电动力学第二章第3节
- 格式:ppt
- 大小:591.00 KB
- 文档页数:22
电动力学课件3一、引言电动力学是研究电磁现象的规律和应用的物理学分支,是电磁学的重要组成部分。
在电动力学中,我们关注电荷、电流、电场和磁场等基本概念,以及它们之间的相互作用和运动规律。
本课件将介绍电动力学的基本原理和重要公式,帮助读者理解和应用电动力学的知识。
二、电场和磁场1.电场电场是指在空间中存在电荷时,电荷之间相互作用的力场。
电场的强度和方向由电荷的大小和位置决定。
电场的单位是牛顿/库仑(N/C)。
电场的计算可以使用库仑定律,即两个点电荷之间的电场力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比。
库仑定律的数学表达式为:F=k-q1q2-/r^2其中,F是电场力,k是库仑常数,q1和q2是两个点电荷的电荷量,r是它们之间的距离。
2.磁场磁场是指在空间中存在电流时,电流产生的力场。
磁场的强度和方向由电流的大小和方向决定。
磁场的单位是特斯拉(T)。
磁场的计算可以使用安培定律,即电流元产生的磁场与电流的大小和方向有关。
安培定律的数学表达式为:B=μ0(I/(2πr))其中,B是磁感应强度,μ0是真空的磁导率,I是电流的大小,r是电流元到观察点的距离。
三、电磁感应电磁感应是指磁场的变化在导体中产生电动势的现象。
根据法拉第电磁感应定律,电动势的大小与磁通量的变化率成正比。
法拉第电磁感应定律的数学表达式为:ε=-dΦ/dt其中,ε是电动势,Φ是磁通量,t是时间。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场运动规律的四个方程,包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培定律。
这些方程组将电场和磁场联系在一起,描述了电磁场的传播和相互作用。
1.高斯定律高斯定律描述了电场的发散性质,即电荷产生的电场是从正电荷发散出去,汇聚到负电荷。
高斯定律的数学表达式为:∮EdA=4πkQ_enclosed其中,E是电场强度,dA是高斯面的面积元素,Q_enclosed是高斯面内的总电荷量。
2.高斯磁定律高斯磁定律描述了磁场的发散性质,即磁场线是闭合的,没有磁单极子存在。
第二章静电场1 一个半径为R 的电介质球,极化强度为,电容率为计算: (1)束缚电荷的体密度和面密度; (2)自由电荷体密度; (3)球外面和球内的电势; (4) 该带电介质球产生的静电场的总能量。
解:问题有球对称,故由叨=蛭+ R=茂得介质球内的电场强度 瓦=—^- = -^4,(尸 VR)£ _ £()£ _ % 广极化过程遵从电荷守恒,球内与球面总的束缚电荷必定等值异 号,且有球形对称,在球外面电场互相抵消,故球外面电场相当 f " 4 展 KR于总的自由电荷心=L PjdV =——集中于球心时产生的电6 6()场4密0sKR r .必 £°(£ — £())户,r> &Q 卜里,=甲=室一坚罗 。
' a4花 r 4 展"上式用级数展开其结果跟用分离变量法的结果一致。
解的必=自由电荷体密度:自由电荷体密度:9接地空心导体球内、外半径为&和R?,在球内离球心为。
(。
<&)处置一点电荷。
,试用镜像法求电势。
导体球上的感应电荷有多少?分布在内表面还是在外表面?解:由于接地导体球的屏蔽作用,球壳及外部空间的电势为零,求解区域为球腔内。
以球心为坐标原点,令4位于Z =。
