单片机抗干扰技术3接地
- 格式:ppt
- 大小:87.00 KB
- 文档页数:17
单片机系统抗干扰技术措施徐本升(七煤(集团)公司社保局,黑龙江七台河154600)廛屉科夔[}商要]单片机系统主要由信号检测部分、信号处理及控制部分、控制信号驱动部分、拳统零毒部分、显示部分组成。
干扰的种类主要来自系统内部元器件在系统中的状态和系统外部其它电气设备产生的干抚。
硬件抗干扰措施是电潺的抗干扰设计,屏蔽抗干技技术,双绞线及光纤的使用,去耦电路。
软件抗干就措-旌旋出错处理程序,建立软件陷阱,使用空操作指令。
‘‘、联蠢建i司]单片机;系统;抗干扰技术‘,单片机应用系统的硬件电路构成比较复杂、所用元件品种繁多,有的工作场所环境比较差,由于这些原因,为了保证单片机应用系统能够在各种环境下能正常运行,系统的抗干扰性就是一个非常重要的指标。
抗干扰就是针对干扰产生的性质、传播途径、侵入的位置和侵入的形式,采取相应的方法消除干扰源,抑制干扰传播途径,减弱电路或元件对噪声干扰的敏感性,使单片机系统能在线正常、稳定地运行。
1单片机系统的组成一个单片机应用系统的硬件电路是由如下几个部分构成的:1)信号检测部分:2)信号处理及控制部分:3)控制信号驱动部分;4)系统交互部分;5)显示部分。
由此可见一个单片机应用系统的成分是相当复杂的,从各种类型的传感器到名目繁多的各种继电器接触器、电磁阀,从类型繁多的集成电路到各种各样的耦合器件、执行部件、显示器件等。
2干扰的种类干扰就是叠加在有用信号上的不需要的信号。
是影响路正常工作的另一种噪声。
干扰以某种电信号的形式,通过一的渠道。
混入有用信号中侵人单片机系统,造成系统工作不稳定在各种实际环境中,干扰总是存在的,这些干扰能降低电子系统准确性甚至破坏其可靠性。
干扰有两种:一是来自系统内部元器件在工作时产生的干扰通过地址、电源线、信号线,分布电容和电感等传输,影响系统工状态。
二是来自系统外部其它电气设备产生的干扰。
通过传导辐射等途径影Ⅱ向单片机系统的正常工作。
干扰对单片机应用系统的作用有3个部位:1)输入系统。
单片机硬件设计中的EMC兼容性与干扰抑制技术单片机硬件设计中的电磁兼容性(EMC)与干扰抑制技术引言在现代电子设备中,单片机(Microcontroller Unit,MCU)起到了至关重要的作用。
单片机的硬件设计必须考虑电磁兼容性(Electromagnetic Compatibility,EMC)和抑制干扰的技术。
本文将介绍单片机硬件设计中的EMC兼容性和干扰抑制技术,包括电磁干扰的来源、EMC设计要求、常用的干扰抑制技术以及正确的布线和接地技巧。
一、电磁干扰的来源电磁干扰可以由各种外部和内部因素引起。
以下是一些常见的电磁干扰来源:1. 射频辐射:包括无线通信、雷达或其他射频电源等设备产生的电磁波。
2. 电源线干扰:来自交流电源线的噪声,如谐波和干扰信号。
3. 开关电源:开关电源高频噪声会通过电源线和地线传播到其他电子设备中。
4. 过电压和静电放电:电气设备的开关、电磁阀等在操作时可能产生过电压和静电放电。
5. 瞬态电压:包括闪电击中电力线、开关电源的瞬态电压等。
二、EMC设计要求为了满足EMC设计要求,单片机硬件设计应考虑以下方面:1. 辐射和传导:抑制电磁辐射和传导干扰,以确保设备不会对其他设备产生干扰。
2. 抗干扰:增强设备的抗干扰能力,使其能够正常工作并受到外部干扰的影响较小。
3. 地址线、数据线和控制线的布局:合理的布局可以减少交叉耦合和串扰,降低电磁干扰。
4. 接地:良好的接地设计可以降低共模噪声和差模噪声,提高设备的抗干扰能力。
5. 输入输出端口的保护:通过使用适当的保护电路来保护单片机的输入输出端口,防止它们受到外部电磁干扰的损坏。
