初中毕业班数学总复习《数与代数》综合练习一及参考答案
- 格式:doc
- 大小:319.50 KB
- 文档页数:7
《数与代数》综合测试卷一(总分120分)一、选择题(单项选择,每小题3分,共18分).1、在下列语句中:①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( ).(A )②③; (B )②③④; (C )①②④; (D )②④. 2、下列运算正确的是( ).(A )1535·a a a =; (B )1025a a =)(-; (C )235a a a =-; (D )932-=-.3、“鸡兔同笼”是我国民间流传的诗歌形式的数学题,“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几只鸡儿几只兔?”解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ).(A )⎩⎨⎧=+=+1004236y x y x ; (B )⎩⎨⎧=+=+100236y x y x ;(C )⎩⎨⎧=+=+1002236y x y x ; (D )⎩⎨⎧=+=+1002436y x y x .4、如图,已知函数b ax y +=和kx y =的图象交于点P ,根据图象可得,关于y x 、的二元一次方程组⎩⎨⎧=+=kx y bax y 的解是( ).(A )⎩⎨⎧==23y x ; (B )⎩⎨⎧=-=23y x ;(C )⎩⎨⎧-==23y x ; (D )⎩⎨⎧-=-=23y x .5、已知0>>b a ,则下列不等式不一定成立.....的是( ). (A )2b ab >; (B )c b c a +>+; (C )ba 11<; (D )bc ac >. 6、将抛物线2x y =向左平移4个单位后,再向下平移2个单位,则所得到的抛物线的解析式为( ). (A )2)4(2++=x y ; (B )2)4(2-+=x y ; (C )2)4(2+-=x y ; (D )2)4(2--=x y .二、填空(每小题3分,共36分).1、2007的相反数是 .2、地球的表面积约为510000000平方千米,用科学记数法可以表示为 平方千米.3、当x 时,分式242--x x 的值为0.4、已知:533y xa +与3+-b xy 是同类项,则b a += .5、请你写出满足73<<-x 的整数x = .6、分解因式:2269y xy x ++= . 7、已知实数y x 、满足45-++y x =0,则代数式2007)(y x +的值为 .8、已知方程组⎩⎨⎧=+=+8302by x y ax 的解是⎩⎨⎧-==12y x ,则a = ,b = .9、抛物线x x y 42+=的顶点坐标是 . 10、如图,P 是反比例函数xky =图象上的一点,x PA ⊥轴于A 点,y PB ⊥轴于B 点,若矩形OAPB 的面积为2,则此反比例函数的关系式为.11、如图,已知二次函数c bx ax y ++=21和一次函数n mx y +=2的图象,由图象知,当12y ≥y 时,x 的取值范围是: .12、一只跳蚤在一条数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次停下来休息时,此时离原点的距离是 个单位. 三、解答题.1、(6分)计算:3÷12)1()2(02-+-⨯--;2、(6分)先化简,后求值:aa a 21a a a ÷1a 12222++--+-,其中3=a ,结果精确到0.01.3、(6分)解方程x x 22+=2. 4、(6分)解不等式组⎪⎩⎪⎨⎧->--x x x ≥3121)1(215、(8分)如图,在矩形ABCD 中,AB =4,AD =10,动点P 由点A (起点)沿着折线AB -BC -CD 向点D (终点)移动,设点P 移动的路程为x ,△PAD 的面积为S ,试写出S 与x 之间的函数关系式.6、(8分)在“情系灾区”的捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息: 信息一:甲班共捐款300元,乙班共捐款232元;信息二:乙班平均每人捐款数是甲班平均每人捐款数的54; 信息三:甲班的人数比乙班的人数多2人.根据以上信息,请你求出甲、乙两班的人数各是多少? 7、(8分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购车数量搭配方案有哪几种?(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?8、(8分)某市A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C 、D 两个冷冻厂,已知C 厂可储存240吨,D 厂可储存260吨;从A 村运往C 、D 两厂的费用分别为每吨20元和25元,从B 村运往C 、D 两厂的费用分别为每吨15元和18元,设从A 村运往C 厂的柑桔重量为x 吨,A 、B 两村运往两厂的柑桔运输费用分别y A 元和y B 元.(1(2)分别求出A y 、B y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若B 村的柑桔运费不得超过4830元,在这种情况下,请问怎样调配数量,才能使两村所花运费之和最小?并求出这个最小值.9、(10分)某环保器材公司销售一种新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元/件)存在如图所示的一次函数关系,每年销售该产品的总开支z (万元)(不含进价成本)与年销售y (万件)存在函数关系z =10y +42.5.(1)求y 与x 之间的函数关系式; (2)试求出该公司销售该产品年获利w (万元)与销售单价x (元/件)的函数关系式(年获利=年销售总收入金额 - 年销售产品的总进价 - 年总开支金额);当销售单价x 为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)题中的函数图象确定x 的取值范围.《数与代数》综合练习(一)参考答案一、1、C ; 2、B ; 3、A ; 4、D ; 5、D ; 6、B.二、1、-2007; 2、5.1×108; 3、x =-2; 4、0; 5、x =-1,0、1、2; 6、2)3(y x + 7、-1; 8、a =1,b =-2; 9、(-2,-4); 10、xy 2=; 11、1≤≤2x -;12、50.三、1、241; 2、a 3,1.73; 3、311+-=x ,312--=x ; 4、32≤-x ; 5、(1)当0≤x ≤4时,S =5x ;(2)当4<x ≤14时,S =20;(3)当14<x ≤18时,x x S 590)18(1021-=-⨯⨯=.6、设乙班x 人,则甲班(x +2)人,依题意得:230054232+x x ⋅=,解得x =58. 7、设三人普通间x 间、双人普通间y 间,依题意得:⎩⎨⎧=⋅+=+1510%50)140150(5023y x y x 解得⎩⎨⎧==138y x 8、设购买轿车x 辆.