地线干扰和接地技术
- 格式:ppt
- 大小:645.50 KB
- 文档页数:33
关于干扰和接地技术,所有工控人都需要了解的常识!一、接地的含义大地;接大地的含义以地球的电位为基准,并以大地为零电位,把电子设备的金属外壳、线路选定点等通过接地线、接地极等组成的装置与大地相连接系统基准地:简称系统地指信号回路的基准导体(电子设备通常以金属底座、机壳、屏蔽罩、或组铜线、铜带等作为基准导体),并设该基准导体为相对零电位,但不是大地零电位。
理想的基准导体是一个零电位、零阻抗的物理实体理想的接地面可以为系统中的任何位置的信号提供公共的电位参考点(但不存在)接地平面流过电流产生的等位线地线电位示意图传统定义:地线就是电路中的电位参考点,它为系统中的所有电路提供一个电位基准。
在从事电路设计的人员范围内,如果谁提出这样一个问题:什么是地线,地线起什么作用?马上会引起同事的嘲笑。
因为电路接地实在是再自然不过的事情了。
定义也在教科书中不知陈述过多少遍。
新定义:地线为信号流回源的低阻抗路径如上所述,传统定义仅给出了地线应该具有的等电位状态,并没有反映真实地线的情况。
因此用这个定义无法分析实际的电磁兼容问题。
这个定义突出了电流的流动。
当电流流过有限阻抗时,必然会导致电压降,因此这个定义反映了实际地线上的电位情况。
思考题:在分析、解决电磁兼容问题时,确定实际的地线电流路径十分重要。
但你所设计的地线往往并不是实际的地线电流路径,也就是,并不是真正的地线,这是为什么?二接地目的1:为了安全,安全地左图:机箱通过杂散阻抗Z1而带电,右图:机箱因绝缘击穿而带电U1--机箱上电压; U2--电路中高压部件;Z1--高压部件与机箱间的杂散阻抗;Z2--机箱与大地间的阻抗1、若机箱没有接地,当电源线与机箱之间的绝缘良好(阻抗很大)时,尽管机箱上的感应电压可能很高,但是人触及机箱时也不会发生危险,因为流过人体的电流很小。
2、如果电源线与机箱之间的绝缘层损坏,使绝缘电阻降低,当人触及机箱时,则会导致较大的电流流过人体,造成人身伤害。
仪器仪表的抗干扰措施1.电磁屏蔽:电磁波是仪器仪表最常见的干扰源之一、为了保护仪器仪表不受电磁波的干扰,可以在仪器周围设置金属屏蔽罩或屏蔽房,有效地隔离了外界的电磁波。
同时,在设计仪器的电路时,可以采用差模输入、偏置电压屏蔽等技术,来提高仪器的抗电磁干扰能力。
2.过滤和滤波技术:在仪器的电源输入、信号输入和输出等接口处,可以加装滤波电路,对电源或信号进行过滤,除去高频噪声和电磁干扰。
滤波技术常用的方法有低通滤波、带通滤波等,可以根据具体的需求进行选择和调整。
3.地线和接地:仪器仪表的地线和接地是抗干扰的重要手段。
通过合理设计和布线,将仪器仪表的接地电路与其他设备的接地点连接在一起,形成共同的地点,从而减小仪器仪表受到的电磁干扰。
在接地线路中,还可以采用接地网络、电流环路的方法,来提高抗干扰能力。
4.逆变器和放大器设计:对于大部分仪器仪表来说,逆变器和放大器都是重要的部分。
在逆变器的设计过程中,可以采用串联电抗、并联电容等方法,对输入信号进行滤波和调节,减小干扰信号的影响。
在放大器的设计中,可以采用差分输入、共模抑制等方法,提高放大器的抗干扰能力。
5.绝缘和屏蔽技术:绝缘和屏蔽技术在仪器仪表的抗干扰措施中也是非常重要的一部分。
通过合理设计绝缘和屏蔽结构,可以在一定程度上将仪器与外界的干扰隔离开来,保护仪器的正常工作。
6.温度和湿度控制:温度和湿度的变化也可能对仪器的性能产生影响。