三、干扰抑制技术1. 滤波器:采用适当的滤波器可以抑制进入单片机的高频噪声。
常见的滤波器包括RC滤波器和LC滤波器。
2. 屏蔽:通过在关键部件周围添加屏蔽罩或屏蔽层,可以有效地防止电磁波的干扰。
3. 地线设计:良好的接地设计可以减少回路的回流电流,降低共模噪声,并提高设备的抗干扰能力。
电路中常见的几种单片机抗干扰技术对于提高单片机系统设计,提高系统的可靠性显得尤为重要。
对单片机系统而言,干扰因素有两种,一是来源于系统外部环境和其它电气设备产生的干扰,通过传导和辐射等途径影响单片机系统正常工作;二是来源于系统内部,由系统结构、制造工艺等决定以及内部元器件在工作时产生干扰,通过地址、电源线、信号线、分布电容等传输,影响开关电源模块系统工作状态。
一. 什么是干扰源?干扰源是指产生干扰的元件、设备或信号。
产生的干扰包括:(1)电磁干扰,如继电器开关启动、静电放电、电网电压波动等都可能引起不同程度的瞬变浪涌电压,会造成IC和半导体器件PN结烧毁、氧化层击穿等。
(2)人为干扰,如机械振动、继电器触点抖动、元器件安装和电路板布线引起的电磁耦合、接插件接触不良、虚焊、放大器自激、电源纹波等。
(3)环境因素干扰,如噪声和环境温湿度、以及太阳黑子的变化,空间粒子辐射等。
每一个设备干扰造成的误操作,可能运行千次才出现一次,甚至是上万,百万才出现一次。
时间上是一天,一个月,甚至是一年很多年。
但是干扰出现所造成的严重后果,是我们无法想象到的。
在这里我先引用一个小插曲:原来我在镇江做焊机的时候,老是出现焊机在上电瞬间有信号输出,出现的频率很高,最严重的一次是差点将一个客户员工的手指压到。
后来我想了个方法就是是在信号输出的I/O口上加上一个50k的上拉电阻,发现问题还是有,但是出现的频率降下来了,后来又改用15k的电阻,就彻底地把那个问题给解决了。
干扰信号源也遵循欧姆定律,越存在干扰的场合,跟测试使用的上拉电阻也有联系。
想知道他是怎么解决的,可以看下下面的文章:[话题] 【MCU每周论点】如何提高单片机的抗干扰能力? 亲你懂吗?二. 干扰源产生的原因是什么?下面回到正题,单片机干扰的原因还包括传播途径、敏感器件的使用,也会使单片机受到干扰。
干扰对单片机系统的影响主要通过三种途径传输,包括:(1)输入系统。
如何解决单片机的抗干扰问题随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。
然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。
这对我们单片机系统的可靠性与安全性构成了极大的威胁。
单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。
因此单片机的抗干扰问题已经成为不容忽视的问题。
1 干扰对单片机应用系统的影响1.1测量数据误差加大干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。
特别是检测一些微弱信号,干扰信号甚至淹没测量信号。
1.2 控制系统失灵单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。
若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。
1.3 影响单片机RAM存储器和E2PROM等在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。
但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。