(1)由题意得:⎩⎨⎧+55≤x)4(107x 3≥-x解得3≤x ≤5,取x =3,4,5,所以有三种方案:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)由题意得:200x +110(10-x) ≥1500,解得x ≥494,又由(1)题知x ≤5,所以取x =5,即应选择第三种方案:购买轿车5辆、面包车5辆.9、(1)表中从上而下,从左到右依次填:(200-x )吨、(240-x )吨、(60+x )吨;(2)200.≤≤0.46803)60(18)240(15;55000)200(2520x x x x y x x x y B A +=++-=-=-+=(3)由B y ≤4830,得3x +4680≤4830,∴x ≤50,设A 、B 两村运费之和为y ,则y =A y +B y =-2x +9680,y 随着x 的增大而减小,又0≤x ≤50,∴当x =50时,y 有最小值.最小值是y =9580(元). 10、(1)由题意,设y = kx + b, 图象过点(70、5),(90、3)∴解得⎩⎨⎧+=+=b k b k 903705⎪⎩⎪⎨⎧=-=12101b k ,∴.12101+-=x y(2)由题意,得:)12101()5.4210()40()40(+-=+--=--=x y x y z x y w × 80)85(1015.642171.05.42)12101(10)40(22+-=--+x x x x x -=-+--- ∴当x =85时,年获利最大值为80(万元).(3)由w =57.5得:-0.1x 2+17 x -642.5=57.5,解得1x =70,2x =100.由(2)中图象可知:70≤x ≤100.。
数与代数数与式〔一,二,六,十四,十五,十六,二十一〕一.选择:1. 以下计算中,正确的选项是 ( ).A. B. C. D.18 32. 预计的运算结果应在〔〕2A.1 到 2 之间 B .2 到 3 之间 C .3 到 4 之间 D.4 到 5 之间3. 点 A 在数轴上表示 +2,从点 A 沿数轴向左平移 3 个单位到点 B,那么点 B 所表示的实数是〔〕 A. 3 B. –1 C. 5 D. –1 或 34. 分式2 9x(x 1)(x 3)的值等于 0,那么x 的值为〔〕A、3 B 、-3 C 、3 或-3 D 、05. 以低等式必定建立的是〔〕〔A〕 a2+a3=a5 〔B〕〔a+b〕2=a2+b2〔C〕〔2ab2〕3=6 a3b6 〔D〕〔x-a〕〔x-b〕=x2-〔a+b〕x+ab二.填空:6. 为了响应中央呼吁,今年我市加大财政支农力度,全市农业支出累计抵达 234 760 000 元,其中 234 000 000 元用科学记数法可表示为 __________________________2 22y 3y 1 4y 6y 97. 假定代数式,那么代数式的值是: _____________3a 1 a 118. 一个数的平方根是和 , 那么这个数的相反数是 ________, 倒数是 ______.2 b 那么〔〕a _________b a9. 定义一种新运算 : , 1 2 31 10. 当 x=_______时,2 x 在实数范围内存心义;当 x=_______ 时,分式4x 存心义 .11. 李明的作业本上有六道题:〔1〕23 2 2 ,〔2〕4 2〔3〕( 2) 23,124m24m〔4〕4 ± 2 ,〔5〕,〔6〕3a 2a a 假如你是他的数学老师,请找出他做对的题是 _____________x 2y12. 函数1x 中自变量x 的取值范围是_____________ 。
代数综合训练题一.选择题(本大题共8个小题,每个4分,共32分)1、肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯2.下列运算正确的是( )A . a 2+a =2a 3B .a 2·a 3=a 6C .(-2a 3)2=4a 6D .a 6÷a 2=a 3 3、把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a+1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)2 4、实数a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是( )A .﹣2a+bB .2a ﹣bC .﹣bD .b5、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是( )6、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m ≠C .m >﹣D .m >﹣且m ≠﹣7、若不等式组11m x x ⎩-⎧⎨<>恰有两个整数解,则m 的取值范围是( ) A .-1≤m<0 B .-1<m≤0 C.-1≤m≤0 D.-1<m <0 8、抛物线y=x 2+bx+3的对称轴为直线x=1.若关于x 的一元二次方程x 2+bx+3-t=0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是( )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <6二、填空题:(本大题共4个小题,每小题4分,共16分.)9、如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A C DC B A O O O O x yx y x y y x(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是。
代数综合1、〔2021•德州〕以下函数中,当x>0时,y随x的增大而增大的是〔〕A.y=﹣x+1 B.y=x2﹣1C.1yxD.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1〔x>0〕,故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧〔x<0〕,y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1〔x>0〕,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧〔x<0〕,y随着x的增大而增大,错误;应选B.点评:此题综合考查二次函数、一次函数、反比例函数的增减性〔单调性〕,是一道难度中等的题目.2、〔2021•攀枝花〕如图,抛物线y=ax2+bx+c经过点A〔﹣3,0〕,B〔1.0〕,C〔0,﹣3〕.〔1〕求抛物线的解析式;〔2〕假设点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;〔3〕设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?假设存在,请直接写出点M的坐标;假设不存在,请说明理由.考点:二次函数综合题.分析:〔1〕抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;〔2〕过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为〔x,x2+2x﹣3〕,根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;〔3〕分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为〔0,t〕,根据勾股定理列出方程,求出t的值即可.