸拓扑空间,a是x的子集,则下列结论中不正确的就是()①若a??,则d(a)??②若a?{x0},则d(a)?x?a③若a={x1,x2},则d(a)?x④若a?x,则d(a)?x答案:④31、未知x就是一个愤世嫉俗流形空间,a就是x的子集,则以下结论中恰当的5。
《点集拓扑学教案》一、引言1.1 点集拓扑学的定义:研究在给定的拓扑空间中,点集的性质、结构以及点集之间的相互关系。
1.2 点集拓扑学的重要性:点集拓扑学是拓扑学的基础,对其他数学分支如代数、分析、微分几何等有重要的影响。
1.3 点集拓扑学与其他学科的联系:与计算机科学、物理学、经济学等领域有密切的联系。
二、拓扑空间的基本概念2.1 拓扑空间的定义:一个拓扑空间是一个集合,along with a collection of subsets of called a topology, which satisfies certn properties.2.2 拓扑空间的性质:拓扑空间具有三个基本性质:开集、闭集和连续性。
2.3 常见拓扑空间:欧几里得空间、度量空间、仿射空间、辛空间等。
三、拓扑空间的连通性3.1 连通性的定义:一个拓扑空间是连通的,如果它可以通过连续变换连通起来。
3.2 连通性的性质:连通的拓扑空间是自相似的,即它可以通过连续变换变成自身。
3.3 连通性与曲率的关系:通过曲率的定义,可以判断拓扑空间的连通性。
四、拓扑空间的紧性4.1 紧性的定义:一个拓扑空间是紧的,如果它的任何开覆盖都有一个有限子覆盖。
4.2 紧性的性质:紧的拓扑空间是可分的,即它可以被分成有限个开集的并集。
4.3 紧性与连续变换的关系:紧的拓扑空间可以通过连续变换变成自身。
五、拓扑空间的度量5.1 度量的定义:度量是一个函数,它为每个点集赋予一个非负实数,称为度量。
5.2 度量的性质:度量具有正定性、对称性和三角不等式性质。
5.3 度量空间:具有度量的拓扑空间称为度量空间,度量空间中的点集可以通过度量来度量它们之间的距离。
六、连通拓扑空间的同伦6.1 同伦的定义:两个连通拓扑空间之间的同伦是指一个连续映射可以将一个空间连续地变形到另一个空间。
6.2 同伦的性质:同伦关系是等价关系,满足自反性、对称性和传递性。
6.3 同伦的应用:同伦关系可以用来研究连通拓扑空间的性质和结构,例如通过同伦变换可以将一个空间变形为另一个空间。
《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基木知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基木知识,以及其中的四则运算,大小的比较(<和W),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早己熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1 又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作0・此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样), 是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号匕|关于x的一个命题P}表示使花括号中竖线后而的那个命题P成立的所有元素x构成的集合.例如,集合{* X为实数,并且0<Xl}即通常所谓开区间(0, 1).在运用集合这种定义方式时有时允许一些变通,例如集合{戏以是实数}便是集合{刃丿=/,其中%是实数}的简略表示,不难明口这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“丨”也可用冒号“:”或分号”来代替.(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如表示由元素 TJ构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1, 2, 3,・・・}表示全体正整数构成的集合,用{1, 3, 5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后而的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:乙表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:e:表示元素与集合的关系,如:xex , xe{x}等G表示集合与集合的关系,如:AUB (等价于(这个记号即是通常数学课木中的匚)二:表示与上述相反的含义.表示两个集合相等,女口:A二B (等价于以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1设A, B, C都是集合,贝!J(1)A=A;(2)^A=B,则B=A;(3)^A=B, B=C,则A=C.定理1. 1.2设A, B, C都是集合,则(1)A";(2)若AuB, BUA,则A=B;(3)若AUB, BUC,则A".证明(1)显然.(2)AUB 意即:若xWA,贝iJxGB;BS意即:若xGB,则xWA.这两者合起来正好就是A=B的意思.(3)xGA.由于AUB,故xGB;又由于B UC,从而x^C.