数学建模太阳影子定位
- 格式:doc
- 大小:1.04 MB
- 文档页数:9
数学建模2021a题
2021年数学建模竞赛A题《太阳影子定位》答案如下:
1. 建立影子长度变化的数学模型
根据日出和日落时间,确定太阳的高度角变化范围,再根据影子的长度变化,得到太阳高度角与影子长度之间的关系。
利用这个模型,可以预测任何给定时间点的影子长度。
2. 建立基于深度学习的模型
使用深度学习技术,建立一个能够预测影子长度的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
3. 建立基于时间序列分析的模型
利用时间序列分析技术,建立一个能够预测影子长度的模型。
该模型可以处理时间序列数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
4. 建立基于神经网络的模型
利用神经网络技术,建立一个能够预测影子长度的模型。
该模型可以处理非线性数据,并使用历史数据来训练模型,使其能够准确预测未来的影子长度。
5. 综合以上三种方法
结合深度学习、时间序列分析和神经网络技术,建立一个综合性的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
以上答案仅供参考,如有疑问,建议咨询专业人士。
太阳影子定位摘要太阳影子定位技术是通过分析视频中物体的太阳影子变化,通过数学方法确定视频拍摄的地点和日期的一种方法。
具有极高的实际价值。
本文在通过数学建模实现太阳影子定位的过程中,对题目提出的问题做出了如下分析:针对问题一:首先利用题中已知的日期求出太阳赤纬0.1896δ=-,并和当地纬度395436ϕ'''= 一起代入太阳高度角计算公式,最后通过影长与太阳高度角之间的相关关系建立影长变化模型,给出影长变化曲线。
针对问题二:利用MATLAB 对影长变化数据进行非线性回归分析确定当地与北京的时差32.6n t mi ∆=,求出当地经度为东经1081235''' 。
接着在纬度的变化范围内以0.1ϕ∆=对纬度进行枚举,拟合求出杆长参数集合}{1,2i i n l = 和经度参数集合}{1,2i i n γ= 。
将所拟合出的结果i l 和i γ与0l 和0γ进行比较,筛选出最佳的枚举结果,最终确定坐标:(191730,1081235)'''''' 东经北纬或(01040,1081235)'''''' 东经南纬。
针对问题三:利用SPSS 通过序列二次编程和Levenbery-Marquarat 两种方法对数据进行非线性回归分析,取他们之中标准误最小的的一组作为结果,即附件2的地点和日期为(295430,1055344)'''''' 北纬东经,2015.04.04或者2015.09.08;附件3的地点和日期为(373510,1055344)'''''' 北纬东经,2015.03.09或者2015.10.04。
针对问题四:利用Photoshop 对视频进行广角镜头修正和影长数据的提取。
2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。
将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。
请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。
如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点和日期的模型。
针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度λ、纬度ϕ、时刻t、直杆长度l、季节J(日期N)等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化和各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan)cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分是最短,大约3.674米(表3)。
太阳影子定位技术数学建模(共12页)-本页仅作为预览文档封面,使用时请删除本页-利用影长变化来定位的方法研究摘要本文基于太阳的运动学规律,设计出了一套符合于题目要求的模型。
首先,我们利用地球自转与地球公转的运动规律将影子分成东西方向和南北方向的分量,然后分别表示出南北分量上与东西分量影子长度的变化,发现在南北方向上影子的长度在一天中不会发生变化(可以忽略不计),影子长度产生变化的主要原因是地球产生自转,分别建立了模型一、模型二、模型三解决问题一、问题二、问题三和问题四的一部分。
