LINGO软件与规划建模
- 格式:ppt
- 大小:1.97 MB
- 文档页数:200
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
Lindo/Lingo首选的最佳化建模软件速度快和容易使用让LINDO Systems, Inc. 公司成为求解最佳化模型软件的领导供货商。
LINDO Systems线性、非线性和整数规划的求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。
应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等领域。
1.lindo软件LINDO是一种专门用于求解数学规划问题的软件包。
由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。
因此在数学、科研和工业界得到广泛应用。
LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。
也可以用于一些非线性和线性方程组的求解以及代数方程求根等。
LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。
LINDO 6.1是求解线性、整数和二个规划问题的多功能工具。
LINDO 6.1互动的环境可以让你容易得建立和求解最佳化问题,或者你可以将LINDO 的最佳化引擎挂在您己开发的程序内。
而另一方面,LINDO也可以用来解决一些复杂的二次线性整数规划方面的实际问题。
如在大型的机器上,LINDO 被用来解决一些拥有超过50,000各约束条件和200,000万个变量的大规模复杂问题。
■友善的使用者界面LINDO 6.1提供直觉化的建立模型环境,即使是初学者很很容易上手。
想要求解的问题可以用简单的等式来表示。
LINDO 6.1对所有指令提供清楚有用的在线说明,当然书面的使用者手册对LIDO 6.1 的功能和指令也有详尽的说明。
■专家的强大工具如果你已经是一个最佳化领域的专家,你会对 LINDO 6.1 功能的强大感到不可思议。
LINDO 6.1 求解引擎的求解速度和求解容量可以帮您求解大型的线性和整数模型。
LINDO 6.1 在建立模型、求解模型、结果显示、数据查询’档案处理和敏感度分析都有进阶的指令和功能。
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。