太阳影子定位-全国数学建模竞赛A题全国一等奖论文
- 格式:pdf
- 大小:1.09 MB
- 文档页数:32
2015数学建模A题论⽂介绍A题太阳影⼦定位摘要本⽂⾸先确定了不同地点不同⽇期的直杆影长的模型,利⽤该模型解决了不同地点不同⽇期直杆影⼦变化和时间的的关系,为分析视频的拍摄地点和⽇期提供了模型上的基础。
对于问题⼀,为了确⽴直杆的影长与时间的关系,建⽴了地球坐标系和天球坐标系,引⼊太阳⾼度⾓、⾚纬、太阳时⾓、时差等参数变量。
利⽤太阳⾼度⾓和时间的关系建⽴了影长和时间的关系模型。
利⽤MATLAB软件求得影长关于时间的变化曲线,从9点到15点影⼦长度先减⼩后增⼤,在北京时间12点14分直杆影长最短,最短为3.5⽶,在北京时间9点直杆影长最长,长度为7.3⽶。
对于问题⼆,结合问题⼀中各参数变量之间的关系,使⽤Bourges算法和太阳⽅位⾓与时间的关系,得到确定直杆所在地点的数学模型,将附件1所给数据带⼊模型,利⽤excel和MATLAB软件进⾏求参数和拟合函数图像,求得直杆所处的可能地点为北纬19.21,东经108.43。
该地点在海南。
或者为南纬3.9412度,东经137.3度。
该地点在为印度尼西亚纳⽐雷附近。
对于问题三,由所给影⼦顶点坐标数据计算出各时间点的太阳⽅位⾓,利⽤excel 软件拟合出太阳⽅位⾓与时间的关系,进⽽确定直杆点的经度,结合问题⼆的数学模型得到直杆地点和⽇期求法的数学模型。
再次通过MATLAB进⾏求参数和拟合函数图像,求出了附件2地点可能为北纬39.88,东经79.7925或南纬39.88,东经79.7925,可能⽇期为:5⽉25号和7⽉20号或1⽉17号和1⽉26号。
对于问题四,提取出视频所有的帧数,等差得选取其中的20张进⾏模拟,利⽤3DMAX 软件仿真出视频的场景,通过测量所建模型中影⼦长度,确定出20组影⼦顶点坐标数据,再⽤问题⼆中所⽤到的模型进⾏求解,得到经纬度为北纬15.2,东经113.9.拍摄地点在海南省的三沙市。
⽤问题三中的模型求解得到拍摄地点纬度为0,东经123.8度在印度尼西亚,⽇期为3⽉21号或10⽉23号。
数学建模2021a题
2021年数学建模竞赛A题《太阳影子定位》答案如下:
1. 建立影子长度变化的数学模型
根据日出和日落时间,确定太阳的高度角变化范围,再根据影子的长度变化,得到太阳高度角与影子长度之间的关系。
利用这个模型,可以预测任何给定时间点的影子长度。
2. 建立基于深度学习的模型
使用深度学习技术,建立一个能够预测影子长度的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
3. 建立基于时间序列分析的模型
利用时间序列分析技术,建立一个能够预测影子长度的模型。
该模型可以处理时间序列数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
4. 建立基于神经网络的模型
利用神经网络技术,建立一个能够预测影子长度的模型。
该模型可以处理非线性数据,并使用历史数据来训练模型,使其能够准确预测未来的影子长度。
5. 综合以上三种方法
结合深度学习、时间序列分析和神经网络技术,建立一个综合性的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
以上答案仅供参考,如有疑问,建议咨询专业人士。
2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。
将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。
请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。
如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点和日期的模型。
针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度λ、纬度ϕ、时刻t、直杆长度l、季节J(日期N)等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化和各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan)cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分是最短,大约3.674米(表3)。
2021全国赛数学建模a题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
1.创建影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用领域你们创建的模型图画出来2021年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分后26秒,东经116度23分后29秒)3米低的直杆的太阳影子长度的变化曲线。