为了保证仪器仪表的稳定性和精确性,在使用仪器仪表的过程中要控制好环境的温湿度,并且对于一些对温度和湿度比较敏感的仪器,还可以采取外部冷却装置和湿度控制设备等措施。
总而言之,仪器仪表的抗干扰措施包括电磁屏蔽、过滤和滤波技术、地线和接地、逆变器和放大器设计、绝缘和屏蔽技术以及温度和湿度控制等。
只有采取有效的抗干扰措施,才能确保仪器仪表在复杂的工作环境中能够正常工作,提高仪器仪表的可靠性和准确性。
PCB板地线与接地技术PCB,自问世以来一直处于发展之中,尤其是20世纪80年代家电发展、90年代信息产业的崛起,大大推进了PCB设计技术、制造工艺与PCB工业的发展。
地线与接地是PCB板设计中的一个重要方面,其实现方式与PCB板上的功能电路、器件、高密化、高速化有关。
高速化还必须考虑高频谐波(常取10倍频),时钟信号上升边沿速率。
地线与接地设计在PCB 三个发展阶段中,在解决EMC方面积累了丰富经验的重要措施之一。
之一。
通孔插装技术(THT) 用PCB阶段,或用于以DIP器件为代表的PCB阶段。
40到80年代。
主要特点:镀(导)通孔起到电气互连和支撑器件引腿的双重作用。
提高密度主要靠减少线宽/间距。
之二。
表面安装技术(SMT)用PCB阶段,或用于QFP和走向BGA器件为代表的PCB阶段。
90年代到90年代中后期,PCB专业企业相继完成THT用PCB走向SMT用PCB的技术改造。
主要特点:镀(导)通孔只起到电气互连作用。
提高密度主要靠减少镀(导)通孔直径尺寸和采用埋盲孔结构。
之三。
芯片级封装(CSP)用PCB阶段,或用于SCM/BGA与MCM/BGA 为代表的MCM-L及其母板PCB阶段。
主要的典型产品是新一代的积层式多层板(BUM)。
主要特点:从线宽/间距(<0.1mm)、孔径(Φ<0.1mm)到介质厚度(<0.1mm)等全方位地进一步减少尺寸,使PCB达到更高的互连密度,以满足CSP的要求。
BUM于90年代出现,目前已步入生产阶段。
几个有关术语:接地通用术语,量身定制。
词前必须加修饰语。
示例(英国术语),是在建筑的接入线中,安全接地线对地的连接。
接地方法 所选择的一种满足特定要求的引导电流的最佳方法。
接地环路 包括一个作为接地电位元件(面、引线、导线)的电路,返回电流可以通过这个元件(面、引线、导线)返回。
一个电路中至少有一个接地环路。
地环路包括一些导电元件(如平板、走线及导线) 的电路,假定其具有地电位,有回流穿过。
电磁兼容中的接地技术电磁兼容中的接地技术,包括接地的种类和目的、接地方式、接地电阻的计算以及设备和系统的接地等。
其主要目的在于提高电力电子设备的电磁兼容能力1. 接地技术最早是应用在强电系统(电力系统、输变电设备、电气设备)中,为了设备和人身的安全,将接地线直接接在大地上。
由于大地的电容非常大,一般情况下可以将大地的电位视为零电位。
后来,接地技术延伸应用到弱电系统中。
对于电力电子设备将接地线直接接在大地上或者接在一个作为参考电位的导体上,当电流通过该参考电位时,不应产生电压降。
然而由于不合理的接地,反而会引入了电磁干扰,比如共地线干扰、地环路干扰等,从而导致电力电子设备工作不正常。
可见,接地技术是电力电子设备电磁兼容技术的重要内容之一,接地的种类和目的电力电子设备一般是为以下几种目的而接地:2.1 安全接地安全接地即将机壳接大地。
一是防止机壳上积累电荷,产生静电放电而危及设备和人身安全;二是当设备的绝缘损坏而使机壳带电时,促使电源的保护动作而切断电源,以便保护工作人员的安全。