处。
问题有轴对称,球内电势的全部定解条件为:vV = --^(z-^z);8加项T有限,此书=。
在z=b处放一假想电荷必,则球内任意一点的电势"Q I Q'4筋°尸4茏(/,其中,是点电荷&到场点的距离,/是点电荷必到场点的距离,1_ 1] ]即•尸^R I即•尸^R II + a1 -2Racos0,r』+ a2— 2Rd COS0Q必Q r由边界条件切得:[; + >]=0,即~^ = ~ 二0r r R=R}H ' R=R]n R2解的。
=-*" = 土aaI , QQRJan(p =——[/*__% ]4密。
第二章静电场本章我们把电磁场的基本理论应用到最简单的情况:电荷静止,相应的电场不随时间而变化的情况本章研究的主要问题是:在给定的自由电荷分布以及周围空间介质和导体分布的情况下,求解静电场本章内容:1.静电场的标势及其微分方程2. 唯一性定理3. 分离变量法4. 镜像法5. 格林函数法6. 电多级矩⎩⎨⎧=⋅∇=×∇ρD E 0麦克斯韦方程组的电场部分为:(1.1)(1.2)这两个方程连同介质的电磁性质方程是解决静电问题的基础●静电场的无旋性是它的一个重要特性●由于无旋性,电场强度E 可以用一个标量场的梯度来表示,和力学中用势函数描述保守力场的方法一样讨论:(a) 只有两点的电势差才有物理意义(b) 在实际计算中,常常选取某个点为参考点,规定其上的电势为零,这样全空间的电势就完全确定了(d) 一个具体问题中只能选一个零势点∫∞⋅=PP l E d )(ϕ(c) 零势点的选择是任意的,在电荷分布于有限区域的情况下,常常选取无穷远的电势为零0)(=∞ϕ(2)给定电荷分布所激发的电势根据电势和电场强度的关系:●当已知电场强度时,可以由积分公式求出电势●已知电势时,通过求梯度就可以求出电场强度由以上讨论可知:①若空间中所有电荷分布都给定,则电场强度和电势均可求出②但实际情况往往并不是所有电荷都能预先给定,因此,必须找出电荷与电场相互作用的微分方程P 2,由于电场强度时,将电荷从P 1 移到P 2,电场σ−§2.2 唯一性定理一、静电问题的唯一性定理下面研究可以均匀分区的区域V :iV iε电容率2314L)(x ρ自由电荷分布2 1342 134二、有导体存在时的唯一性定理当有导体存在时,为了确定电场,所需条件有两种类型:①一类是给定每个导体上的电势ϕi②另一类是给定每个导体上的总电荷Qi给定时,即给出了V’所有值,因而由唯一性定理可设区域V 内有一些导体,给定导体之外的电荷分布,给定各导体上的总电荷Q i 以及V 的边界S 上的ϕ或∂ϕ/∂n 值,则V 内的电场唯一地确定.对于第二种类型的问题,唯一性定理表述如下:)∫′∇+V V V d d 2ϕϕ例:两同心导体球壳之间充以两种介质,左半部电容率为ε1,右半部电容率为ε2,设内球壳带总电荷Q ,外球壳接地,求电场和球壳上的电荷分布.解:设两介质内的电势、电场强度和电位移矢量分别为由于左右两半是不同介质,因此一般不同于只有一种均匀介质时的球对称解,,,,,,222111D E D E ϕϕ§2.3 拉普拉斯方程分离变量法静电学的基本问题是求满足给定边界条件的泊松方程只有在界面形状是比轻简单的几何曲面时,这类问题的解才能以解析形式给出本节和以下几节我们研究几种求解的解析方法一、拉普拉斯方程在许多实际问题中,静电场是由带电导体决定的例如:①电容器内部的电场是由作为电极的两个导体板上所带电荷决定的②电子光学系统的静电透镜内部,电场是由分布于电极上的自由电荷决定的这些问题的特点是:自由电荷只出现在一些导体的表面上,在空间中没有其他自由电荷分布二、分离变量法①将场量的函数表达式中不同坐标相互分离,即将场量分解为单一坐标函数的乘积的形式,求出通解不同坐标系中拉普拉斯方程的通解不同分离变量法就是:②然后再根据给定的边界条件求出实际问题的解)()()(y x y x,υψu =。