解答:解:〔1〕由于抛物线y=ax2+bx+c经过A〔﹣3,0〕,B〔1,0〕,可设抛物线的解析式为:y=a〔x+3〕〔x﹣1〕,将C点坐标〔0,﹣3〕代入,得:a〔0+3〕〔0﹣1〕=5,解得 a=1,那么y=〔x+3〕〔x﹣1〕=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;〔2〕过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为〔x,x2+2x﹣3〕,那么点N的坐标为〔x,﹣x﹣3〕,∴PN=PE﹣NE=﹣〔x2+2x﹣3〕+〔﹣x﹣3〕=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3〔﹣x2﹣3x〕=﹣〔x+〕2+,∴当x=﹣时,S有最大值,此时点P的坐标为〔﹣,﹣〕;〔3〕在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=〔x+1〕2﹣4,∴顶点D的坐标为〔﹣1,﹣4〕,∵A〔﹣3,0〕,∴AD2=〔﹣1+3〕2+〔﹣4﹣0〕2=20.设点M的坐标为〔0,t〕,分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即〔0+3〕2+〔t﹣0〕2+20=〔0+1〕2+〔t+4〕2,解得t=,所以点M的坐标为〔0,〕;②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即〔0+1〕2+〔t+4〕2+20=〔0+3〕2+〔t﹣0〕2,解得t=﹣,所以点M的坐标为〔0,﹣〕;③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即〔0+3〕2+〔t﹣0〕2+〔0+1〕2+〔t+4〕2=20,解得t=﹣1或﹣3,所以点M的坐标为〔0,﹣1〕或〔0,﹣3〕;综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为〔0,〕或〔0,﹣〕或〔0,﹣1〕或〔0,﹣3〕.点评: 此题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.3、〔2021达州压轴题〕如图,在直角体系中,直线AB 交x 轴于点A 〔5,0〕,交y 轴于点B ,AO 是⊙M 的直径,其半圆交AB 于点C ,且AC=3。
数学数与代数试题答案及解析1.任意三个连续非0自然数的积一定有因数6..【答案】√【解析】因为连续3个自然数中,一定有一个数被3整除,所以一定有因数3;连续3个自然数中至少有1个偶数,所以一定有因数2,相乘起来,就一定被6整除;据此判断.解:因为连续3个自然数中,一定有一个数被3整除,所以一定有因数3;连续3个自然数中至少有1个偶数,所以一定有因数2;所以任意三个连续非0自然数的积一定有因数2×3=6;故答案为:√.点评:明确连续3个自然数中,一定有一个数被3整除,连续3个自然数中至少有1个偶数,所以一定有因数2,是解答此题的关键.2. 36的所有因数是,任选其中四个数组成一个比例式是.【答案】1,2,3,4,6,9,12,18,36;1:2=18:36(答案不唯一)【解析】根据找一个数的因数的方法,可以一对一对的找,最小的是1,最大的是它本身,然后根据比例的意义,写出两个比值相等的比组成比例即可.解:36的约数有:1,2,3,4,6,9,12,18,36.组成的比例式1:2=18:36(答案不唯一);故答案为:1,2,3,4,6,9,12,18,36;1:2=18:36(答案不唯一).点评:此题主要考查求一个数的因数的方法和比例的意义.3.列综合算式:.【答案】2400×(1﹣)【解析】把这段路看作单位“1”,已修了,还剩,因此,剩下2400×,据此解答.解:2400×(1﹣),=2400×,=600(米);答:还剩600米.故答案为:2400×(1﹣).点评:此题解答的关键是把这段路看作单位“1”,求出剩下总长度的几分之几,根据分数乘法的意义,解决问题.4.小林和小军都到图书馆去借书,小林每6天去一次,小军每8天去一次,如果7月1日他们两人在图书馆相遇,那么下一次都到图书馆是几月几日?【答案】7月25日【解析】由题意可知:要求下一次都到图书馆是几月几日,先求出6和8的最小公倍,因为6和8的最小公倍数是24,即7月1日再经24天两人都到图书馆,此题可解.解:6=2×3,8=2×2×2,6与8的最小公倍数是2×2×3=24,即再经24天两人都到图书馆,7月1日+24日=7月25日;答:下一次都到图书馆是7月25日.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.5.某公交车站,五路:30分钟发一次,六路:20分钟发一次,经过几分钟后两路车再次同时发【答案】60分钟【解析】要求至少要经过多少分钟又同时发车,即求30和20的最小公倍数;根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解:解:30=2×3×5,20=2×2×5,30和20的最小公倍数为:2×2×3×5=60,即60分钟;答:至少要经过60分钟又同时发车.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.6.求下面各组数的最大公因数和最小公倍数.32和36 51和17 20和45.【答案】4,288;17,51;5,180【解析】(1)(3)对于这样的两个数来说,这两个数的公有质因数的连乘积是这两个数的最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解答.(2)因为51÷17=3,即51和17成倍数关系,当两个数成倍数关系时,较大的那个数是这两个数的最小公倍数,较小的那个数是这两个数的最大公因数.解:(1)32=2×2×2×2×2,36=2×2×3×3,所以32和36的最大公因数是2×2=4,最小公倍数是:2×2×2×2×2×3×3=288,(2)因为51÷17=3,即33和11成倍数关系,所513和17的最大公因数是17,最小公倍数是51.(3)20=2×2×5,45=3×3×5,所以20和45的最大公因数为5,最小公倍数为2×2×3×3×5=180.点评:此题主要考查了求两个数的最大公因数:对于一般的两个数来说,这两个数的公有质因数连乘积是最大公因数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;对于两个数为倍数关系时的最大公因数和最小公倍数:两个数为倍数关系,最大公因数为较小的数,较大的那个数是这两个数的最小公倍数.7.一个自然数含有因数6,能被8整除,还是9的倍数,它最小是()A.48B.54C.64D.72【答案】D【解析】求最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:6=2×3,8=2×2×2,9=3×3,所以6、8和9的最小公倍数是2×3×4×3=72.故选:D.点评:此题属于最小公倍数问题,按照求三个数的最小公倍的方法,求出它们的最小公倍数问题即可解决.8.下面三句话中,正确的一句话是()A.0.50和0.5的意义相同B.互质的两个数一定都是质数C.