2.2 防雷接地当电力电子设备遇雷击时,不论是直接雷击还是感应雷击,电力电子设备都将受到极大伤害。
为防止雷击而设置避雷针,以防雷击时危及设备和人身安全。
上述两种接地主要为安全考虑,均要直接接在大地上。
2.3 工作接地工作接地是为电路正常工作而提供的一个基准电位。
该基准电位可以设为电路系统中的某一点、某一段或某一块等。
当该基准电位不与大地连接时,视为相对的零电位。
这种相对的零电位会随着外界电磁场的变化而变化,从而导致电路系统工作的不稳定。
当该基准电位与大地连接时,基准电位视为大地的零电位,而不会随着外界电磁场的变化而变化。
但是不正确的工作接地反而会增加干扰。
比如共地线干扰、地环路干扰等。
为防止各种电路在工作中产生互相干扰,使之能相互兼容地工作。
根据电路的性质,将工作接地分为不同的种类,比如直流地、交流地、数字地、模拟地、信号地、功率地、电源地等。
PCB板设计中的接地方法与技巧在电子设备设计中,印制电路板(PCB)的地位至关重要。
PCB板的设计需要考虑诸多因素,其中之一就是接地问题。
良好的接地方式可以有效地提高设备的稳定性、安全性以及可靠性。
本文将详细介绍PCB板设计中的接地方法与技巧。
让我们了解一下PCB板设计的基本概念。
PCB板设计是指将电子元件按照一定的规则和要求放置在板子上,并通过导线将它们连接起来的过程。
接地是其中的一个重要环节,它是指将电路的地线连接到PCB 板上的公共参考点,以实现电路的稳定工作和安全防护。
在PCB板设计中,接地的主要作用是提高电路的稳定性,同时还可以防止电磁干扰和雷电等外界因素对电路的影响。
通过将电路的地线连接到PCB板的公共参考点,可以减少电路之间的噪声和干扰,提高设备的性能和可靠性。
接地方式的选择取决于PCB板的设计和实际需求。
以下是一些常见的接地方式及其具体方法:直接接地:将电路的地线直接连接到PCB板上的参考点或金属外壳。
这种接地方式适用于对稳定性要求较高的电路,但需要注意避免地线过长导致阻抗过大。
间接接地:通过电容、电感等元件实现电路与地线的连接。
这种接地方式可以有效抑制电磁干扰,提高设备的抗干扰能力。
混合接地:结合直接接地和间接接地的方式,根据实际需求在不同位置选择不同的接地方式。
这种接地方式可以满足多种电路的接地需求,提高设备的灵活性和可靠性。
多层板接地:在多层PCB板中,将其中一层作为地线层,将电路的地线连接到该层上。
这种接地方式适用于高密度、高复杂度的PCB板设计,可以提供良好的电磁屏蔽效果。
挠性印制电路板接地:对于挠性印制电路板,可以使用金属箔或导电胶带实现电路与地线的连接。
这种接地方式适用于需要弯曲或伸缩的电路,可以提供良好的可塑性和稳定性。
确保接地连续且稳定:接地线的连接必须牢靠、稳固,确保在设备运行过程中不会出现松动或脱落现象。
同时,要确保地线阻抗最小,以提高电路的稳定性。
避免地线过长导致阻抗过大:地线的长度应尽可能短,以减少阻抗。
48V直流接地的分析与探讨
48V直流接地是指将直流电源的负极(地)与地面相连,以确保设备安全稳定运行的一种接地方式。
在实际工程中,48V直流接地具有一定的优势,但也存在一些问题和挑战,本文将就此进行分析与探讨。
48V直流接地的优势主要体现在以下几个方面:
1. 安全稳定:48V直流接地能够确保设备的安全运行,减少漏电和其他安全隐患,保障人身和设备的安全。
2. 电磁兼容性好:48V直流接地能够减小系统的电磁辐射和电磁干扰,提高系统的抗干扰能力,有利于提高设备的可靠性和稳定性。