综上所述,如果xeA就有xec.此意即AUC.因为空集0不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A, B是两个集合.如果AUB,我们则称A为B的子集;如果A是B的子集,但A又不等于B,即AUB, AHB,也就是说A 的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,缶{⑴,{1,2}, {1,2,3}}是一个集族. 它的三个元素分别为:{1}, {1,2}, {1,2, 3}及d设X是一个集合,我们常用尸(X)表示X的所有子集构成的集族, 称为集合X的幕集.例如,集合{1, 2}的幕集是P{⑴,{1, 2},⑵,0}.木章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合己是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾•例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则AWA不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集4}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:掌握集合、元素的概念、表示法熟练区分“G”与“U”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2. 1设A与B是两个集合.集合{x|xeA或xWB}称为集合A与集合B的并集或并,记作AUB, 读为A并B.集合{x|x eA且xWB}称为集合A与集合B的交集或交,记作AAB, 读为A交B.若AQB二0,则称集合A与集合B无交或不相交;反之,若AQBH0,则称集合A与集合B有(非空的)交.集合{x|xeA且x吃B}称为集合A与集合B的差集,记作A\B或A -B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1设A, B, C都是集合.则以下等式成立:(1)幕等律AUA=AADA=A(2)交换律AUB=BUA AnB=BnA(3)结合律(AUB) UC=AU (BUC)(AAB) nc=An (BAC)(4)分配律(APB) UC=(AUC) Cl (BUC)(AUB) nc=(Anc)u (Bnc)(5)DeMongan 律A-(BUC)= ( (A-B) A (A-C)A-((BnC) = (A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2设A, B是两个集合.下列三个条件等价:(1)A UB;(2)AnB=A;(3)AUB=B・定义1.2.2设X是一个基础集.对于X的任何一个子集A,我们称X-A 为A (相对于基础集X而言)的补集或余集记作占.我们应当提醒读者,补集占的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.定理1.2.3设X是一个基础集.若A, B为X的子集,则Au0=A,Ar^0 = 0,AuX = X,Ar^X =AAuA = X,Ar\A r = 0}{AuBy =A r\B,XAr\B')' = A以上证明均只须用到集合的各种定义,此处不证,略去. 作业:熟记这两节的各种公式.掌握证明两个集合A二B与AUB的基本方法KugO冷亡虫,=疋B(/ = E o 且 u R A B u 力)§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3. 1设X和Y是两个集合.集合{ (x, y) |xex, yey}称为X与Y的笛卡儿积,记作XXY,读为X叉乘Y.其中(x, y)是一个有序偶,x称为(x, y)的第一个坐标,y称为(x, y)的第二个坐标.X称为XXY的第一个坐标集,Y称为XXY的第二个坐标集•集合X与自身的笛卡儿积XXX称为X的2重(笛卡儿)积,通常简单记作胪.有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积XXY完全不同于集合Y与集合X的笛卡儿积YXX.定义1. 3. 3设X,Y是两个集合•如果R是X与Y的笛卡儿积XXY 的一个子集,即RUXXY,则称R是从X到Y的一个关系.定义1. 3.4设R是从集合X到集合Y的一个关系,即RCXXY.如果(x, y) WR,则我们称x与y是R相关的,并且记作xRy・如果AUX, 则Y的子集{yWY|存在xeA使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R (A) , R (X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是XXY 本身,另一个是空集(1).请读者自己对它们进行简单的考查.定义1. 3.5设R是从集合X到集合Y的一个关系,即RCXXY.这时笛卡儿积YXX的子集{ (y, x) eYXX|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作尺一】.