(点集拓扑学拓扑)知识点

  • 格式:doc
  • 大小:2.87 MB
  • 文档页数:41

下载文档原格式

  / 41
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(点集拓扑学拓扑)知识点

第4章连通性重要知识点

本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间.

§4.1 连通空间

本节重点: 掌握连通与不连通的定义.

掌握如何证明一个集合的连通与否?

掌握连通性的拓扑不变性、有限可积性、可商性。

我们先通过直观的方式考察一个例子.在实数空间R中的两个区间(0,l)和[1,2),尽管它们互不相交,但它们的并(0,1)U[l,2)=(0,2)却是一个“整体”;而另外两个区间(0,1)和(1,2),它们的并(0,1)U(1,2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0,l)有一个凝聚点1在[1,2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.

定义4.1.1设A和B是拓扑空间X中的两个子集.如果

)

B

A

(

B

(A

=

⋂)

则称子集A和B是隔离的.

明显地,定义中的条件等价于∅=

A和

⋂B

⋂A

B同时成立,也就是说,A与B无交并且=

其中的任何一个不包含另一个的任何凝聚点.应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的,而子集(0,l)和[1,2) 不是隔离的.

又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.

定义4.1.2 设X是一个拓扑空间.如果X中有两个非空的隔离子集A和B使得X=A∪B,则称X是一个不连通空间;否则,则称X是一个连通空间.

显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间.定理4.1.1设X是一个拓扑空间.则下列条件等价:

(l)X是一个不连通空间;

立.

(4)蕴涵(l).设X中有一个既开又闭的非空真子集A.令B=A'.则A和B都是X中的非空的闭子集,它们是无交的并且使得A∪B=X.易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(l)成立.例4. 1.1 有理数集Q作为实数空间R的子空间是一个不连通空间.这是因为对于任何一个无理数r∈R-Q,集合(-∞,r)∩Q=(-∞,r]∩Q是子空间Q中的一个既开又闭的非空真子集.

定理4.1.2 实数空间R是一个连通空间.

证明我们用反证法来证明这个定理.

假设实数空间R是不连通空间.则根据定理4.1.1,在R中有两个非空闭集A和B使得A ∩B=∅和A∪B=R成立.任意选取a∈A和b∈B,不失一般性可设a<b.令A~=A∩[a,b],和B~=B∩[a,b].于是A~和B~是R中的两个非空闭集分别包含a和b,并且使得A~∩B~=∅和A~∪B~=[a,b]成立.集合A~有上界b,故有上确界,设为b~.由于A~是一个闭集,所以b~∈A~,并且因此可见b~<b,

因为b ~=b 将导致b ∈A ~∩B ~,而这与A ~∩B ~=∅矛

盾.因此(b ~,b]⊂B ~.由于B ~是一个闭集,所以b

~∈B ~.这又导致b ~∈A ~∩B ~,也与A ~∩B ~=∅矛盾.

定义4.1.3设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集;否则,称Y 是X 的一个不连通子集.

拓扑空间X 的子集Y 是否是连通的,按照定义只与子空间Y 的拓扑有关(即Y 的连通与否与X 的连通与否没有关系.).因此,如果X Z Y ⊂⊂,则Y 是X 的连通子集当且仅当Y 是Z 的连通子集.这一点后面要经常用到.

定理4.1.3 设Y 是拓扑空间X 的一个子集,A ,B ⊂Y .则A 和B 是子空间Y 中的隔离子集当且仅当它们是拓扑空间X 中的隔离子集. 因此,Y 是X 的一个不连通子集当且仅当存在Y 中的两个非空隔离子集A 和B 使得A ∪B =Y(定义)当且仅当存在X 中的两个非空隔离子集A 和B 使得A ∪B =Y .

证明 因为

)

)(())(())()(())()(()

))((()))((())(())((A B C B A C A Y B C B Y A C A Y B C B Y A C A B C B A C X X X X X X Y Y ⋂⋃⋂=⋂⋂⋃⋂⋂=⋂⋂⋃⋂⋂=⋂⋃⋂

因此根据隔离子集的定义可见定理成立.

定理4.1.4 设Y 是拓扑空间X 中的一个连通子集.如果X 中有隔离子集A 和B 使得 Y ⊂A U B ,则或者 Y ⊂A ,或者 Y ⊂B .

证明 如果A 和B 是X 中的隔离子集使得Y ⊂AUB ,则

∅=⋂⋃⋂⋂=⋂⋂⋃⋂⋂⊂⋂⋂⋂⋃⋂⋂⋂)()(()

()()

)(())((A B B A Y A Y B B Y A Y A Y B Y B Y A

这说明A ∩Y 和B ∩Y 也是隔离子集.然而

(A ∩Y )∪(B ∩Y )=(A ∪B )∩Y =Y

因此根据定理4.1.3,集合A ∩Y 和B ∩Y 中必有一个是空集.如果 A ∩Y=∅,据上式立即可见 Y ⊂B ,如果 B ∩Y = ∅,同理可见Y ⊂A . 定理4.1.5设Y 是拓扑空间X 的一个连通子集,Z ⊂X 满足条件Y Z Y ⊂⊂.则 Z 也是X 的一个连通子集.

证明 假设Z 是X 中的一个不连通子集.根据定理4.1.3,在 X 中有非空隔离子集A 和B 使得Z=A ∪B .因此 Y ⊂AUB .由于Y 是连通的,根据定理4.1.4,

或者Y ⊂A ,∅=⋂=⇒∅=⋂⊂⋂⇒⊂⊂B Z B B A B Z A Y Z