两个数的最小公倍数,一定是它们最大公约数的倍数【答案】C【解析】A、根据小数的意义可知;0.50的计数单位是0.01,0.5的计数单位是0.1,据此分析判B、互质的两个数一定都是质数这是错误的,据此反例证明即可;C、两个数的最小公倍数,一定是它们最大公约数的倍数,这是正确的,距离证明即可.解:A.0.50的计数单位是0.01,0.5的计数单位是0.1,所以 0.50和0.5的意义相同,这是错误的;B.8和9是互质数,但是8和9都是合数,所以互质的两个数一定都是质数这是错误的;C.4和6的最大公因数是2,最小公倍数是12,12是2的倍数,所以两个数的最小公倍数,一定是它们最大公约数的倍数,这是正确的;故选:C.点评:本题主要考查小数的意义、互质数的意义、最大公因数和最小公倍数的意义,注意切实掌握各个概念的意义.9.同学们去社区做好事,如果每组6人,人数刚好分完;如果每组9人,也恰好能分完.那么去社区做好事的同学至少()人.A.3B.18C.54【答案】B【解析】由题意得:要求去社区做好事的同学至少有多少人,即求6和9的最小公倍数是多少,根据求两个数的最小公倍数的方法进行解答即可.解:6=2×3,9=3×3,所以6和9的最小公倍数为:2×3×3=18;即至少有18人;故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.10.暑假期间,小华和小方都去参加游泳训练,小华每3天去一次,小方每4天去一次,8月1日两人都参加了游泳训练后,几月几日他们又再次一起参加训练?【答案】8月13日【解析】小华每3天去一次,小芳每4天去一次,3和4的最小公倍数就是它们一起参加训练的时间间隔;8月1日两人同时去游泳了,则根据3和4的最小公倍数往后推算出再次相遇的时间.解:3和4的最小公倍数是:3×4=12;8月1日他们在游泳馆相遇,再过12天,即8月13日会一起参加训练.点评:本题关键是找出他们每次同时去训练的相隔的时间,进而根据开始的时间推算求解.11.求下列各组数的最大公因数和最小公倍数:(1)8和9;(2)12和36;(3)16和18;(4)24和36.【答案】1,72;12,36;2,144;12,72【解析】(1)互质数的最小公倍数是它们的乘积,最大公因数是1,据此解答;(2)倍数关系的最小公倍数是较大数,最大公因数是较小数,12和36是倍数关系,36是较大数,12是较小数,据此解答;(3)、(4)把两个数分解质因数,最大公因数是这两个数的公有的质因数的乘积,最小公倍数是这两个数的公有的质因数和各自独有的质因数的乘积,据此解答.解:(1)8和9是互质数,它们的最小公倍数是8×9=72,最大公因数是1;(2)12和36是倍数关系,所以12和36的最小公倍数是36,最大公因数是12;(3)16=2×2×2×2,18=2×3×3,所以16和18的最小公倍数:2×2×2×2×3×3=144;最大公因数是2;(4)24=2×2×2×3,36=2×2×3×3,所以24和36的最小公倍数:2×2×3×2×3=72;最大公因数是2×2×3=12.点评:本题主要考查求两个数的最大公因数和最小公倍数的方法,注意互质数的最小公倍数是它们的乘积,最大公因数是1;倍数关系的最小公倍数是较大数,最大公因数是较小数.12. 8和10最大公因数:最小公倍数:【答案】2,40【解析】先把8和10进行分解质因数,这两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是这两个数的公有质因数与独有质因数的连乘积,由此解决问题即可.解:8=2×2×2,10=2×5,所以8和10的最大公因数为:2,8和10的最小公倍数为:2×2×2×5=40;答:8和10的最大公因数为2,最小公倍数为40.点评:此题主要考查求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答13.一条72米长的路,原来从一端起,每隔9米有一盏路灯.现在重新安装,要从一端起每隔6米装一盏.为节省施工成本,有些位置的路灯是不需要重新安装的.不需要重新安装的路灯至少有多少盏?(先画一画,再解答)【答案】5盏【解析】根据题意,不需要重新安装的是9米与6米的公倍数的路灯,即18米倍数的路灯不移动,也就是求出每隔18米路灯的盏数,加上开头的那一盏即可.解:如图所示:9与6的最小公倍数是18;72÷18+1,=4+1,=5(盏).答:不需要重新安装的路灯至少有5盏.点评:本题的关键是求出什么样的路灯不移动,然后再按照两端栽树的方法进行计算即可.14.求下面各组数的最小公倍数.12和86和18.【答案】24;18【解析】(1)求两个数的最小公倍数是公有质因数与独有质因数的连乘积,(2)一个数是另一个数的倍数,则较大的数是最小公倍数.解:(1)12=2×2×3,8=2×2×2,所以12和8的最小公倍数是2×2×3×2=24;(2)18=6×3,18是6的倍数,所以6和18的最小公倍数是18.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.15.两个自然数的最大公因数是14,最小公倍数是280,这两个自然数的和是.【答案】126【解析】先将14和280分解质因数,求得这两个自然数,再相加即可求解.解:14=2×7,280=2×2×2×5×7,一个数是:2×7×4=56,另一个数是:2×7×5=70,这两个数的和是:56+70=126.故答案为:126.点评:此题考查了将合数分解质因数和求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数的乘积是最大公约数;两个数的公有质因数与每个数独有质因数的乘积是最小公倍数.16.有两个互质的合数,它们的最小公倍数是100,由这两个数组成的真分数与假分数的差是.【答案】6.09【解析】先把100分解质因数,因为100=2×2×5×5,这两个互质的合数是4和25,由这两个数组成的真分数与假分数分别是:、,它们的差是﹣=6.09,据此解答.解:100=2×2×5×5,所以这两个互质的合数是4和25,﹣,=6.25﹣0.16,=6.09;故答案为:6.09.点评:本题关键是明确概念:互质数、合数、最小公倍数、真分数与假分数.17.甲、乙两数的最大公因数是5,最小公倍数是150.如果甲数是25,则乙数是;如果乙数是15,则甲数是.【答案】30,50【解析】根据两个数的乘积等于这两个数的最大公因数和这两个数的最小公倍数的乘积;据此解答即可.解:150×5÷25,=750÷25,=30;150×5÷15,=750÷15,=50.答:如果甲数是25,则乙数是30;如果乙数是15,则甲数是50.故答案为:30,50.点评:解答此题应明确:两个数的乘积等于这两个数的最大公因数和这两个数的最小公倍数的乘积.18.一个数的最大因数和最小倍数都是60,这个数是.【答案】60【解析】一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数;据此进行分析解答.解:一个数的最大因数和最小倍数都是60,因为一个数的最大因数和最小倍数都是这个数本身,所以这个数是60.故答案为:60.点评:解决此题明确:一个数的最大因数和最小倍数都是这个数本身.19.能被2、5、6这三个数整除的最小的自然数是:.【答案】30【解析】求能被2、5、6这三个数整除的最小的自然数就是求2、5、6的最小公倍数;最小公倍数是共有质因数与独有质因数的连乘积,由此解决问题即可.解:6=2×3,答:能被2、5、6这三个数整除的最小的自然数是:30.