1.1同底数幂的乘法
- 格式:ppt
- 大小:3.03 MB
- 文档页数:25
专题1.1同底数幂的乘法(分层练习,五大类型)题型分类练考查题型一、利用同底数幂的乘法法则进行计算1.计算:﹣(x2)•(﹣x)3•(﹣x)4.2.计算:x n+2•x+(﹣x)2•x•x n(其中n是正整数).考查题型二、利用同底数幂的乘法法则求字母的值3.已知a m=4,a n=5,求a m+n的值.4.如果a n﹣3•a2n+1=a16,求n的值.5.已知(﹣x)a+2•x2a•(﹣x)3=x32,a是正整数,求a的值.考查题型三、利用同底数幂的乘法法则求式子的值6.已知2x+3=m,用含m的代数式表示2x.7.已知a x=4,a x+y=64,求a x+a y的值.考查题型四、利用同底数幂的乘法法则解新定义问题8.对于任意正整数a,b,规定a⊗b=(2a)b﹣2a•2b,试求2⊗3的值.9.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a (M•N)=log a M+log a N.(1)解方程:log x4=2.(2)log48=.(3)计算:lg2+1g5﹣2023.考查题型五、利用同底数幂的乘法法则解规律探究题10.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n.例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1∴1+2+4+8﹣16+…+230=231﹣1请按照此解答过程,完成下列各题:(结果请用含m的代数式表示)求3+2+的值,其中m为正整数.综合提升练一、单选题1.下列选项中,是同底数幂的是()A.(﹣a)2与a2B.﹣a2与(﹣a)3C.﹣x5与x5D.(a﹣b)3与(b﹣a)32.计算(﹣a)4•a3的结果是()A.a7B.a12C.﹣a7D.﹣a123.下列关于m2的表述中,正确的是()A.m2=2•m B.m2=2+m C.m2=m+m D.m2=m•m4.在x n+1•()=x m+n中,括号内应填的代数式是()A.x m﹣1B.x m+1C.x m+n+1D.x m+25.已知x a=2,x b=5,则x a+b=()A.7B.10C.20D.506.下列运算中的结果为a3的是()A.a+a2B.a6+a2C.a•a2D.(﹣a)3 7.(m﹣n)2•(n﹣m)3的计算结果正确的是()A.(m﹣n)5B.﹣(m﹣n)6C.(n﹣m)5D.(n﹣m)68.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,则32018的末位数字是()A.9B.1C.3D.7二、填空题9.计算:a2•a3=.10.已知2x+3y﹣3=0,则9x•27y=.11.计算:(x﹣y)2(y﹣x)3=.(结果用幂的形式表示)三、解答题12.一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.13.若22m+7=26×24m,求m.14.规定a*b=2a×2b,求:(1)求2*3;15.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).。
1.1同底数幂的乘法一、学习目标1.通过自学,,会准确说出同底数幂的乘法法则和公式。
2.能根据法则公式,熟练地进行同底数幂的乘法运算。
二、课型:新授课三、重点: 同底数幂的乘法法则和公式难点:根据法则公式准确地进行计算。
四、课前准备:导学稿,练习本,红笔五、 教法:自学加引导,小组合做六、自学指导根据例题完成填空,2分钟后提问+检测例:)(2222)2222(22m *⋯⋯***⨯*⋯⋯***=⨯n m 个2 n 个2=)2222(*⋯⋯***(m+n)个2=n m +2问题 =⨯62a a ( ) ⨯( ) =⨯m n a a ( ) ⨯( )__个a ___个a __个a ___个a=( ) =( )___个a ___个a=_________ =_________由以上两题可得:公式:=⨯m n a a __________(m,n 都为正整数)法则:同底数幂相乘,底数_______指数_______(学生先看懂例题,然后自己做,之后同桌互批,互讲,教师巡视)七、自学指导2自学p3例1,划出不理解的地方。
2分钟后提问+练习检测八、检测1.判断并订正:623a =⨯a a ( )_______________4442b =⨯a b ( )______________1055y =+y y ( ) ______________927y =∙y y ( ) _________________2.算下列各式:(1)52×57; (2)7×73×72;(3)-x 2·x 3; (4) 425-⨯m a a(中等偏下学生板演,教师巡视,时间,6分钟,发现问题,同桌互批,讲题过程中重点点播。
