优化建模与lingo软件
- 格式:doc
- 大小:427.50 KB
- 文档页数:5
第9卷第3期2007年6月黄山学院学报JOurnal0fHuangshanUniVefsityVo】.9.NO.3Jun.2007数学建模中的优秀软件——LINGO周甄川(黄山学院数学系,安徽黄山245041)摘要:介绍了数学建模的相关概念、数学建模竞赛概况,探讨了LINGo系统的功能与特点,以及它在数学建模中的应用。
关键词:数学模型;数学建模;LlNGo系统中图分类号:TP319:0141.4文献标识码:A文章编号:1672—447x(2007)03—0112—03在对自然科学与社会科学许多课题的研究中,科学工作者常将事物的变化规律用特定的数学表达式的形式加以描述。
将寻求这种确定事物变化规律的过程称为“数学建模”。
而在数学建模以及全国大学生数学建模竞赛中,最常碰到的是一类决策问题,即在一系列限制条件下,寻求使某个或多个指标达到最大或最小,这种决策问题通常称为最优化问题【1】。
最优化理论是近几十年发展和形成的一门新兴的应用性学科。
它主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。
主要研究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。
它主要由决策变量、目标函数、约束条件三个要素组成。
当遇到的实际问题时即使建立了模型,找到了解的方法,对于较大的计算量也是望而却步,LINGo系列优化软件包就给我们提供了理想的选择。
1什么是数学建模数学建模(MatheImticalModelin曲‘11顾名思义就是建立数学模型以解决实际问题的过程。
它利用数学和计算机对实际问题进行分析研究,抽象出反映事物内在活动规律的数学关系表达式,通过对这些数学关系表达式的求解和反复验证,最终解决实际问题。
数学是所有自然科学的基础,随着计算机软硬件技术的迅速发展,数学建模和与之相伴的计算已逐渐成为工程设计的关键工具,并在人类社会实践活动中的众多领域内发挥着越来越重要的作用。
那么,什么是数学模型?如何建立数学模型?如何用数学模型解决实际问题呢?模型就是对事物的一种抽象。
Lindo 和 Lingo 是美国 Lindo 系统公司开发的一套专门用于求解最优化问题的软件包。
Lindo 用于求解线性规划和二次规划问题,Lingo 除了具有 Lindo 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。
Lindo 和Lingo 软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。
Lingo 实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。
由于这些特点,Lindo系统公司的线性、非线性和整数规划求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。
应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等等...Lindo/Lingo 软件作为著名的专业优化软件,其功能比较强、计算效果比较好,与那些包含部分优化功能的非专业软件相比,通常具有明显的优势。
此外, Lindo/Lingo 软件使用起来非常简便,很容易学会,在优化软件(尤其是运行于个人电脑上的优化软件)市场占有很大份额,在国外运筹学类的教科书中也被广泛用做教学软件。
LingoLingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。
Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
简单的模型表示Lingo 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。
方便的数据输入和输出选择Lingo 建立的模型可以直接从数据库或工作表获取资料。
同样地,Lingo 可以将求解结果直接输出到数据库或工作表。
强大的求解引擎Lingo 内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和整数最佳化。
LINGO使用说明一、LINGO的基本特性1.建模语言:LINGO使用一种直观的建模语言,被称为LINGO语言,它使用简洁的语法和自然语言类似的表达方式,使用户能够轻松地描述问题。
2.线性优化:LINGO支持线性规划(LP)和整数线性规划(ILP),它的线性优化功能包括线性约束、线性目标函数和变量定义,可以解决诸如生产优化、资源分配等问题。