故答案为:30.点评:此题主要考查求三个数的最小公倍数的方法:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.20.王华和李明都在小提琴班学习,王华每3天去一次,李明每4天去一次,6月3日他们都去了一次,那么他们下次同去的时间是.【答案】6月15日【解析】先求出3和4的最小公倍数,再通过日期推算出下次同去的时间.解:因为3×4=12,3+12=15,所以他们下次同去的时间是6月15日.故答案为:6月15日.点评:考查了求两个数的最小公倍数的方法,日期和时间的推算.本题的关键是得到3和4的最小公倍数.21.下面的分数都是最简分数(a、b不为0)、分母的最小公倍数是、分母的最小公倍数是.【答案】72,120【解析】根据题意,计算分母的最小公倍数,可将分数中的分母分解质因数,然后再计算它们的最小公倍数,列式解答即可得到答案.解:72=2×2×2×3×3,18=2×3×3,72与18的最小公倍数为:2×2×2×3×3=72;40=2×2×2×5,30=2×3×5,30与40的最小公倍数为:2×2×2×3×5=120.故填:72,120.点评:解答此题的关键是将分数中的分母分解质因数,然后再按照求几个数的最小公倍数的方法进行计算即可.22. 18的因数有,12的因数有,12和18的最大公因数是,12和18的最小公倍数是.【答案】1、2、3、6、9、18,1、2、3、4、6、12,6,36【解析】(1)根据找一个数的因数的方法,进行列举即可;(2)根据最大公因数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数;几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数.进行分析解答即可.解:18的因数有:1、2、3、6、9、18;12的因数有:1、2、3、4、6、12;12和18的最大公因数是6;12和18的最小公倍数是36;故答案依次为:1、2、3、6、9、18,1、2、3、4、6、12,6,36.点评:解答此题的关键是:(1)明确找一个数的因数的方法;(2)明确最小公倍数和最大公约数的意义.23.同时是2、3、5的倍数的最小两位数是,把这个数分解质因数是.【答案】30;30=2×3×5【解析】根据题干,同时是2、3、5的倍数的数是2、3、5的公倍数,由此先求得2、3、5的最小公倍数;利用合数分解质因数的方法即可解决问题.解:2、3、5是互质数,所以它们的最小公倍数是:2×3×5=30;答:同时是2、3、5的倍数的最小两位数是30,把这个数分解质因数是30=2×3×5.故答案为:30;30=2×3×5.点评:此题考查了求几个互质数的最小公倍数的方法以及合数分解质因数的方法的灵活应用.24. 15和9的最大公因数是,最小公倍数是.【答案】3,45【解析】分别把15和9分解质因数,两个数公有的质因数乘积为两个数的最大公因数,两个数公有的质因数和独有的质因数乘积为两个数的最小公倍数.解:15=3×5,9=3×3,15和9的最大公因数是3,15和9的最小公倍数是3×5×3=45,故答案为:3,45.点评:此题主要考查两个数的最大公因数和最小公倍数的求法,分解质因数后两个数公有的质因数乘积为两个数的最大公因数,两个数公有的质因数和独有的质因数乘积为两个数的最小公倍数.25. 15、20、和60的最大公约数是,最小公倍数.【答案】5,120【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:因为15=3×5,20=2×2×5,60=2×2×3×5,所以15、20、和60的最大公约数是:5,最小公倍数是:3×5×2×2=120,故答案为:5,120.点评:此题主要考查求三个数的最大公约数与最小公倍数的方法:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.26.两个数的最大公约数是10,最小公倍数是350,若其中一个数是70,则另一个数是50..(判断对错)【答案】√【解析】用最小公倍数乘最大公约数即为这两个数的积,再除以已知数,就可求得另一个数.解:因为最大公约数×最小公倍数=两个数的乘积,所以另一个因数是:350×10÷70=50;故答案为:√.点评:解决此题的关键是明白最小公倍数乘最大公约数即为这两个数的积.27.如果自然数C是B的5倍,则B与C的最小公倍数是,最大公约数是.【答案】C,B【解析】根据最大公约数和最小公倍数的意义可知;最大公约数是两个数的公有的质因数的乘积,最小公倍数是两个数共有的质因数和各自独有的质因数的乘积,如果自然数C是B的5倍,B和C是倍数关系,据此解答解:自然数C是B的5倍,则B与C的最小公倍数是C,最大公因数是B;故答案为:C,B点评:主要考查倍数关系的最大公约数和最小公倍数的求法:较大的数是两个数的最小公倍数,较小的数是两个数的最大公约数.28.(2010•江都市模拟)自然数a和b,且a是b的,则a与b的最大公因数是,最小公倍数是.【答案】a,b【解析】倍数关系的最大公因数是较小数,最小公倍数是较大数,由自然数a和b,且a是b的可知;a和b是倍数关系,据此解答.解:由自然数a和b,且a是b的可知;a和b是倍数关系,a是较小数,b是较大数,所以a与b的最大公因数是 a,最小公倍数是 b;故答案为:a,b.点评:本题主要考查倍数关系的最大公因数和最小公倍数的求法,注意由自然数a和b,且a是b的可知;a和b是倍数关系这是解题的关键.29. 8和12的最小公倍数是,13和39的最大公约数是.【答案】24,13【解析】(1)两个数的最小公倍数是公倍数中最小的,分别找出两个数的倍数,找出它们的公倍数,找出最小的即可;(2)13和39是倍数关系,根据倍数关系的最大公约数是较小数,据此解答.解:(1)8的倍数有:8,16,24,32,40,48,56…,12的倍数有:12,24,36,48,60…,8和12的公倍数有:24,48…,所以8和12的最小公倍数是24;(2)13和39是倍数关系,13是较小数,所以13和39的最大公约数是13;故答案为:24,13.点评:本题主要考查求几个数的最小公倍数和最大公约数的方法,注意倍数关系的最大公约数是较小数.30.如果甲数=2×3×5,乙数=2×2×3,那么甲数和乙数:最大公因数是,最小公倍数是.【答案】6,60【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可解:甲数和乙数的最大公因数为2×3=6;甲数和乙数的最小公倍数为2×2×3×5=60;故答案为:6,60.点评:此题主要考查求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.31. 24、32的最小公倍数和12、36的最大公约数的差是.【答案】84【解析】求两个数的最大公因数和最小公倍数,首先把这两个数分解质因数,公有质因数的乘积是它们的最大公因数,公有质因数和各自独有质因数的连乘积是它们的最小公倍数,据此先分别求得最小公倍数和最大公约数,然后求差即可.解:把24和32分解质因数:24=2×2×2×3;32=2×2×2×2×2;24和32的最小公倍数是:2×2×2×3×2×2=96;12和36是倍数关系,12是36的因数,12也就是12和36的最大公因数;96﹣12=84;故答案为:84.点评:此题主要考查求两个的最大公因数和最小公倍数的方法,根据分解质因数的方法解决问题.32.