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3.根据某紧固直杆在水平地面上的太阳影子顶点座标数据,创建数学模型确认直杆所处的地点和日期。
将你们的模型分别应用于附件2和附件3的影子顶点座标数据,得出若干个可能将的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估算出来直杆的高度为2米。
恳请创建确认视频摄制地点的数学模型,并应用领域你们的模型得出若干个可能将的摄制地点。
如果摄制日期未明,你若想根据视频确认出来摄制地点与日期?b题“互联网+”时代的出租车资源配置出租车就是市民乘车的关键交通工具之一,“坐车容易”就是人们高度关注的一个社会热点问题。
随着“互联网+”时代的到来,存有多家公司充分利用安远动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
请你们搜集相关数据,建立数学模型研究如下问题:(1)先行创建合理的指标,并分析相同时空出租车资源的“供需相匹配”程度。
(2)分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?(3)如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。
c题月上柳梢头“月上柳梢头,人约黄昏后”是北宋学者欧阳修的名句,写的是与佳人相约的情景。
太阳影子定位摘要太阳影子定位对视频拍摄分析至关重要,本文通过建立几何模型、太阳高度角模型和遍历模型,绘制出了影长变化曲线,确定了视频拍摄的地点和日期,解决了太阳影子定位问题。
针对问题一,基于地球是球形的假设,建立几何模型和坐标系,用与影长相关的五个参数表示出了杆顶点坐标和光线向量。
由点、线、面间的关系求得直线(光线向量所在直线)和平面(过原点且与杆垂直的平面)的方程,联立方程组求得了影子顶点坐标,并用向量的模表示出了影子的长度,由Matlab软件绘制出了影长变化曲线。
最后,基于地球的真实形状,用太阳高度角模型对模型进行检验,验证了它的合理性。
针对问题二,由于它恰好有两个条件的确定性与问题一相反,所以我们采用问题一精度更高的太阳高度角模型倒推求解。
由勾股定理求出21组影长,以影长为纵坐标,时间为横坐标作图,得到的最低点同时对应时间和当地时间12:00,根据问题一中的时差关系式,反推出当地的经度,再用遍历法,求出了合适的纬度,由经纬度确定了地点为蒙古自治区鄂尔多斯市。
针对问题三,由于它与问题二的区别仅是日期未知,所以只需求日期,地点用问题二模型来求。
我们采用逆向思维,反推出求日期需要知道五个角,然后正向求解。
先通过方位角与影轴角、时角和太阳高度角的关系建立两个等式求出方位角,再利用赤纬角与方位角的关系求出赤纬角,最后利用赤纬角与日期的关系,建立遍历模型求出了日期。
最后采用问题二的模型求解地点。
针对问题四,我们通过处理图像求得了影长。
在日期已知时,我们通过绘制影长-时间图求解出经度为102.165E︒,通过求解高度角与其三个参数的值,建立太阳高度角模型,通过总关系式求出了纬度为58.1N︒。
在日期未知时,我们给出了遍历模型求解纬度,由于经度与日期无关,所以依旧采用日期已知时的方法来求解。
本模型考虑了地球不是规则球体的因素,引入了修正值,使结果更加可靠,且后续问题参照前面的模型来求解,使问题大大简化。
关键字:太阳影子定位;几何模型;太阳高度角模型;遍历模型1.问题重述视频数据分析需要确定视频的拍摄地点和拍摄日期两大方面,太阳影子定位技术就是其中一种确定方法,它通过分析视频中物体太阳影子的变化情况来反推拍摄视频的地点和日期。
太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点与日期的模型。
针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度 λ、纬度ϕ、时刻t 、直杆长度l 、季节J (日期N )等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化与各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan )cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分就是最短,大约3、674米(表3)。
影子长度的变化曲线(图5),9时至12时15分影子长度呈现下降趋势,12时15分之15时影子长度呈现上升趋势;最后考虑太阳照射中发生折射现象的推广。