如果BUY, X的子集氏"(B)是集合B的氏一】象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系氏" 的值域氏"(Y)也称为关系R的定义域.定义1. 3.6设R是从某个X到集合Y的一个关系,即RuXX Y, S 是从集合y到集合Z的一个关系,即SuYX乙集合{ (x, z) exXY 存在yGY使得xRy并且ySz}是笛卡儿积XXZ的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作SoR.定理1.3.1设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.贝!J:(1)(L)J 二R证明(略)定理1.3.2设R是从集合X到集合Y的一个关系,S是从某个Y 到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R (AUB) =R (A) UR (B);(2)R (AAB) UR (A) AR (B);(3)(SoR) (A) =S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义1. 3. 7 设瓦耳必是n>l个集合.集合I x i e X、® € X2e X x")称为舟‘兀*•••** 的笛卡儿积,并且记作或者[]益其中(心心…石为有次序的n元素组,勺(i=l, 2, —n)称为n 元素组(忑旳…心)的第i个坐标,X i (i = l, 2,…, n)称为笛卡儿积乂\莫2”••召的第i个坐标集.n>l个集合X的笛卡儿积XXXX-XX常简单地记作炉n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充・(参见§9.1) 作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射” 与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1. 4. 1设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x, x) |xex}称为恒同关系,或恒同,对角线,记作△ (X)或△・定义1.4.2设R是集合X中的一个关系.关系R称为自反的,如果厶(X) CR,即对于任何xex,有xRx;关系R称为对称的,如果恥L , 即对于任何x, yex,如果xRy则yRx;关系R称为反对称的,如果RnR-1 =0,即对于任何x, yex, xRy和yRx不能同时成立;关系R 称为传递的,如果RoRUR,即对丁-任何x, y, zGX,如果xRy, yRz, 则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△ (X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B"(X), A=B}从定理1.1.1中可见,它是自反、对称、传递的,因此是尸(X) 中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B" (X), AuB}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是尸(X)中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合尸(X) X尸(X)的子集{(A, B) |A, BW尸(X), A U B,AHB}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的, 因而不是尸(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即RXR的子集{ (x, y) |x, yGR, x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系三p如下:=?-{ (x, y) WZXZ]存在nGZ 使得x —y 二np}关系J常称为模P等价关系,容易验证模P等价关系J是自反的, 对称的,传递的,因此是z中的一个等价关系.定义1. 4.3设R是集合X中的一个等价关系.集合X中的两个点x, y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的; 对于每一个xeX,集合X的子集:{yWXlxRy}称为x的R等价类或等价类,常记作【心或[x],并且任何一个yG【心都称为R等价类【心的一个代表元素;集族{t^l xeX}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系勺,易见,1巳3和2巳8.因此1与3是勺等价的,2和8也是三2等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/三2有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1设R是非空集合X中的一个等价关系.贝!(1)如果xex,则xW【心,因而【刃宀;(2)对于任意x, yGX,或者MlwAL,或者证明(1)设xex,由于R是自反的,所以xRx,因此*丘闪匚・・・【刃上工0・(3)对于任意x, yWX,如果,设zW[x]C[y].此时有zRx,且zRy.