(2011•慈溪市模拟)已知M=2×3×3×a,N=2×3×5×a,且M与N的最大公因数是42,则a=,M和N的最小公倍数是.【答案】7,630【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积;因此的解.解:要使M和N的最大公因数是42,因为42=2×3×7,则M和N的公有质因数除了2和3外,还有7,即a=7;M和N的最小公倍数是2×3×7×3×5=630;故答案为:7,630.点评:灵活应用求最大公因数的方法,求解未知数.33.(2011•广州模拟)A=2×2×3×m,B=2×n×3,如果A和B的最大公因数是12,最小公倍数是60,则m=,n=.【答案】5,2【解析】由A=2×2×3×m,B=2×n×3,可知A和B的最大公因数是12,A和B公有的质因数里含有2和3,所以用12÷(2×3)=2,就得到一个数m或n,即m和n中有一个数是2,分析A=2×2×3×m,B=2×n×3,A中已经含有2个2,而B只含有1个2,2又是A和B公有的,所以n=2;A和B的最小公倍数=2×2×3×m×n,因为n=2已经求出,所以A和B的最小公倍数是2×2×3×m=60,由此即可求出m,问题得解.解:n=12÷(2×3)=2,m=60÷(2×2×3)=5;故答案为:5,2.点评:本题主要考查求几个数的最大公因数和最小公倍数的方法.34. a、b是两个不等于0的自然数,并且a÷b=7,a和b的最小公倍数是.【答案】a【解析】由a÷b=7可知,a是b的7倍.如果两个数是倍数关系那么较小数是它们的最大公约数,较大数是它们的最小公倍数,由此可以解决问题.解:因为a÷b=7,所以a是b的7倍;a和b的最小公倍数是a.故答案为a.点评:此题考查了求两个成倍数关系的数的最小公倍数的方法.35. 36和120的最大公因数是()A.4B.6C.12【答案】C【解析】求两个数的最大公因数,首先把这两个数分解质因数,公有质因数的乘积就是它们的最大公因数,由此解答.解:把36和120分解质因数:36=2×2×3×3;120=2×2×2×3×5;36和120的最大公因数是:2×2×3=12;答:36和120的最大公因数是12.故选:C.点评:此题主要考查求两个数的最大公因数的方法,关键是把这两个数分解质因数,公有质因数的乘积就是它们的最大公因数,由此解决问题.36.用96朵红玫瑰花和72朵白玫瑰花做花束,若每个花束的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有多少朵花?【答案】24个,7朵【解析】若每个花束的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,说明红玫瑰花和白玫瑰花都是等分的,而且分的份数相同,要使做得花束最多,只要求出96和72的最大公约数,即可得花束数;花的总数96+72后除以花束数,就得到每个花束里至少要有多少朵花.解:96=2×2×2×2×2×3,72=2×2×3×3×2,所以96和72的最大公约数是2×2×2×3=24(个),(96+72)÷24=4+3=7(朵),答:最多可以做24个花束,每个花束里至少要有7朵花.点评:灵活应用求几个数的最大公因数的方法来解决实际问题.37.求最大公约数.45和20 12和5 36和4 63和27 90和45 7和6.【答案】5;1;4;9;45;1【解析】(1)、(4)求最大公因数也就是这几个数的公有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公因数,由此解决问题即可;(2)、(6)根据两个数是互质数时,这两个数的最大公因数是1;(3)、(5)根据“当两个数成倍数关系时,较小的那个数是这两个数的最大公因数;进行解答即可.解:(1)45=3×3×5,20=2×2×5,所以45和20的最大公约数是5;(2)12和5是互质数,这两个数的最大公因数是1;(3)36和4是倍数关系,这两个数的最大公因数是4;(4)63=3×3×7,27=3×3×3,所以63和27的最大公因数是3×3=9;(5)90和45是倍数关系,这两个数的最大公因数是45;(6)7和6是互质数,这两个数的最大公因数是1.点评:此题主要考查了求两个数的最大公因数:对于一般的两个数来说,这两个数的公有质因数的连乘积是这两个数的最大公因数;两个数是互质数时,这两个数的最大公因数是1;两个数为倍数关系,最大公因数为较小的数.38.下列各数中能同时被2、3、5整除的数是()A.2010B.315C.470【答案】A【解析】能被2、3、5整除的数的特征是:末尾(个位数)是0,并且各个数位上数的和能被3整除;进行解答即可.解:A、2010,2+1+0+0=3,3能被3整除的,且个位数字为0;B、315,且个位数字为5,不是0,故排除;C、470,4+7+0=11,虽个位数字为0,11不能被3整除,故排除;所以2010能被2、3、5整除.故选:A.点评:解答此题应结合能被2、3、5整除的数的特征进行解答即可.39.【答案】【解析】用4乘非零自然数即可找出4的倍数;所有能整除60的数都是60的因数,可利用短除法将60分解质因数,即可找出60的因数.结合题干中的数值:12,5,30,10,54,16,4的倍数有:12,16,60的因数的数是5、10、12、30.。
20XX 届初中毕业班数学总复习《数与代数》综合练习(二)一、选择题1.下列运算正确的是( ) A .a 3÷a 2=aB .a 3+a 2=a 5C .(a 3)2=a 5D .a 2·a 3=a 62.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,•另一个亏本20%,在这次买卖中这家商店( )A .赔38元B .赚了32元 D .不赔不赚 D .赚了8元3. 甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km . 他们行进的路程S (km )与甲出发后的时间t (h )之间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4 km /hB .乙的速度是10 km /hC . 乙比甲早出发1 hD . 甲比乙晚到B 地2h 4.不等式组10,24x x ⎧⎨⎩--≤<的解集在数轴上表示为( )A .B .C .D . 5.如图,已知棋子“车”的坐标为(-2,3),棋子 “马”的坐标为(1,3),则棋子“炮”的坐标为 A .(3,2)B .(3,1)C .(2,2)D .(-2,2)6.右图,直角三角形AOB 中,AB ⊥OB 于B ,且 AB = OB =3,设直线t x l =:截此三角形所得的阴影 部分的面积为S ,则S 与t 的函数关系的图象大致为( )乙甲20 O 1 2 3 4S ︱km t ︱h(第3题) 10x = tOBAxyc 17题图abcABCD输入x输出y平方乘以2减去4 若结果大于0否则二、填空题7. 12-的相反数是 .8.分解因式:3x x -=______________________.9.我国最长的河流长江全长约6300千米,用科学记数法表示为 千米. 10. 函数y=2-x 中,自变量x 的取值范围是 .11.化简(22+--x x x x )÷xx-24的结果是 . 12.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务。