模型一:首先分析了太阳直射点在不同的时间段直接影响正午太阳直射杆的影子的长度,然后建立模型来刻画影子长度的变化,求得函数关系式,并用MATALAB给出了2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线;模型二:利用影子分量的变化规律,建立方程,通过MAPLE中多项式的求解方法,算出经度值与纬度值,从而确定杆的位置;模型三:因为附件2没有给出了日期、只给出了横纵坐标,所以在模型二的基础上,我们通过解方程组可以得到地理纬度和太阳直射点纬度,然后通过太阳直射点纬度解出第几天,从而确定日期。
关键词经纬度东西方向分量南北方向分量定位方法一、引言、问题重述如何通过太阳影子长度的变化来估计杆所在的位置、时间研究发现太阳影子长度的变化遵循着某种函数规律,我们的目标就是想通过研究这种规律来进行定位和确定日期。
太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
我们小组对这个方法进行了探究。
二、问题的解决问题一模型的建立建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
太阳影子定位摘要本文针对太阳影子的定位进行分析,利用视频的拍摄地与拍摄日期等数据进行分析,来研究在视频中直杆的影子变化规律,问题中有要求利用坐标位置让我们得到拍摄的地理位置和拍摄日期,所以可以进行逆向思维,从中分析出要求得问题。
对于问题一,根据题设条件,首先根据所学的地理知识,了解影响物体影子发生变化的相关因素,然后通过查询相关文献、杂志等,确定各个因素之间的关系,建立物体影子长度变化数学模型,然后利用MATLAB,得到因素之间的关系,即物体影子的长度与太阳高度角、太阳赤纬角、太阳时角以及直杆所处的位置有关。
最后根据题中所给的天安门广场的具体例子,应用此数学模型,便可以得到所求的位置和时间的物体影子变化曲线。
对于问题二,首先根据问题一中所建立的数学模型,假设水平地面上物体影子的顶点坐标,然后根据关键词:太阳高度角太阳赤纬度太阳时角MATLAB一、问题重述一段视频,我们可以从中得到很多信息。
对于如何确定视频的拍摄地点和时间,我们就可以通过分析视频的相关数据得到。
太阳影子定位技术就是其中的一种方法。
问题一要求我们分析关于影子长度变化的参数有哪些,以及它们的变化规律,并建立数学模型。
应用建立的模型,得出位于天安门广场(北纬39度54分26秒,东经116度23分29秒)在2015年10月22日北京时间9:00-15:00之间,树立的一根3米高的直杆的太阳影子长度的变化曲线。
经过分析我们可以得到,杆的影子与太阳高度角有关,即可以用时差、真太阳时、太阳赤纬角以及太阳时角来表示太阳影子的长。
问题二要求我们在水平地面上,固定某直杆,建立坐标,根据它在太阳下影子的顶点坐标,然后建立数学模型,得到直杆所在的位置。
可以根据问题一的模型进行逆向思维,去求直杆的位置,再利用太阳方向角,并依靠附件1中的直杆影子顶点坐标,通过所建的数学模型,求出很多个可能的地点。
问题三和问题二的前提一样,建立数学模型之后,我们要应用它得到直杆所处的具体位置和时间。
西安邮电大学
(理学院)
数学建模报告
题目:太阳影子定位问题
班级:信息工程1403班
学号: 03144079
姓名:侯思航
成绩:
2016年6月30日
一、摘要
本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。
综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。
最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。
第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。
然后,根据时差计算关系,当北京时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。
第二问中,首先根据影子坐标求出影子的长度,拟合北京时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定范围,根据第一问公式进行搜索,从而确定可能的地点。
关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法
二、问题提出
如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。
将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。
请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。
三、问题分析
第一问:根据物体在太阳光照射下将产生影子的自然现象,研究物体影子的形成原理, 通过分析太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化来建立数学模型。
利用Matlab软件绘出影子长短随时间变化的图像。
将问题中所给参数带入,解决问题。
由于太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化。