由于R是对称的,所以xRz・又由于R是传递的,所以xRy・对于任何一个t e【刃丘,有t Rx,由上述xRy和R的传递性可见tRy, 即tel-xh.这证明MbuAL同理可证【刃上ukk.因此【刃2【词上(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)P的等价关系J将整数集合Z分为互不相交的等价类,每一个等价类记作[刘去,称为整数X的模P同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系〜,使得两个固定向量x和y 〜相关(即x〜y)当且仅当x能通过平而(或n维欧氏空间)的一个平移与y重合.容易验证这个关系〜是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§1.5映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念.定义1. 5. 1设F是从集合X到集合Y的一个关系.如果对于每一个x WX存在惟一的一个y丘Y使得xFy,则称F是从X到Y的一个映射, 并且记作F: X-Y.换言之,F是一个映射,如果对于每一个xex:(1)存在yWY,使得xFy;(2)如果对于H必GY有^^和入绥,则HT2.定义1. 5.2设X和Y是两个集合,F: X-Y(读做F是从X到Y的一个映射).对于每一个xex,使得xFy的唯一的那个yGY称为x的象或值,记作F (x);对于每一个yGY,如果xex使得xFy (即y是x的象),则称x是y的一个原象(注意:yeY可以没有原象,也可以有不止一个原象).由于映射本身便是关系,因此,如果F是从集合X到集合Y的一个映射,那么:(1)对于任何AUX,象F (A)有定义,并且F(A) = {F(x) xeA}(2)对于任何BUY,原象F- (B)有定义,并且厂】(B) ={xex F(x)eB} (y±意:厂匕)与严(g)的异同,前者不一定有意义,而后者总存在;前者表示元素,后者表示集合)(3)如果Z也是一个集合并且G: Y-Z,则关系的复合GoF作为一个从X到Z的关系有定义;(4)尺一】作为从Y到X的一个关系有定义,但一般说来应"不是一个从Y到X的映射(这要看F是否是一一映射);(5) F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6) F的值域有定义,并且它就是F (X)・(F(X)不一定充满Y)定理1.5.1设X, Y和Z都是集合.如果F: X-Y和G: Y-乙则SF: X-Z;并且对于任何xGX,有GoF(X)=G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F (x)±).今后我们常用小写字母f, g, h,……表示映射.定理1. 5.2设X和Y是两个集合,f:X~Y・如果A, BUY 则(1)r1(AUB)=广" (A)U厂(B);(2)(AAB)=广" (A)nr1(B);(3)(A-B)=厂(A)-了' (B)・简言之,映射的原象保持集合的并,交,差运算.证明(略)・定义1. 5.3设X和Y是两个集合,X-Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f (X)二Y),则称f是一个满射,或者称f为一个从X到Y上的映射;如果X中不同的点的象是Y中不同的点(即对于任何如果心工乃,则有八1"了(心),则称f 是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者一一映射.如果f (X)是一个单点集,则称f是一个常值映射,并且当f(X)二{y}时,我们也说f是一个取常值y的映射.易见,集合X中的恒同关系△ (X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号“或i: X-X来表示它.根据定义易见,对于任何xex,有i (x)=x.概言之,恒同映射便是把每一个点映为这个点自身的映射.由于下面的这个定理,一一映射也称为可逆映射.定理1. 5.3设X和Y是两个集合.又设f:X-Y.如果f是一个一一映射,则厂便是一个从Y到X的映射(因此我们可以写广:Y-X),并且是既单且满的.此外我们还有:广'n和"厂=妆证明(略)定理1. 5.4设X, Y和Z都是集合,f:XfY, g: Y-Z.如果f 和g都是单射,则gof:X~Z也是单射;如果f和g都是满射,则g。
2024年河北师大点集拓扑课件 1[1]0一、教学内容本节课我们将学习《点集拓扑》教材的第一章“集合与映射”,具体内容包括集合的基本概念、集合的运算、映射的定义与性质、特殊类型的映射等。
重点在于让学生理解集合与映射的基本理论,为后续的点集拓扑学打下坚实基础。
二、教学目标1. 理解并掌握集合的基本概念,能够运用集合的运算解决实际问题。
2. 理解映射的定义及其相关性质,能够判断不同类型的映射。
3. 培养学生的抽象思维能力和逻辑推理能力,为学习点集拓扑学奠定基础。
三、教学难点与重点教学难点:映射的性质及其判断,特殊类型的映射。
教学重点:集合的基本概念,集合的运算,映射的定义与性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 导入:通过实际生活中的例子,引导学生理解集合的概念。