中考代数式综合测试卷(一)及答案一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。
A.23y -B.222x y + C.2232y x -D.23y2.下列各组代数式中,属于同类项的是( )。
A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。
A.2233x x -=B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255, b = 344, c = 433, 则 a 、b 、c 的大小关系是( )。
A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。
A.y x +B.yxC.10y x +D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。
A . 2B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。
A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。
A.2B.17C.7- D.79.如果(2-x)2+(x -3)2=(x -2)+(3-x ),那么x 的取值范围是( )。
代数综合题一:对于实数a,b,我们用符号min{a,b}表示a,b两数中较小的数,如min{3,5}=3,因此,min{-1,-2}=________;若{}22min(1),4+=,则x=___________.x x题二:对于实数c,d,我们用符号max{c,d}表示c,d两数中较大的数,如max{3,5}=5,因此,题四:在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y A、B,交抛物线C2:y于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC 和QD,求△AOB与△CQD面积比为_______.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F,在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为_______.题七: 设函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,,若互不相等的实数x 1,x 2,x 3,满足y 1=y 2=y 3, 求x 1+x 2+x 3的取值范围.题八: 在平面直角坐标系xOy 中,抛物线y =243x x ++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线AC 的表达式;(2)在x 轴下方且垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线AC 交于点N (x 3,y 3),若x 1>x 2>x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.参考答案题一:-2,-3或2.详解:∵-2<-1,∴min{-1,-2}=-2,∵{}22+=,x xmin(1),4当(x+1)2=x2时,解得:x=-0.5,(x+1)2=x2=0.25,这时不可能得出最小值为4,当x>-0.5,(x+1)2>x2,则x2=4,解得x1=2或x2=-2(舍去),当x<-0.5,(x+1)2<x2,则(x+1)2=4,解得x1=-3或x2=1(舍去),∴x=-3或x=2.题二:∵{}22++=,max22,2x x x当x2+2x+2=x2时,解得:x=-1,x2+2x+2=x2=1,这时不可能得出最大值为2,当x>-1,x2+2x+2>x2,则x2+2x+2=2,解得x1=0或x2=-2(舍去),∴x=0.题三:∴C (-3m ,m 2),D (3m ,m 2),∴CD =6m ,∵O 、Q 关于直线CD 对称, ∴PQ =OP ,∵CD ∥x 轴,∴∠DPQ =∠DPO =90°,∴△AOB 与△CQD 的高相等, PQ CD PO AB ⋅⋅2121=mm 64=32.AEM DFMS S=∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =2, 2详解:先作出函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,的图象,如图,不妨设x 1<x 2<x 3,∵y =242x x -+(x ≥0)的对称轴为x =2,y 1=y 2,∴x 2+x 3=4, ∵y =242x x -+(x ≥0)的顶点坐标为(2,-2),令y =-2,代入y =3x +1,解得:x =-1,∴-1<x 1<0,则x 1+x 2+x 3的取值范围是:-1+4<x 1+x 2+x 3<0+4,∴3<x 1+x 2+x 3<4.题八: (1)y =x +3;(2)-8<x 1+x 2+x 3<-7.详解:(1)由y =243x x ++得到:y =(x +3)(x +1),C,∴A (-3,0),B (-1,0),设直线AC 的表达式为:y =kx +b (k ≠0), ∴⎩⎨⎧==+303-b b k ,解得:⎩⎨⎧==31b k ,所以直线AC 的表达式为y =x +3,(2)由y =243x x ++得到:y =(x +2)2-1,∴抛物线y =243x x ++的对称轴是x =-2, 顶点坐标是(-2,-1),∵y 1=y 2,∴x 1+x 2=-4,令y =-1,代入y =x +3,解得:x =-4,∵x 1>x 2>x 3,∴-4<x 3<-3,∴-4-4<x 1+x 2+x 3<-3-4,∴-8<x 1+x 2+x 3<-7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△P AC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=,d(B,⊙O)=.是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.参考答案题一: (1)y =214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过A (-1,0)、B (3,0),C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,题二: (1)y =-x 2-3x +4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y =-x 2-3x +4, ∵点C (-2,n )也在此抛物线上,∴n =-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形.。
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
2009届初中毕业班数学总复习
《数与代数》综合练习(一)
一、选择题
1.在下列有关数的运算中,结果正确的是( ). A .33--=
B .1
133-⎛⎫
=- ⎪⎝⎭
C
3=± D
3=-
2.在下列代数式的运算中,计算正确的是( ).