并让学生总结做同底数幂的乘法时需要注意什么。
在学生做题时反复强调。
让他们掌握此类题的做题方法)九、当堂训练1.计算:(1)52)((-x)x -∙ (2) )a (a 23-∙- (3) 321a +++∙n n a a2已知,2,8==m n a a 求n m a +的值(中等学生板演,教师巡视,时间3分钟,发现问题,之后学生批改,并总结做题方法。
1.1同底数幂的乘法一、同底数幂的乘法法则:同底数幂相乘,底数不变吧,指数相加。
同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用:a m+n =a m ﹒a n (指加,幂乘,同底)二、要点1、法则:同底数幂相乘,底数不变,指数相加。
2、正确理解:在底数相同的情况下,两个幂相乘,底数不变,其指数相加。
也就意味着如果是两个不同底数的幂相乘,要用法则,就必须转化成同底。
三、注意同底数幂的乘法法则:(m,n 都是正数)课时训练一、选择。
1.设a m =8,a n =16,则a m+n =()A.24B.32C.64D.1282.计算(-a)2·(-a)3的结果是()A.-a 5B.a 5C.-a 6D.a 63.下列各式中,正确的是()A.5532t t t ⋅=B.426t t t +=C.3412t t t ⋅=D.235t t t ⋅=4.计算()23()()m m m ⋅⋅---,正确的是()A.3m -B.5m C.6m D.6m -5.计算24a a ⋅的结果为()A.2a B.4a C.6a D.8a 6.a x =3,a y =4,则a x +y =()A.3B.4C.7D.127.计算:a •a 2的结果是()A.3a B.a 3C.2a 2D.2a 38.化简32()()x x --,结果正确的是()A.6x -B.6x C.5x D.5x -9.下列式子计算结果为22x 的是()A.x x +B.2x x ⋅C.2(2)x D.632x x ÷10.计算()23a a -⋅的结果是()A.5a B.5a -C.6a D.6a -二、填空。
11.若38m a a a a ⋅⋅=,则m =________.12.若3m x =,2n x =-,则2m n x +=______.13.计算:3×9×27×3n =________;22(8)2n n +⋅-⋅=_______.14.如果1216n n a a a +-=,则n =_______.15.计算:(-2)3×(-2)2=_______,(-22)×(-2)3=______.16.一台电子计算机每秒可作1012次运算,它工作5×106秒可作_________次运算.三、解答。
北师大版七年级下册数学教案:1.1 《同底数幂的乘法》x一. 教材分析《同底数幂的乘法》是北师大版七年级下册数学的第一课时内容,主要介绍了同底数幂相乘的法则。
这一节内容是初中学员掌握幂的运算的重要基础,对于学生理解幂的运算法则和拓展学习其他数学知识有着重要的意义。
二. 学情分析七年级的学生已经掌握了有理数的乘法、幂的定义等基础知识,但对于幂的运算规则还比较陌生。
同时,由于幂的运算涉及到抽象的数学概念,学生可能对此难以理解。
因此,在教学过程中,需要注重让学生理解幂的运算规则,并通过大量的练习来巩固知识点。
三. 教学目标1.让学生理解同底数幂相乘的法则。
2.使学生能够运用同底数幂相乘的法则进行计算。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.教学重点:同底数幂相乘的法则。
2.教学难点:理解同底数幂相乘的法则,并能够灵活运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索同底数幂相乘的法则;通过案例分析,让学生理解并掌握运算规则;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.PPT课件:包括同底数幂相乘的法则、案例分析、练习等内容。
2.练习题:包括基础题、提高题和拓展题。
3.板书:准备黑板和粉笔,用于板书重点内容和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入同底数幂相乘的概念,如“已知x^3 * x^2 = x^(3+2),求x的值。
”引导学生思考同底数幂相乘的法则。
2.呈现(10分钟)讲解同底数幂相乘的法则,用PPT展示案例,如:x^3 * x^2 = x(3+2),x4 * x^-1= x^(4-1)。
让学生理解并记忆同底数幂相乘的规则。
3.操练(10分钟)让学生进行同底数幂相乘的练习,教师巡回指导。
可设置一些基础题,如:2^3 * 22,以及一些提高题,如:34 * 3^-2。
在此过程中,提醒学生注意指数的加减法。