3. 能源利用率高:采用48V直流供电能够减小电能转换过程中的能量损耗,提高能源利用率,有利于节能减排。
48V直流接地也存在一些问题和挑战:
1. 地线干扰:设备接地存在地线干扰问题,当大容量电器的两个接地系统之间的距离较近时,地线会受到干扰,导致系统稳定性下降。
2. 电气安全:48V直流接地时,需要严格控制接地电流的大小,避免触电危险,需要在工程设计和施工中加强对接地电流的控制。
3. 可靠性:48V直流接地需要在各种环境下保持稳定性和可靠性,需要充分考虑外部环境对接地系统的影响,做好防护措施。
针对以上问题和挑战,我们可以采取以下措施加以解决:
1. 地线干扰问题可以采用屏蔽隔离技术,通过合理布置地线和增加隔离设备来减小地线干扰,提高系统的稳定性和可靠性。
48V直流接地具有一定的优势,但也存在一些问题和挑战,需要我们在工程实践中充分考虑并加以解决。
通过合理的设计和施工,加强对接地系统的管理和维护,可以确保48V直流接地在工程中发挥更好的作用,为设备的安全稳定运行提供有力保障。
电子设备怎样抗干扰的原理电子设备在工作过程中会遭受各种干扰,这些干扰可能来自于其他电子设备、外界电磁场、无线电波等等。
为了确保电子设备的正常运行,保持信号的准确传输和数据的正确处理,电子设备需要采取各种措施来抗干扰。
电子设备抗干扰的原理主要包括以下几个方面:1. 地线和屏蔽:地线和屏蔽是电子设备抗干扰的首要手段。
地线可以将设备的电磁噪声引导到地面,从而减少对信号的干扰。
而屏蔽则是在电子设备外壳上加上金属或导电材料,形成一个闭合的屏蔽结构,有效地隔绝外界电磁干扰。
2. 滤波器:滤波器是电子设备抗干扰的重要组成部分。
它能够滤除掉电源线上的高频噪声,使得电压波动较小,从而保证电子设备的正常运行。
常见的滤波器包括电源滤波器、信号滤波器等。
3. 隔离器:隔离器是将电子设备与外界分开的装置。
它可以通过隔离传输媒介、光电耦合等技术,防止外界的电磁波通过传输媒介进入设备内部,造成信号干扰。
4. 接地:良好的接地是保证电子设备抗干扰的基础。
接地可以将设备上的电磁波引到地面,避免它们对其他设备造成干扰。
同时,接地还可以形成一个电磁屏蔽环境,减少电磁辐射的影响。
5. 屏蔽和驱动能力:电子设备的输入和输出信号线往往容易受到干扰。
设备可以通过加上屏蔽层来减少外界干扰,同时增强驱动能力,保证信号的传输和处理准确性。
6. 抗干扰设计:在电子设备设计的过程中,还需要考虑抗干扰的因素。
例如,对电源线进行布线时,要避免与信号线相交,以减少电源线对信号的干扰;在电路板布局中,要合理安排元器件的位置,减少互相干扰的可能性。
7. 屏蔽技术:电子设备可以利用屏蔽技术来减少干扰的影响。
屏蔽技术可以包括电磁屏蔽、电磁波吸收、电磁波隔离等方式,有效地防止外界电磁辐射对设备的干扰。
总之,电子设备抗干扰的原理主要是通过地线和屏蔽、滤波器、隔离器、接地、屏蔽和驱动能力、抗干扰设计等手段,减少外界电磁干扰对设备的影响,保证设备的正常运行。
同时,合理的屏蔽技术也可以应用于电子设备的设计和制造中,提高设备的抗干扰性能。
Communications Technology •通信技术Electronic Technology & Software Engineering 电子技术与软件工程• 33【关键词】广播电视工程 技术 SDH 技术 抗干扰 接地技术1 引言科学技术的进步和经济社会的发展为我国广播电视工程的发展带来了机遇,也提供了保障。
广电工程建设过程中需要的仪器设备也比原来更加先进,这就对广电工程技术的革新提出了新要求。