A .532x x x =+
B .632x x x =⋅
C .6
2
3)(x x =- D .236x x x =÷
3.下列根式中,属于最简二次根式的是( ).
A
B
C
D
4.不等式组1
3
x x >-⎧⎨
<⎩的解集为( ).
A.1x >-
B.3x <
C.13x -<< D .无解
5.若关于x 的一元二次方程0235)1(2
2
=+-++-m m x x m 的常数项为0,则m 的值等于( ). A .2
B .1
C . 1或2
D .0
6.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ). A .0 B .1
C .2
D .3
二、填空题 7.函数1
3
y x =
-中,自变量x 的取值范围是_______________. 8.计算:()23m 3m 6-÷=
________________.
a
b +
第6题
9.计算:3
9
32---a a a =_____________. 10.被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为__________________公顷. 11.分解因式:______________25x 2
=-.
12.若3
2
23m
n
x y x y -与 是同类项,则m + n =____________.
13.已知⎩⎨
⎧-==1
1
y x 是方程32=-ay x 的一个解,那么a 的值是____________.
14.若2-a +3-b =0,则=-b a 2
.
15.计算:825-= .
16.某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价 为 元. 17.已知反比例函数2
(0)y x x
=
>的图像如右图,则它关于x 轴对称的图像 的函数解析式为_____ ________. 18.定义:a 是不为1的有理数,我们把
1
1a
-称为a 的差倒数.... 如:2的差倒数是
1112=--,1-的差倒数是
111(1)2=--.已知11
3
a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a = . 三、解答题 19.计算:(
)
1
13142-⎛⎫
--+ ⎪⎝⎭
.
20. 计算:241
42
x x +
-+.
21.先化简,再求值:
(2)(1)(1)x x x x +-+-, 其中1
2
x =-.
22.解分式方程1
42
1-=
+x x .
23.解方程组: ⎩⎨⎧=-=+. ②
y x , ① y x 542.
24.解不等式组:2113110.x x x ->+⎧⎨+>⎩
,①
②.
25.已知点P (2,2)在反比例函数x
k
y =(0≠k )的图象上, (1)当3-=x 时,求y 的值; (2)当31<<x 时,求y 的取值范围.
26.如图,利用一面墙(墙的长度不超过45米),用80米长的篱笆围一个矩形场地. ⑴设所围矩形ABCD 的边AB 为x 米,则边AD 为多少米.(用含x 的代数式表示); (2)若围成矩形场地的面积为750米2,求矩形ABCD 的边AB 、AD 各是多少米?
27.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能
..超过45元/件,那么销售单价定为多
少时,工艺厂试销该工艺品每天获得的利润最大?
28.某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,
①直接写出B点的坐标;
②求抛物线的表达式;
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
(修改、审定:泉州市教科所数学组)
《数与代数》综合练习(一)参考答案
一、1.D ; 2.C ; 3.B ; 4.C ; 5.A ; 6;B
二、7.3x ≠; 8.-2m ; 9.a+3; 10.7
1.510⨯; 11.(x+5)(x-5); 12.5
13. 1; 14. 1; 15. 23 ; 16.340; 17.2 (0)y x x =-
> ; 18. 3
4
. 三、19. 1;20.原式12x =-;21.原式21x =+,当1
2
x =-时,原式=0;22.-3;
23. ⎩⎨⎧-==.
y ,x 23 24. 3x >;25.(1)先求得4=k ,当3-=x 时,34-=y , (2)434<<y ; 26.⑴ AD 为)80(21
x -米,(2)由,x x 750)80(2
1=-•解得,x 301=502=x (不合题意,
应舍去), 当30=x 时,25)80(2
1
=-x ,则边AB=30m ,AD 为25m .
27.(1)画图略,由图可猜想y 与x 是一次函数关系,解得 函数关系式是:y =-10x +800 (2)设工艺厂试销该工艺品每天获得的利润是W 元,则 W=(x -20)(-10x +800) =-10(x -50)2
+9000, 故当x =50时,W 有最大值9000,(3)当x ≤45时,W 的值随着x 值的增大而增大, ∴销售单价定为45元∕件时,试销该工艺品每天获得的利润最大.
28.(1)①(6 5.6)B -, ②由 5.636a -=,解得745a =-
,∴抛物线的表达式为2
745y x =-,
(2)如图,设窗户上边所在直线交抛物线于C 、D 两点, D 点坐标为(k ,t ),则 5.6( 1.6)4t =---=-, 由2
7445
k --=
解得125.07 5.07k k -≈,≈(舍去)
, ∴ 5.07210.14CD =⨯≈(m ).又设最多可安装n 扇窗户,∴1.50.8(1)10.14n n ++≤,解得 4.06n ≤.则最多可安装4扇窗户.。