1.4 程序运行失常外界的干扰有时导致机器频繁复位而影响程序的正常运行。
若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。
由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。
2 如何提高我们设备的抗干扰能力2.1 解决来自电源端的干扰。
解决单片机EMC问题的8个方法本文中所提到的对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的PCB设计到软件处理方面来介绍对电磁兼容性的处理。
一、影响EMC的因数1、电压:电源电压越高,意味着电压振幅越大,发射就更多,而低电源电压影响敏感度。
2、频率:高频产生更多的发射,周期性信号产生更多的发射。
在高频单片机系统中,当器件开关时产生电流尖峰信号;在模拟系统中,当负载电流变化时产生电流尖峰信号。
3、接地:在所有EMC题目中,主要题目是不适当的接地引起的。
有三种信号接地方法:单点、多点和混合。
在频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。
混合接地是低频用单点接地,而高频用多点接地的方法。
地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。
4、PCB设计:适当的印刷电路板(PCB)布线对防止EMI是至关重要的。
5、电源往耦:当器件开关时,在电源线上会产生瞬态电流,必须衰减和滤掉这些瞬态电流。
来自高di/dt源的瞬态电流导致地和线迹发射电压,高di/dt产生大范围的高频电流,激励部件和线缆辐射。
流经导线的电流变化和电感会导致压降,减小电感或电流随时间的变化可使该压降最小。
二、对干扰措施的硬件处理方法1、印刷线路板(PCB)的电磁兼容性设计PCB是单片机系统中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。
随着电子技术的飞速发展,PCB的密度越来越高。
PCB设计的好坏对单片机系统的电磁兼容性影响很大,实践证实,即使电路原理图设计正确,印刷电路板设计不当,也会对单片机系统的可靠性产生不利影响。
例如,假如印刷电路板的两条细平行线靠的很近,会形成信号波形的延迟,在传输线的终端形成反射噪声。
因此,在设计印刷电路板的时候,应留意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰的设计要求。
要使电。
抗干扰设计原则大全一电源线布置:1、根据电流大小,尽量调宽导线布线。
2、电源线、地线的走向应与资料的传递方向一致。
3、在印制板的电源输入端应接上10~100μF的去耦电容。
二地线布置:1、数字地与模拟地分开。
2、接地线应尽量加粗,致少能通过3倍于印制板上的允许电流,一般应达2~3mm。
3、接地线应尽量构成死循环回路,这样可以减少地线电位差。
三去耦电容配置:1、印制板电源输入端跨接10~100μF的电解电容,若能大于100μF则更好。
2、每个集成芯片的Vcc和GND之间跨接一个0.01~0.1μF 的陶瓷电容。
如空间不允许,可为每4~10个芯片配置一个1~10μF的钽电容。
3、对抗噪能力弱,关断电流变化大的器件,以及ROM、RAM,应在Vcc和GND间接去耦电容。
4、在单片机复位端“RESET”上配以0.01μF的去耦电容。
5、去耦电容的引线不能太长,尤其是高频旁路电容不能带引线。
四器件配置:1、时钟发生器、晶振和CPU的时钟输入端应尽量靠近且远离其它低频器件。
2、小电流电路和大电流电路尽量远离逻辑电路。
3、印制板在机箱中的位置和方向,应保证发热量大的器件处在上方。