专题1.1 同底数幂的乘法1.理解并掌握同底数幂的乘法法则.;2.能够运用同底数幂的乘法法则进行相关计算;知识点01. 同底数幂的乘法法则文字语言:同底数幂相乘,底数不变,指数相加符号表示:a m • a n =a m+n (m ,n 都是正整数)注意:①同底数幂是指底数相同的幂,底数可以是任意的实数,一个字母,也可以是单项式、多项式. ②三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a++⋅⋅=(,,m n p 都是正整数). ③常见变形:(-a)2=a 2, (-a)3=-a 3知识点02. 同底数幂的乘法法则的逆用把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).或a m+n =a p • a q ,其中m+n=p+q.知识点03. 同底数幂的乘法法则的实际应用利用同底数幂的乘法法则,解决生活中的实际问题。
知识点01 同底数幂的乘法法则典例:计算(1)(-3)7·(-3)6; (2)744a a a a ⋅-⋅;(3)-b 2m ·b 2m+1; (4)x 3·x 5. 【答案】(1)(-3)13;(2)0;(3);(4)x 8【分析】运用同底数幂的乘法法则和整式的加减法法则计算即可得解.解:(1)(-3)7·(-3)6=(-3)6+7=(-3)13 (2)744a a a a ⋅-⋅88a a =-0=;(3)-b 2m ·b 2m+1=-b 2m+2m+1=-b 4m+1;(4)x 3·x 5=x 3+5=x 8【点拨】本题考查了同底数幂的乘法,合并同类项,熟练掌握计算法则是解题关键.巩固练习1.计算:(1) (2)(3) (4)【答案】(1)7x -;(2)132;(3)0;(4)()5x y - 【分析】根据同底数幂的乘法性质:同底数幂相乘,底数不变,指数相加,逐一计算即可.解:(1)43437x x x x +-=-=- (2)2323511111222232+⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)62536253880a a a a a a a a ++-=-=-=(4)()()()()32325x y x y x y x y +--=-=-. 【点拨】此题主要考查同底数幂的乘法性质,熟练掌握,即可解题.2.计算:(x -y)2·(x -y)3·(y -x)2·(y -x)3; (2)(x -y)2·(y -x)3+2(x -y)·(x -y)4.【答案】(1)-(x -y)10;(2)(x -y)5.【分析】根据同底数幂相乘,底数不变指数相加即可.解:(1) (x -y)2·(x -y)3·(y -x)2·(y -x)3=-(x -y)2+3+2+3=-(x -y)10.(2) 原式=-(x -y)2·(x -y)3+2(x -y)·(x -y)4=-(x -y)5+2(x -y)5 =(x -y)5【点拨】本题考查的知识点是同底数幂的乘法,解题的关键是熟练的掌握同底数幂的乘法. 知识点02 同底数幂的乘法法则的逆用典例:已知2m a =,3n a =,求下列各式的值:(1)1m a +; (2)2n a +; (3)a m+n . 【答案】(1)2a ;(2)23a ;(3)6【分析】(1)根据同底数幂乘法将其变形展开即可得;(2)根据同底数幂乘法将其变形展开即可得;(3)根据同底数幂乘法将其变形展开即可得;解:(1)1m a +=a m ·a=2a ;(2)2n a +=a n ·a 2=23a ;(3)a m+n =a m ·a n =2×3=6.【点拨】本题考查了同底数幂的乘法,能将同底数幂的乘法逆运用是本题的关键.巩固练习1.(1)已知a m =4,a n =3,求a m+n 的值;(2)已知2x +1=64,求x . 【答案】(1) 12,(2) x =5.【分析】(1)用同底数幂的乘法法则,底数不变,指数相加;(2)逆用同底数幂的乘法法则,将2x+1转化为2x ×2,再求解.解:(1) a m +n =a m ·a n =4×3=12.(2)因为2x+1=2x ·2=64,所以2x =32=25.所以x =5.2. 用简便方法计算:(5.2×410)×(2.5×10).【答案】 (2) 1.3×610【分析】根据有理数乘法的交换律和结合律进行计算,然后将结果用科学记数法表示出来即可. 解:原式=(5.2×2.5)×(410×10)=13×510=1.3×610. 【点拨】本题考查了科学记数法,熟练掌握运算法则是解题的关键.知识点03 同底数幂的乘法法则的实际应用典例:银行的点钞机每分钟大约点钞103张.若两小时不间断点钞,则点钞机可点多少钱?(按点百元面额人民币计算)【答案】 1.2×107【分析】根据有理数乘法的交换律和结合律进行计算,然后将结果用科学记数法表示出来即可解:2×60×103×100=1.2×102×103×102 =1.2×107(元).【点拨】本题考查用科学记数法表示较小的数以及有理数乘法等知识,一般形式为a ×10n ,其中1≤|a|<10。