举例:一个班级的学生、所有的偶数、所有的三角形等。
2. 新课讲解:(1)集合的基本概念:集合的定义、元素、集合的表示方法。
(2)集合的运算:交集、并集、补集、幂集。
(3)映射的定义:映射的概念、映射的表示方法。
(4)映射的性质:单射、满射、双射。
(5)特殊类型的映射:恒等映射、投影映射、线性映射。
3. 例题讲解:(1)求集合A和B的交集、并集、补集。
(2)判断给定的映射是否为单射、满射、双射。
4. 随堂练习:(1)已知集合A,求A的幂集。
(2)判断给定映射的类型。
六、板书设计1. 集合的基本概念、运算及表示方法。
2. 映射的定义、性质及特殊类型的映射。
3. 例题及解答。
七、作业设计1. 作业题目:(1)设A为集合,求A的幂集。
(2)已知映射f:A→B,判断f是否为单射、满射、双射。
2. 答案:(1)幂集的求解方法:列举法、公式法。
(2)判断映射类型的依据:映射的定义及性质。
八、课后反思及拓展延伸1. 反思:本节课学生对集合与映射的基本概念掌握程度,对例题的解答情况。
2. 拓展延伸:(1)研究集合的势(cardinality)。
点集拓扑学注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。
本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。
由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。
点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后研究的那些不变性和不变量,比如联通性,可数性,分离性等。
其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。
这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。
拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。
集合概念的发展历程:集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。
朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。
集合的定义:① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。
② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来作为一个群体来研究,这个群体称为集合,这种对象可能是独立的个体,或一个抽象的概念,或者群体,也可能对象之间本身就有包涵关系的集合但不完全相同,也可能是没有包涵关系的子集,当我们把所有对象集中在一起称为全集或者幂集族。
全集的一部分称为子集,幂集的一部分称为子集族。
集合一般用大写字母表示,其中元素用小写。
集合的表示方式:1枚举法一般在大括号里罗列出集合的元素,如下:{}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a2文字语言表述法用文字语言来表达构成集合的要求:某个班级的全体男生,一盒象棋,一箱牛奶等。
点集拓扑讲义知识点总结一、拓扑空间基本概念1.1 集合和拓扑空间在点集拓扑学中,最基本的两个概念就是集合和拓扑空间。
集合是元素的无序集合,而拓扑空间是一个集合,其中定义了一种称为拓扑结构的特定结构。
这个结构用来描述集合中元素的“接近”或“相邻”的概念。
1.2 拓扑结构拓扑结构定义了哪些子集被认为是开集,从而为集合赋予了拓扑性质。
具体来说,给定一个集合X,如果满足以下条件:(1)空集和X本身是开集;(2)任意开集的任意并集仍然是开集;(3)有限个开集的任意交集仍然是开集。
那么这个集合X连同其定义的拓扑结构称为一个拓扑空间。
1.3 开集和闭集在拓扑空间中,开集和闭集是两个非常重要的概念。
开集是指每个点都包含在集合内部的集合,闭集则是指包含了其边界的集合。
开集和闭集的性质和运算是拓扑学中的基础。
1.4 拓扑空间的连通性拓扑空间的连通性描述了空间内部的连通性质,一个拓扑空间如果不是两个不相交开集的并,则称为连通的。
连通性质是描述空间整体结构的一种重要方式。
二、拓扑空间的结构和性质2.1 度量空间和拓扑空间度量空间是一种拥有度量的拓扑空间,度量是一种满足一系列性质的函数,用来度量空间中两点之间的距离。
度量空间可以定义一种称为度量拓扑的拓扑结构,这种拓扑结构给出了空间中点的“接近”概念。
2.2 Hausdorff空间Hausdorff空间是指任意两个不同的点都存在不相交的邻域的拓扑空间。
这种空间具有较强的分离性质,能够更好地描述空间中点的位置关系。
2.3 紧空间在拓扑学中,紧空间是指任何开覆盖都存在有限子覆盖的空间。
紧空间具有重要的性质,例如有限覆盖性质和闭性性质,这些性质在分析和拓扑学的研究中有着重要的应用。
2.4 连通空间连通空间是指空间中不存在非空且既开又闭的子集的空间。
换句话说,连通空间是指空间中的点在拓扑上是连续的,没有间断。
这是拓扑空间中另一个极为重要的性质。
2.5 分离性和局部性在拓扑学中,还存在一些描述拓扑空间性质的分离性和局部性定理,包括T0空间、T1空间、T2空间等概念。