五功率线、交流线和信号线分开走线功率线、交流线尽量布置在和信号线不同的板上,否则应和信号线分开走线。
六其它原则:1、总线加10K左右的上拉电阻,有利于抗干扰。
2、布线时各条地址线尽量一样长短,且尽量短。
3、PCB板两面的线尽量垂直布置,防相互干扰。
4、去耦电容的大小一般取C=1/F,F为数据传送频率。
5、不用的管脚通过上拉电阻(10K左右)接Vcc,或与使用的管脚并接。
6、发热的元器件(如大功率电阻等)应避开易受温度影响的器件(如电解电容等)。
7、采用全译码比线译码具有较强的抗干扰性。
为扼制大功率器件对微控制器部分数字元元电路的干扰及数字电路对模拟电路的干扰,数字地`模拟地在接向公共接地点时,要用高频扼流环。
这是一种圆柱形铁氧体磁性材料,轴向上有几个孔,用较粗的铜线从孔中穿过,绕上一两圈,这种器件对低频信号可以看成阻抗为零,对高频信号干扰可以看成一个电感..(由于电感的直流电阻较大,不能用电感作为高频扼流圈). 当印刷电路板以外的信号线相连时,通常采用屏蔽电缆。
单片机系统的抗干扰设计随着单片机系统越来越广泛地应用于消费电子、低压电器、医疗设备、以及智能化仪器与仪表等领域,单片机在简化电路设计和提高产品性能的同时,单片机系统本身的电磁干扰问题也成为影响这类设备可靠性的主要因素。
单片机系统是一个含有多种电子元器件和电子部品(乃至子设备和子系统)的复杂电子系统,外来的电磁辐射和传导干扰,以及内部元器件之间、部件之间、以及子系统之间、各传送通道之间的相互干扰对单片机及其数据信息所产生的干扰与破坏,严重地影响了单片机系统的工作稳定性、可靠性和安全性。
因此分析和消除单片机系统的不稳定因数,提高它的电磁兼容性已愈来愈成为人们所关注的课题,而这问题的本身则具有很高的实用价值。
1 单片机系统的可靠性分析一个单片机系统的可靠性是自身软件、硬件与其所处工作环境共同作用的结果,所以系统的可靠性也应从这两方面来进行分析与设计。
对系统本身而言,要在保证系统各项功能实现的同时,对其运行过程中出现的各种干扰信号,以及来自于系统外部的干扰信号进行有效的抑制,这是决定系统可靠性的关键。
而对一个有缺陷的系统来说,设计人员往往只是从逻辑上去保证系统功能的实现,而对系统运行过程中可能出现的问题考虑欠周,采取的措施不足,在干扰面前系统就可能陷入困境。
任何系统的可靠性都是相对的,在一种环境下能够可靠工作的系统,到了另外一种环境就可能就不稳定了,这充分说明环境对系统可靠运行的重要性。
所以在针对系统运行环境去设计系统的同时,应当尽量采取措施来改善系统的运行环境,综合性地解决系统运行的可靠性。
2 单片机系统的电磁干扰问题2.1 单片机系统里电磁干扰的由来单片机的干扰是以脉冲形式进入单片机系统的,其主要渠道有三条,即空间、供电系统及信号通道。
空间干扰多发生在高电压、大电流、高频电磁场附近,通过静电感应、电磁感应等方式侵入系统内部。
供电系统的干扰通过同一电网里用电设备工作时产生的噪声干扰和瞬变干扰来影响单片机系统的工作。
单片机抗干扰措施概述在单片机应用中,抗干扰是一个非常重要的问题。
由于电磁干扰的存在,单片机可能会受到干扰信号的影响,导致系统的性能下降甚至功能失效。
因此,为了确保单片机系统的稳定运行,需要采取一些抗干扰措施。
本文将介绍单片机常见的抗干扰措施,包括软件抗干扰措施和硬件抗干扰措施。
软件抗干扰措施1. 外部中断和定时中断技术外部中断是单片机接收外部信号的一种方式,通过设置中断触发条件,当接收到特定信号时触发中断处理程序。
通过使用外部中断技术,可以及时响应干扰信号的触发,进行干扰处理。
定时中断也是一种常见的抗干扰措施。
通过设置定时器,定时生成中断信号,进行对干扰信号的定时处理。