为了满足用户的实际需求,进一步促进广电工程技术的发展,就需要在原有应用技术的基础上大力创新,及时发现并弥补旧技术的缺陷,不断研究新技术。
2 SDH技术美国贝尔通信研究所首次提出了SDH 技术,国内习惯称之为同步光网络技术。
SDH 技术适用范围较广,能够用于各种净负荷的传输,但其必须在一套完整传送结构下才能在卫星、微波以及光纤等媒介上进行传送。
SDH 技术在广播电视工程项目的建设中发挥了很大作用,能够实现公共物理传输平台的传输。
在该公共物理传输平台上,宽带可以发挥两方面的作用。
一方面用来传输广播和电视节目,另一方面用来直接传输ATM 等用户数据,这样一来,就能极大提高信号输出的质量,从而满足广播电视工程建设的需要。
SDH 技术在国内进行广播电视工程应用时,主要是以同步数字形式进行,其只能传输数字信号。
目前我国大多数地区进行信号传输时都是采用模拟信号,所以SDH 技术的应用受到了相当大的限制。
为了推广加深SDH 技术的进一步使用,我们有必要加快广播电视信号的数字化处理步伐,从而推动广电工程技术的进步。
3 抗干扰技术众所周知,广播电视工程中,信号的正常传输至关重要,所以抗干扰技术在这一方面做广播电视工程中的4种主要技术文/梁丽丽出了巨大贡献。
通过使用抗干扰技术,能够及时排除影响信号正常传输的各种不稳定因素,保障信号高效稳定传输,从而确保各类广播电视节目高质量的播放。
抗干扰技术是广电工程技术的一个基础重要组成部分,为广电工程技术的水平提供了根本保障。
地线干扰产生的原理在电力系统中,地线是一种重要的保护措施,可以有效地防止电击和火灾等危险事故的发生。
但是,地线也会产生干扰,影响电力系统的正常运行。
本文将介绍地线干扰产生的原理及其对电力系统的影响。
一、地线干扰的原理地线干扰是指地线电流对电力系统其他电路产生的电磁干扰。
地线电流是指在电力系统中由于故障或其他原因而流入地面的电流。
在一些特殊的情况下,地线电流会通过地面形成一个环路,与电力系统中的其他电路产生交流,从而产生干扰。
地线干扰的产生原理可以通过电磁场理论来解释。
当地线电流通过地面时,会在地面周围产生一个电磁场。
这个电磁场会与其他电路的电磁场相互作用,从而产生相互干扰。
具体来说,地线电流会在地面中产生电势差,从而形成一个环路。
这个环路会与其他电路产生电磁耦合,从而使其他电路中的电流和电压发生变化,从而影响电力系统的正常运行。
二、地线干扰的影响地线干扰对电力系统的影响主要表现在以下几个方面:1. 电压和电流的变化地线干扰会使电力系统中的电压和电流发生变化。
这种变化可能会导致电力设备的故障和损坏,从而影响电力系统的正常运行。
2. 电磁波辐射地线干扰产生的电磁波辐射会对周围的电子设备和人体产生影响。
长期暴露在电磁辐射下可能会对人体健康产生不良影响。
3. 通信干扰地线干扰会影响无线通信和有线通信。
这种干扰可能会导致通信信号的丢失和误码,从而影响通信的可靠性。
4. 其他影响地线干扰还可能会对电力系统的其他方面产生影响,如电力质量、电能计量等。
三、地线干扰的防治为了防止地线干扰对电力系统的影响,需要采取相应的防治措施。
具体来说,可以采取以下措施:1. 降低地线电流降低地线电流是减少地线干扰的有效措施之一。
可以通过加强绝缘、减少故障、降低电流密度等方式来降低地线电流。
2. 增加接地电阻增加接地电阻可以减少地线电流的流动,从而减少地线干扰。
可以通过增加接地电阻的面积或采用合适的接地方式来实现。
3. 采用屏蔽技术采用屏蔽技术可以有效地减少电磁干扰。