3.非线性优化:LINGO还支持非线性规划(NLP)和全局优化(GLO),可以解决包括非线性约束和非线性目标函数的问题。
它提供了多种求解方法和算法,如牛顿法、逐次线性规划等。
4.约束和限制:LINGO能够处理各种类型的约束和限制,包括等式约束、不等式约束、逻辑约束等。
用户可以根据具体问题定义约束,LINGO会自动处理约束的完整性和一致性。
5.求解器:LINGO内置了一系列高效的求解器,如线性规划求解器、非线性规划求解器、整数规划求解器等。
用户可以根据问题的复杂程度选择最适合的求解器。
6.结果分析:LINGO可以生成详细的结果报告,包括优化解、约束条件、目标函数值等。
用户可以通过结果报告来分析问题的解决方案,做出决策。
二、LINGO的使用方法2.创建模型:在LINGO中,用户需要先创建一个模型文件,来描述问题。
可以通过鼠标点击“新建模型”按钮或选择文件菜单中的“新建”选项来创建一个新的模型文件。
3.定义变量:在模型文件中,用户可以定义变量。
变量可以是整数、二进制或连续的,并为每个变量分配一个名称、类型和取值范围。
4.定义目标函数:在模型文件中,用户可以定义一个目标函数。
目标函数可以是线性的或非线性的,并定义在变量上。
5.定义约束:在模型文件中,用户可以定义约束。
约束可以是线性的或非线性的,并定义在变量上。
用户需要通过约束来限制变量的取值范围。
6.设置求解器:在模型文件中,用户可以选择合适的求解器来解决问题。
LINGO提供了多种求解器,用户可以根据问题的复杂程度选择最适合的求解器。
问题一:LP 问题在lindo 和lingo 中不同的输入形式
(1)将目标函数的表示方式从“MAX ”变成了“MAX=”
(2)“ST ”在LINGO 模型中不再需要,所以被删除了
(3)每个系数与变量间增加了运算符“*”(即乘号不能省略)
(4)每行(目标、约束和说明语句)后面均增加了一个分号“;”(英文状态下)
(5)模型结束标志“END ”也被删除了(LINGO 中只有当模型以“MODEL :”开始时才能以“END ”结束)。
(6)英文状态下!后面的文字为说明文字,不参与模型的求解。
问题二:状态窗口的参数解释
variable adj 异变的,变量的 n 变量
问题三优化建模的实例:
1. 线性规划模型
2. 二次规划模型
3. 非线性规划模型
目标函数:()()∑∑--==+=
2161
22min j i bi yi ai xi cij f 约束条件:6,5,4,3,2,1,21
∑===j i di cij
∑==<=6
1
2,1,i j ej cij
4. 整数规划模型(线性0-1规划模型是特殊的线性整数规划)
1) 目标函数:7654321min x x x x x x x z ++++++=
2) 约束条件: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>=++++>=++++>=++++>=++++>=++++>=++++>=++++.
5076543,5065432,5054321,5074321,5076321,5076521,5076541x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
)7,,2,1(0 =>=i xi
问题四Lindo中灵敏性分析的报告窗口的解释:
问题五:lingo基本用法
1.lingo中语句的语句顺序不重要
2.“@”开头的都是函数的调用,lindo中限定整数:“GIN X1”和“GIN X2”
在lingo中变成了“@GIN(X1)”和“@GIN(X2)”;lingo中整数变量函数(@BIN、@GIN)和上下限定的函数(@FREE、@SUB、@SLB);而0-1变量函数与lindo中INT不同,用@BIN表示。
3.与lindo不同,变量可以放在约束条件的右端,同时数值也可以放在约束条
件的左端。
Lingo建模语句最重要的是理解集合(set)及其属性(attribute)的概
念
1)集合定义部分: (从SETS到ENDSETS)
QUARTERS/1,2,3,4/:DEM,RP,OP,INV;属性
2)数据的输入:(从DATA到ENDDATA)
3)优化目标和约束:
目标函数:“@SUM集合(下标):关于集合的属性表达式)”
“SUM”相当于求和符号 。
约束用循环函数:“@FOR(集合(下标):关于集合的属性的约束关系式)”
“I#GT#1”一个逻辑表达式,意思是大于1.出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。