2. 硬件监控和重启单片机系统中,可以通过硬件监控电压、温度、电流等参数,并根据监控结果采取相应措施。
例如,如果电压过高或过低,可以通过监控电源电压的方式,自动重启系统,以恢复正常运行。
3. 硬件看门狗硬件看门狗是一种常见的抗干扰措施。
通过设置看门狗定时器,在预设时间内必须向看门狗喂狗,否则看门狗将复位单片机。
看门狗能够有效监控单片机运行,并在系统崩溃或运行异常时进行自动重启。
硬件抗干扰措施1. 接口屏蔽和过滤对于单片机与外部设备接口,可以通过屏蔽和过滤的方式降低干扰信号的影响。
接口屏蔽是通过在接口线上添加屏蔽层,减少干扰信号对于单片机的干扰。
常见的屏蔽层材料包括金属层、导电胶和导电纤维等。
接口过滤是通过添加滤波器或滤波电路,降低接口信号中的干扰成分。
常见的滤波器包括低通滤波器和带阻滤波器等。
2. 地线设计在单片机系统中,地线设计也是一个重要的抗干扰措施。
合理地划分地线,避免地线回路产生环形,可以有效减少共模干扰。
3. 电源干扰削弱技术电源干扰是单片机系统中常见的干扰源之一。
为了降低电源干扰,可以采取以下措施:•过滤电源线,加装滤波电容和滤波电阻,降低电源中的高频干扰成分。
•使用稳压器或电源滤波器,确保电源稳定,并降低电源线上的干扰噪声。
单片机系统中的抗干扰分析及措施单片机系统中的抗干扰分析及措施引言:随着科技的发展,单片机系统在各个领域得到广泛应用,例如汽车电子、家电控制、工业自动化等。
然而,由于外界环境的复杂性,单片机系统常常会受到各种干扰,例如电磁干扰、温度变化、电源噪声等。
这些干扰会严重影响单片机系统的稳定性和可靠性。
因此,对单片机系统中的抗干扰问题进行深入分析,并采取相应的措施来解决这些问题,具有重要的意义。
一、抗电磁干扰分析及措施1.分析电磁干扰是单片机系统中最常见的干扰之一。
在实际应用中,电磁场通常由电源线、开关电源、电机等设备产生,会通过空气传播和电磁波辐射的方式对单片机系统产生干扰。
电磁干扰会导致单片机系统执行指令错误、数据异常等问题。
2.措施a. 优化电路布局:合理布局电路,减少导线的长度和面积,提高电路的抗干扰能力。
b. 打开电源滤波器:在单片机系统的电源输入端接入合适的电源滤波器,以消除电源中的高频噪声。
c. 加装电磁屏蔽:对于特别敏感的单片机系统,可以在其周围部署电磁屏蔽罩,以减少或消除外界电磁场对系统的干扰。
二、抗温度变化分析及措施1.分析温度变化是单片机系统中常见的环境因素之一。
随着环境温度的变化,单片机系统的元器件参数、晶体管的工作温度会发生变化,进而影响系统的性能和稳定性。
2.措施a. 选择温度稳定性较好的元器件:在设计单片机系统时,可以选择具有较好温度稳定性的元器件,以减少温度变化对系统的影响。
b. 控制系统温升:合理的散热设计可以有效控制单片机系统的温度变化,减少温度对系统的影响。
c. 采用温度补偿技术:通过在系统中添加温度感知器,实时监测温度变化,并根据变化情况对系统进行相应的补偿,以提高系统的稳定性。
三、抗电源噪声分析及措施1.分析电源噪声是单片机系统中常见的噪声源。
电源噪声来自于电源线的交变电压以及其他电器设备的电源,会对单片机系统产生不稳定的供电环境,进而影响系统的性能和稳定性。
2.措施a. 加装电源滤波器:在电源输入端接入适当的滤波器,以消除电源中的高频噪声,保证供电的稳定性。
单片机抗干扰措施单片机在实际应用中,由于周围环境的电磁干扰和电源干扰等原因,很容易受到各种干扰信号的影响,从而导致系统不稳定、运行异常甚至崩溃。
为了保证单片机正常工作和提高系统稳定性,需要采取一系列的抗干扰措施。
本文将从硬件和软件两方面,重点讨论单片机的抗干扰措施。
1.电源滤波器:在单片机外围电路中添加电源滤波器,用于滤除电源中的高频和低频噪声。