电动力学教程第一章电动力学的基本概念和原理1.1 电动力学的起源和发展1.2 电荷、电场和电势1.3 静电场和电场线1.4 电荷的运动和电流1.5 电磁感应和法拉第定律1.6 安培环路定理和电磁场的旋度1.7 电磁波和辐射现象第二章电场和电势2.1 电场的定义和性质2.2 电势的概念和计算方法2.3 电势能和电场的关系2.4 点电荷和电偶极子的电势分布2.5 电势的叠加原理和电势的连续性2.6 电场和电势的能量密度第三章静电场和电荷分布3.1 静电场的高斯定律和电通量3.2 静电场的电势分布和电势差3.3 静电场的边界条件和电势的唯一性3.4 电介质中的静电场和极化效应3.5 静电场的能量和能量密度第四章电流和电阻4.1 电流的定义和电流密度4.2 电阻和欧姆定律4.3 导体中的电场和电势分布4.4 电阻的材料特性和电阻率4.5 稳恒电流和电源的内阻4.6 电流的连续性方程和电流的守恒定律第五章磁场和磁感应5.1 磁场的定义和性质5.2 安培定律和磁场的环路积分5.3 磁场的旋度和磁场的矢势5.4 磁场中的洛伦兹力和磁场的能量密度5.5 磁感应和磁通量的定义和计算方法5.6 磁场的连续性方程和磁场的守恒定律第六章电磁感应和法拉第定律6.1 电磁感应的基本原理和法拉第定律6.2 磁场的变化和电动势的产生6.3 磁通量的变化和楞次定律6.4 互感和自感的概念和计算方法6.5 电磁感应的应用和电磁感应现象第七章电磁波和辐射现象7.1 电磁波的产生和传播7.2 电磁波的性质和特点7.3 电磁波的传播速度和波长7.4 电磁波的能量和能量密度7.5 辐射现象和辐射场的特性7.6 电磁波的应用和辐射的危害以上是一份电动力学教程的大致内容,希望能够帮助读者理解电动力学的基本概念和原理。
通过对电场、电势、静电场、电荷分布、电流、磁场、电磁感应、电磁波等内容的介绍,读者能够全面了解电动力学的基础知识,为进一步学习和研究电动力学打下坚实的基础。
电动力学课件01.引言电动力学是物理学中的一个重要分支,主要研究电荷、电流、电磁场以及它们之间的相互作用规律。
电动力学的发展历程可以追溯到19世纪,当时的科学家们通过实验和理论研究,逐步揭示了电磁现象的本质和规律。
本课件旨在介绍电动力学的基本概念、理论框架和重要应用,帮助读者系统地了解电动力学的基本原理和方法。
2.麦克斯韦方程组麦克斯韦方程组是电动力学的基础,描述了电磁场的基本性质和演化规律。
麦克斯韦方程组包括四个方程,分别是:(1)高斯定律:描述了电荷分布与电场之间的关系,即电荷产生电场,电场线从正电荷出发,终止于负电荷。
(2)高斯磁定律:描述了磁场的无源性质,即磁场线是闭合的,没有磁单极子存在。
(3)法拉第电磁感应定律:描述了时变磁场产生电场的现象,即磁场的变化会在空间产生电场。
(4)安培环路定律:描述了电流和磁场之间的关系,即电流产生磁场,磁场线围绕电流线。
3.电磁波的传播(1)电磁波的传播速度:在真空中,电磁波的传播速度等于光速,即c=3×10^8m/s。
(2)电磁波的能量:电磁波传播过程中,电场和磁场交替变化,携带能量。
(3)电磁波的极化:电磁波的电场矢量在空间中的取向称为极化,可分为线极化、圆极化和椭圆极化。