第二问:通过对附件所给的影子坐标的数据,求出影子的长度,然后通过第一问的相关公式,对影长和时间的关系进行拟合,得到一个二次方程,得出影长的最低值,从而可知正午时间,再算出经度。
四、建模过程
第一问
1.模型假设
(1):假设单一光源(太阳光)照射
(2):直杆严格垂直于水平地面
(3):被照射直杆的形状不会影响影子的长度
(4):将整个天空视为一个天体圆
(5):不考虑大气折射
(6):问题中给出的数据可靠
2.定义符号说明
符号含义符号含义
偏磁角(赤纬角) e 时差
:太阳高度角入射角
经度纬度
t 北京时间 A 太阳方位角
N 自1月1日算起的第几天 L 影子长度
时角 :H 杆长3.模型建立:以杆影在阳光下产生影子端点移动的轨迹,代替太阳运行轨迹。
运用相对运动原理,将地球自转及绕太阳公转的运动简化为地球不动,太阳绕地球转动。
(1)计算磁偏角(赤纬角)全年之中,每一天太阳和地球的运转与天体圆赤道之间所形
成的夹角,也就是所谓的磁偏角都不同,会在+23.45与-23.45之间变化,其计算公式为:=23.45sin[2(28+4N) ]/365 (1)
(2)由北京时间计算当地时间:按太阳运行位置,世界采取了时差制度并且遵循此制度,
各国时间历法都以此制度为基础。
按太阳运行位置,划分时区,每个时区相差15(每个
时区相差1个小时)。
当地时间s的计算公式:
S=t-(120-R)/ 60*15 (2)
当所得值为负数时,加上24小时。
(3)计算时角因为地球自转一周约为24小时,所以,太阳每小时大约自东向西移动15
(即360/24 ),故时角w的计算公式为:w=15(12-s) (3) w为正表示偏东,w为负表示偏西。
注意:计算中将其划为弧度制。
(4)计算太阳高度角太阳高度角简称太阳高度(其实是角度)。
太阳高度是决定地球表面
获得太阳热能数量的最重要的因素,它在数值上等于太阳在地球地平坐标系中的地平高度。
太阳高度角的计算公式为:=arc nsin(sincoscoscosarcw) (4)
(5)利用太阳高度角、杆长及影长列出函数式
如图所示,由立竿见影的测量方式,得出影长L公式为:L=H/tan P
4,模型求解:
由有几何学原理,已知tan p在0<p</2 时为递增函数,故太阳高度越小,影子越长。
影子有时比物体长,有时比物体短。
太阳高度为45度时影子和物体一样长。
由一天中太阳位置的变化规律得出,早晚影子最长,中午最短,早上到中午影子慢慢变短,中午到晚上影子慢慢又变长。
相似的,我们可以得出,早晚太阳高度最小,中午最大,早上到中午太阳高度慢慢变大,中午到晚上太阳高度慢慢又变小。
(2)关于北京影长问题的探索
利用Matlab绘出影子的变化规律图。
第一问需要求解的题目中给出一下参数: :
N:自1月1日算起的第295天。
t:北京时间 9:00-15:00。
:东经116度23分29秒。
:北纬39度54分26秒。
H 3米。
注意:计算中将经、纬度划弧度制。
将参数带入Matlab中,绘出影子长度变化曲线,如二所示:
第二问
1.模型假设:假设附件1所给顶点坐标数据符合事实
2.定义符号说明:
A:方位角
:高度角
:赤纬角
:物体所在地理纬度
:当地时间
N:从1月1日起距当地日期的天数
n:表示24小时制的时间数
t:太阳某位置的方位时间
:时角
L0:影子的长度
(x.y):影子顶点坐标
3,模型建立:
因为竹竿相对太阳的位置所对应于地球上所在点的相对位置, 由该点的地理纬度、日期和时间3个因素来决定。
一般通过地平坐标系及赤道坐标系来同时表示太阳的位置, 也就是以太阳高度角方位角A 及赤纬角、时角来表示。
赤纬角是指地球赤道平面与太阳和地球中心的连线之间的夹角,高度角指太阳光的入射方向和地平面之间的夹角, 可知高度角的范围是000~90,方位角指经过球心O。
与太阳位置点在地平圈上投影点的直线与地平圈正南向OS所夹的角。
定义方位角坐标以正南向S点为起始00逆时针方向为负, 分180顺时针方向为正, 亦分0180;正北向N点为正负180。
因此根据太阳位置的变化可以绘制出坐标网图, 在坐标网图中用同心圆来代表太阳高度圈, 用圆周上的刻度角来表示太阳的方位角(自南向西为正值, 自南向东为负值)。
故通过竿影轨迹点的坐标可求出影长,然后通过拟合影长相关计算公式如下:
影长公式
根据韦达定理得:
五、模型评价与改进
第一问中,我们所用的F检验没有T检验合适,但是结果偏差不大第二问中,topsis 法灵活简便,操作方便。
并用熵值法确定权重,具有合理性,但是缺少相应的模型检验。
第四问中,通过经验设定综合指标进行求解,简化了相应的数学模型,只是缺少对综合指标设立的检验,依据性不强。
六、参考文献
[1] Topsis综合评价法2012年9月8日
[2]数学建模成绩的评价与预测,2012年9月8日
[3]陈光亭裘哲勇《数学建模》高等教育出版社 2010年2月
[4]王宏洲《数学建模优秀论文》清华大学出版社 2011年9月
(注:可编辑下载,若有不当之处,请指正,谢谢!)。