常见的电源滤波器有电容滤波器和电感滤波器等。
其中,电容滤波器可以滤除高频噪声,而电感滤波器可以滤除低频噪声。
2.地线设计:合理布局地线,减小地线回路的面积。
在单片机电路中,地线是一个重要的参考信号,合理设计地线可以减小电磁干扰。
同时,还可以采用单点接地的方式,将各个模块的地线连接在一起,减少地线回路的面积。
3.信号线布线:将信号线与电源线和高功率线分开布线,避免相互干扰。
信号线间的距离尽量保持一定的间隔,可以有效减小电磁干扰。
4.屏蔽:对于特别敏感的模拟信号线,可以采用屏蔽措施,如采用屏蔽线、屏蔽罩等。
屏蔽可以防止外界电磁干扰对信号线的影响。
5.滤波电容:在单片机电路中,可以在需要进行滤波的信号线两端串联一个滤波电容,用于滤除高频噪声。
常见的滤波电容有电容器和电容二极管等。
6.增加抗干扰电路:可以在单片机电路中添加抗干扰电路,如抗干扰电容、抗干扰电感等。
这些电路可以有效地抑制外界干扰信号。
7.使用稳压器:在单片机电路中,可以使用稳压器来提供稳定的电压,防止电源干扰引起的系统不稳定。
1.软件滤波:在单片机程序中,可以通过软件滤波的方式来滤除干扰信号。
例如,在读取模拟传感器信号时,可以进行多次采样并求平均值,以减小采样误差和滤除干扰。
2.软件延时:在一些对实时性要求不高的任务中,可以通过软件增加适当的延时,以减小干扰对系统的影响。
例如,在控制器输入信号采样之前,可以先进行一段延时。
3.软件重发:对于容易受到干扰的信号,可以通过软件重发的方式来提高信号的可靠性。
试析单片机应用中的抗干扰技术与方法摘要:单片机抗干扰技术是单片机应用系统中需要首先进行考虑的技术问题,它对于单片机应用的稳定性和可靠性有着很大的影响和作用。
本文主要结合干扰作用对于单片机系统的不利影响情况,对于单片机应用系统中比较常见的集中抗干扰技术与方法进行分析论述,以提高单片机应用中的抗干扰技术水平,保证单片机运行应用的稳定性与可靠性。
关键词:单片机系统软件工业领域抗干扰技术方法分析中图分类号:tp368.1 文献标识码:a 文章编号:1007-9416(2013)01-0025-02单片机应用系统在工业领域环境中的应用比较广泛和普遍。
通常情况下,单片机应用系统在进行仿真调试以及实验室内部的联机运行应用中,运行稳定性与可靠性都比较高,但是在进行工业环境领域的实际运行应用时,由于工业环境领域内部本身的干扰因素比较多并且复杂,容易造成单片机应用系统运行中出现一些这样或者是那样的不可控制问题,对于单片机系统设备的可靠、稳定运行有着很大的不利影响。
本文主要在对于单片机应用系统的干扰影响分析下,针对比较常见的几种单片机应用系统抗干扰技术和方法进行分析论述,以提高单片机系统中的抗干扰技术水平。
1 干扰作用对于单片机系统的影响分析随着社会经济与工业生产不断发展,单片机系统不仅在工业生产领域应用越来越广泛,而且在智能化仪表以及监控系统领域中的应用数量也越来越多,因此,对于单片机系统运行可靠性与稳定性的要求也就越来越高。
通常情况下,在单片机系统运行过程中,对于单片机系统运行可靠性与稳定性产生影响的因素有很多,而单片机系统的抗干扰能力是影响系统可靠性和稳定性的最重要因素。
根据干扰作用对于单片机系统运行稳定性与可靠性的影响情况来看,形成干扰影响的单片机系统运行可靠性干扰作用,主要有单片机系统运行环境中的放电干扰以及高频振荡干扰、电磁干扰、浪涌干扰等,这些干扰作用主要来自单片机系统工作运行的环境,不仅容易造成单片机系统程序的运行出现混乱,而且还会导致单片机系统中的硬件控制失灵以及数据采集出现较大误差,对于带有音频以及视频信号的应用系统中,干扰作用还会造成单片机应用系统出现声音失真或者是图像串色、串扰等问题,对于单片机系统的正常可靠运行有着很大的危害作用。