(4)电磁波的反射、折射和衍射:电磁波在遇到边界时会发生反射和折射现象,同时还会产生衍射现象。
4.动态电磁场(1)电磁场的波动方程:描述了电磁波的传播规律,包括波动方程的推导和求解。
(2)电磁场的能量和动量:研究电磁场携带的能量和动量,以及它们与电荷、电流之间的相互作用。
(3)电磁场的辐射:研究电磁波在空间中的辐射现象,包括辐射源、辐射功率和辐射强度等。
5.电动力学应用(1)通信技术:电磁波的传播特性使其成为无线通信的理想载体,广泛应用于方式、电视、无线电等领域。
(2)能源传输:电磁感应原理使电能的高效传输成为可能,如变压器、发电机等。
(3)电子设备:电磁场的控制和应用是电子设备工作的基础,如电脑、方式、家用电器等。
《电动力学电子教案》课件第一章:电磁场基本概念1.1 电磁场的定义与特性电磁场的概念电磁场的分类:静态电磁场和动态电磁场电磁场的特性:保守场与非保守场1.2 电磁场的基本方程高斯定律法拉第电磁感应定律安培环路定律麦克斯韦方程组1.3 电磁波的产生与传播电磁波的产生:麦克斯韦方程组的波动解电磁波的传播:波动方程和解电磁波的频率、波长和速度第二章:电磁波的波动方程及其解2.1 电磁波的波动方程电磁波的波动方程推导波动方程的边界条件2.2 电磁波的解平面电磁波的解球面电磁波的解2.3 电磁波的极化线极化圆极化椭圆极化第三章:电磁波的反射与折射3.1 电磁波在介质边界上的反射反射定律反射波的性质3.2 电磁波在介质边界上的折射折射定律折射波的性质3.3 电磁波的全反射全反射的条件全反射的物理意义第四章:电磁波的传播与应用4.1 电磁波在自由空间中的传播自由空间中的电磁波传播特性电磁波的传播速度和波长4.2 电磁波在大气中的传播大气对电磁波传播的影响大气层对电磁波的吸收和散射无线通信雷达微波炉第五章:电磁波的辐射与吸收5.1 电磁波的辐射电磁波的辐射机制天线辐射特性5.2 电磁波的吸收电磁波被物质吸收的机制吸收系数和损耗5.3 电磁波的辐射与吸收的应用无线通信设备的设计电磁兼容性分析电磁波探测与成像第六章:电磁波的量子电动力学基础6.1 量子力学与经典电磁学的对比经典电磁学的基本原理量子力学的基本原理6.2 量子电动力学的基本概念费米子的电磁相互作用光子与物质的相互作用6.3 量子电动力学的应用激光的原理与应用电子加速器与粒子物理实验第七章:相对论性电子学7.1 狭义相对论与电子学狭义相对论的基本原理狭义相对论对电子学的影响7.2 洛伦兹变换与电子学洛伦兹变换的定义与性质洛伦兹变换在电子学中的应用7.3 相对论性效应的应用高速电子设备的相对论性效应分析粒子加速器中的相对论性效应第八章:电子加速器与辐射效应8.1 电子加速器的基本原理电子加速器的工作原理电子束的特性和应用8.2 辐射效应的基本概念辐射对物质的影响辐射防护的基本原则8.3 辐射效应的应用医学影像学中的辐射效应无线电通信中的辐射效应第九章:电磁波探测器与测量9.1 电磁波探测器的原理与分类光电探测器微波探测器射线探测器9.2 电磁波测量技术直接测量法与间接测量法频率测量与功率测量9.3 电磁波探测与测量的应用无线电通信系统的性能评估地球物理勘探第十章:电磁波在现代科技中的应用10.1 电磁波在信息技术中的应用光纤通信技术无线通信技术10.2 电磁波在医学中的应用磁共振成像(MRI)射频消融技术10.3 电磁波在其他领域的应用雷达与遥感技术电磁兼容性与电磁防护重点和难点解析重点环节:1. 电磁场的定义与特性:电磁场的分类、电磁场的特性。