针对问题二,关键词一、问题重述:如何确定视频的拍摄地点与拍摄日期就是视频数据分析的重要方面,太阳影子定位技术就就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点与日期的一种方法。
1、建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用您们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
2、根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将您们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3、根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点与日期。
将您们的模型分别应用于附件2与附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。
太阳影子定位摘要太阳影子定位技术[1]是解决拍摄视频的地点和时间的重要手段,因此对太阳影子定位技术进行定性与定量的研究具有重要的理论和实际价值。
我们建立了直杆的影子长度,北京时间,日期等变量之间的关系模型,并应用模型解决了题目所列的四个问题。
对于问题一我们利用空间几何学建立数学模型,确定了(太阳光线与直杆之间的)夹角、直杆和太阳直射点位置之间的关系。
进一步地,我们得到了直杆影子长度与直杆、太阳直射点[2]位置(经纬度)之间的关系方程。
我们分两种情况进行讨论,一种情况是太阳直射点与直杆同处于南、北半球,另一种情况是太阳直射点与直杆分别处于南、北半球。
最后我们由方程和matlab软件作图得到2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
对于问题二我们根据附件一给出的数据建立了多个关于直杆经度和纬度的非线性方程组,利用基于matlab的遗传算法[3]求解非线性方程组[4],得到杆子的几个可能的位置。
对于问题三我们根据附件二和三给出的数据建立了多个关于直杆经度、纬度和日期的非线性方程组,利用基于matlab的遗传算法求解非线性方程组,得到若干个可能的地点和日期。
对于问题四我们首先利用图像模拟方法,测得杆子在一些特定时刻的影子的实际长度值,再利用视频给出的数据建立了多个关于直杆经度和纬度的非线性方程组,利用基于matlab的遗传算法求解非线性方程组,得到杆子的几个可能的位置。
【关键字】:直杆影子长度,经纬度,非线性方程一、问题重述太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
本题就是利用物体影子随时间的变化规律来求解拍摄地点与拍摄日期。
1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
太阳影子定位技术摘要本文以太阳影子定位技术为背景,结合直杆影子轨迹的变化规律建立数学模型。
并运用视频数据分析的方法,确定拍摄地点及日期等地理信息条件。
第一问给出了北京时间、拍摄日期,以及拍摄地点的经纬度。
我们可以结合太阳赤纬、时角、直杆的经纬度与太阳高度角之间的关系建立模型,求出符合时间条件要求的太阳高度角,再根据已知的杆的高度和三角公式求出影长关于时间的变化曲线。
第二、三问在第一问的基础上增加难度,使部分变量未知。
通过文献查阅和方程推导,得出阴影运动轨迹形状是双曲线的一支,并且具体形状和当地的纬度以及赤纬有关,本文根据这点进行模型假设与建立。
附件中给出的坐标并不一定是标准地理坐标,通过对其进行坐标变换,引入了实际坐标系与标准地理坐标系的偏角。
在拟合多项高次变量组成的隐函数方程的过程中,为增加精确度,运用最小二乘法进行拟合求解未知参量时,可以利用直杆阴影顶点轨迹的形状,建立参量和变量之间的关系,简化需拟合的隐函数方程。
这样就可以根据太阳影子顶点横纵坐标以及对应的时刻,把偏角、纬度、经度、日期作为未知参数进行拟合,得出要求的地理位置和相应的日期。
如通过对附件1数据的拟合求解可得到一组地理坐标(东经104.425度,北纬15.6578度),对附件2数据的拟合求解可得一个可能的日期6月21日,坐标(东经116度,北纬26度),由附件3得到的可能的日期地点为:6月21日,(东经164.55度,北纬71.26度)。
为了便于定位,根据一般工程的实际需求,对美国天文学家纽康(New Comb)提出的太阳公式作了综合、简化,舍去了一些高阶微小量。
结合测量学的理论,用数学模型进行非线性拟合求得直杆所处的经纬度。
第四问给出一段视频,实际是对前三问模型的实际应用。
本问对一些已有的论文以及专利进行借鉴,创新与简化。
首先对视频中的图像进行取帧,在灰度处理中因为技术限制,改为运用Matlab二值化处理。
并根据简单测量画出运行轨迹。