点集拓扑学~非同凡响畅想系列注明:(拓扑学的语言表达准确性很重要),这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。
本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。
由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。
点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后研究的那些不变性和不变量,比如连通性,可数性,分离性等。
其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。
这些都和弹性变形下的拓扑不变性有关,这种弹性变形指的是拓扑学中的同柸关系,相近点变相近点的连续概念。
拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。
第一节:关系与映射集合概念的发展历程:集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。
朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识和总结,在现实中得到了广泛的运用。
集合的定义:① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。
② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来作为一个群体来研究,这个群体称为集合,这种对象可能是独立的个体,或一个抽象的概念,或者群体,也可能对象之间本身就有包涵关系的集合但不完全相同,也可能是没有包涵关系的子集,当我们把所有对象集中在一起称为全集或者幂集族。
全集的一部分称为子集,幂集的一部分称为子集族。
集合一般用大写字母代表,其中元素用小写代表。
集合的表示方式:1枚举法一般在大括号里罗列出集合的元素,如下:{}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,,Λc b a2文字语言表述法用文字语言来表达构成集合的要求:某个班级的全体男生,一盒象棋,一箱牛奶等。
3图示法4数学关系描述法或者数学语言描述法用数学关系式来抽象表达构成集合的要求,或者用数学表达方式来抽象的替代构成集合的要求,为了便于数学分析与研究我们一般用这种数学表达方式来抽象的描述集合,如下: (){}(){}x P X x x x P X x ,∈∈或者对集合的描述必须合理,要不然会出现悖论,比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。
又比如:{}{}能是该集合的元素同时说明一个集合不可了离模式表示方式就合理所以我们采用下面的分的元素都是矛盾,元素与不是这个集合中很显然是这个集合中的呢?也就是说是不是这个集合的元素是一个集合,那么如果X A A x X x R R x R R x x x R ⊂∉∈==∉=,? 集合的关系符号:(=∈∋⊆⊇⊂⊃∪∩⊊⊋⊄⊅⊈⊉)如果在集合A 中的某个元素a 属于它那么记为A a ∈否则A a ∉;如果集合B 中的元素包含在集合A 中我们记为A B ⊆或者B A ⊇,这时当A 中元素有多的异于B 中的元素时记为A B ⊂或者B A ⊃;当A 与B 中元素相同时我们称它们相等记为B A =集合的运算:运算符号:交⋂,并⋃,差-,补︒A ,余A ',{}B A x x B A ∈∈=⋃x 或者,{}B x A x x B A ∈∈=⋂且1幂等律:A A A A A A =⋃=⋂,2交换律:A B B A A B B A ⋃=⋃⋂=⋂,3分配律:()()()()()()C A B A C B A C A B A C B A ⋃⋂⋃=⋂⋃⋂⋃⋂=⋃⋂,4结合律:()()()()C B A C B A C B A C B A ⋃⋃=⋃⋃⋂⋂=⋂⋂,5 De Morgan 律:()()()()()()C A B A C B A C A B A C B A -⋂-=⋃--⋃-=⋂-,6 ()()()()()()C A B A C B A C A B A C B A ⨯⋃⨯=⋃⨯⨯⋂⨯=⋂⨯,7 ()()A A X X X A X A A X X =--⊆⋂=--则,若,8 B B A B A A B A =⋃⇔⊆⇔=⋂集合中的元素也可能是一个集合,这样的集合有两种,第一种虽然集合中的元素是集合但是该集合中的元素是把集合当做一个对象或者个体,与集合中其它对象(这里的对象是集合)没有包含关系,这样的集合本质上还是集合概念所定义的集合,也可以称为集族,比如集合,{}别和一般集合没有本质区共同的全集元素没有合,且没有包含关系各一个元素而不是一个集它们都是作为集合中的时一群羊都是集合,而此,一群人,一群大象,群羊一群人,一群大象,一,第二种是集合中的元素都是集合,但是这些集合有一个全集,它们和全集有包含关系,我们把由全集的部分子集作为研究对象构成子集族。
这种子集族和集合是有区别的,我们把全集的所有子集放在一起称为幂集。
点集拓扑学主要研究的是第二种情况,下面给出指标集族的定义:子集族:给定一个集合X ,X X i ⊆,把X 的所有子集抽象出来构成一个集合称为X 的幂集()X P ,把幂集中有一部分子集或者全部拿出来构成一个集合,我们称为子集族。
数列{}{}+∈=Z n n n x x ,数列可以看做定义域在整数集或者子集上的函数或者映射,其中元素可以有相同的,但是数列中的元素必须是有序的,也就是说遵循正整数由小到大的排列顺序规律,即映射中元素之间关系必须遵循整数的由小到大排列顺序。
而集合中的元素是无序的,互不相同的,这就是区别。
我们以这样的方式表示集族:给定一个集合J ,对于任意不同的J j ∈,存在不同的集合j A ,我们把所有不同的j A 全体称为有标集族()J j j A ∈=A ,称J 为指标集,j 为有标集族中某个集合元素的指标,当任意j A 都是某个集合X 的子集时,这时候的有标集族为有标子集族。
集族中元素是互不相同的,但是可能有序,这种有序有标集族称为集列,这时指标集为自然数N ,集列按自然数由小到大排列。
当然有标集也可以是实数,集族中的元素也可以按实数由小到大排列。
幂集:集合中的关系:对于集合X 与Y 的笛卡尔集Y X ⨯,存在它的一个子集Y X R ⨯⊆,子集R 中的元素()R y x ∈,,我们说y x ,是对于R 二元相关记作xRy ,当Y X =时R 称为X 上的二元关系。
若R 是X 到Y 的关系则:()(){}R y x Y X x y R OP ∈⨯∈=,,是Y 到X 的关系,称为R 的对偶关系。
有()R R op op =。
集合X 上的一个关系R 如果是等价的那么必须满足三个条件:1 自反的:()()xRx R x x X x R X 即∈∃∈∀⊆∆,,, 2 对称的:R R op =,若xRy ,且yRx3 传递的:R R R ⊆ο,若yRz xRy ,,则xRz()()()()y x R x y y x id X R RR X X op =⇒∈=∆=,,,即称为反对称的:上关系另外I 恒同关系()(){}X x x x X ∈=∆,,模p (素数)等价关系:(){}np y x t s Z n Z Z y x p =-∈∃⨯∈=..,,mod ,同柸关系等都是等价关系。
(){}y x R y x y x <∈,,,小于关系不是等价的它是传递的,不是对称的和自反的。
R 是X 上的一个等价关系,存在X x ∈,集合[](){}R y x X y x ∈∈=,称为x 关于R 的等价类。
我们把[]{}X x x ∈叫作集合X 关于R 的商集,记作R X /。
定律:如果R 是非空集合X 上的等价关系,则1 [][]≠∴∈∈∀x x x X x ,则,∅2 [][]y x y x R y x =,则等价记关于~,3 [][][][]y x y x X y x ≠=∈∀要么要么,,,4 []x X X x ∈=Y 。
X 上的一个等价类[]x 是X 上的某类划分中的其中一个部分,X 的不同划分中X 中的元素x 有不同的等价类,且个划分的各部分之间没有交集,所有部分的并为全集X ,即[]x X X x ∈=Y 。
如下图是对集合XX 其中A 是其中一种划分中的一个划分部分或者等价类或称等价类集,A 中任何元素都是以A 部分为等价的,A 中的元素相对于A 划分部分都是同柸的。
划分与同柸:集合的一个划分就是把一个集合进行等价关系分类,每个类别就决定一个等价关系,这个类别称为等价类,等价类中的所有元我们称为同柸。
集合X 的一个等价关系决定了某个划分中的一部分,反过来集合的一个划部分对应着一个等价关系。
同柸指的是拓扑空间的图形满足拓扑不变性的映射关系的一类图形的搜集,同柸是一个集合,所有不同的同柸构成同柸集或者同柸集族,同柸集是把其中元素作为一个点处理,同柸族是把里面的元素作为一个图形处理,这个图形可以理解为一个集合。
同柸族的并是全集X ,可以理解为族或集。
它相当于X 的一个划分或等价类。
使拓扑空间中的图形满足拓扑不变性的关系对应的的映射称同柸映射,满足同柸映射的关系有多种,其中的恒同关系是等价关系,不同的图形可能有不同的同柸,所以一个同柸代表一个划分,它们是等价的。
我们把在拓扑空间中满足图形的拓扑不变性的所有映射或者函数统称为同柸关系,满足同柸关系的映射为同柸映射,同柸映射的因变量与自变量是拓扑图形,图形在同柸映射下互为同柸,所以同柸映射与同柸关系不是同一概念,同柸关系包涵所有同柸映射。
(拓扑学的语言表达准确性很重要)映射:映射是集合之间关系的一种术语,是在纯数学中讨论的一个基本数学概念,映射由三部分组成:定义域,值域,对应法则,在定义域X 中任意一个取值x 按照某种对应法则f在值域Y 中都有唯一确定的值y 与之对应。
然而在点集拓扑学里我们这样来定义映射:给定两个集合Y X ,以及它们的一个关系R ,如果集合X 中任意一个元素x ,集合Y 中存在唯一的元素y ,使得y x ,对于R 相关,即xRy ,我们称R 是集合X 到集合Y 的对映法则,这时候我们称在对映法则R 下建立了集合X 到Y 的映射,映射的原像称为定义域,映射的像称为值域,映射的关系R 称为对应法则,一般记为f ,记Y X f →:。
两个映射22:2111,:Y X f Y X f →→相同,当且仅当212121,,f f Y Y X X ===函数:y x f →:像:()(){}A x x f A f X A ∈=⊆∀,原像:()(){}B x f X x B fY B ∈∈=⊆∀-1,几种映射:单射:存在映射Y X f →:,如果集合X 中存在任意的不同的元素x ,按照对应关系f在集合Y 中都有唯一的不同元素y 与之对映称之为单射。