最新高二下学期第二次月考数学(理)
- 格式:doc
- 大小:827.53 KB
- 文档页数:11
河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。
2024届高二年级下学期第二次月考数学试卷一、单选题(共40分)1. 已知复数满足,( )z ()()31i 1i z --=+z=A.B.C.D.【答案】D 【解析】【分析】先求出复数的代数形式,再求模即可. z 【详解】由得()()31i 1i z --=+,()()()()1i 1i 1i333i 1i 1i 1i z +++=+=+=+--+.z ∴==故选:D.2. 某地政府调查育龄妇女生育意愿与家庭年收入高低的关系时,随机调查了当地3000名育龄妇女,用独立性检验的方法处理数据,并计算得,则根据这一数据以及临界值表,判断育龄妇女生育意27.326χ=愿与家庭年收入高低有关系的可信度( )参考数据如下:,()()()22210.8280.001,7.8790.005, 6.6350.01P P P χχχ≥≈≥≈≥≈.()()223.8410.05, 2.7060.1P P χχ≥≈≥≈A. 低于 B. 低于 C. 高于 D. 高于1%0.5%99%99.5%【答案】C 【解析】【分析】根据临界值表求得正确答案.【详解】由于,()27.326 6.635,7.879χ=∈而,()()227.8790.005, 6.6350.01P P χχ≥≈≥≈所以可信度高于. 99%故选:C3. 已知向量满足,且,则在上的投影向量为( ),a b 10a b ⋅= ()3,4b =- a b A. B.C.D. ()6,8-()6,8-68,55⎛⎫- ⎪⎝⎭68,55⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】向量在向量上的投影向量的定义计算即可.a b【详解】解:因为向量,且,那么,()3,4b =- 10a b ⋅=5b == 所以向量在向量上的投影向量为, a b ()3468cos ,555b a b a a b b b-⋅⎛⎫⋅=⋅=- ⎪⎝⎭ ,,故选:C.4. 已知等比数列的前n 项和为,若,则( ){}n a n S 153n n S t -=⨯+t =A. B. 5C.D.5-53-53【答案】C 【解析】【分析】根据条件得到,,,从而求出,,,再由数列是等比数列得到,1S 2S 3S 1a 2a 3a {}n a 3212a a a a =即可得到.t 【详解】由题意得:,,, 115S a t ==+21215S a a t =+=+312345S a a a t =++=+即,,, 15a t =+210a =330a =因为数列是等比数列,所以, {}n a 3212a a a a =即,解得:,1030510t =+53t =-故选:C .5. 如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①,,,A B C D AE平面;②平面平面;③;④平面平面,正确命题的个数//CDF ABE //CDF AB AD ⊥ACE ⊥BDF 为( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直O ,,OB OC OE ,,x y z 角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.【详解】以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系, O ,,OB OC OE ,,x y z 设正八面体的边长为,则2()(()()(0,,,,,0,0,A E C D F 所以,,(()(,,0,AE CD CF ===设面的法向量为,则,解得,取,即CDF (),,n x y z =CD n CF n ⎧⋅==⎪⎨⋅==⎪⎩x z x y =⎧⎨=-⎩1x =()1,1,1n =-又,所以,面,即面,①正确;0AE n ⋅== AE n ⊥AE ⊄CDF AE //CDF 因为,所以,AE CF =- AE //CF 又,面,面,则面,//AB CD AB ⊄CDF CD ⊂CDF //AB CDF 由,平面,所以平面平面,②正确; AB AE A = ,AE AB ⊂ABE AEB //CDF 因为,则,所以,③正确;))(),,BAB AD ==0AB AD ⋅=u u u r u u u rAB AD ⊥易知平面的一个法向量为,平面的一个法向量为,ACE ()11,0,0n =u r BDF ()20,1,0n =u u r因为,所以平面平面,④正确;120n n ⋅=ACE ⊥BDF 故选:D6. 如图,在正三角形的12个点中任取三个点构成三角形,能构成三角形的数量为( )A. 220B. 200C. 190D. 170【答案】C 【解析】【分析】利用间接法,用总数减去不能构成三角形的情况即可.【详解】任取三个点有种,其中三点共线的有种,故能构成三角形个, 312C 353C 33125C 3C 190-=故选:C .7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、1F 2F ()2222:10,0x y a b a bΓ-=>>1F 右两支于A ,B 两点,点C 在x 轴上,,平分,则双曲线的离心率为( )23CB F A =2BF 1F BC ∠ΓA.B.C.D.【答案】A 【解析】【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定23CB F A =2//CB F A 1,BF BC 义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.,,a b c 【详解】因为,所以∽,23CB F A =12F AF 1F BC △设,则,设,则,. 122FF c =24F C c =1AF t =13BF t =2AB t =因为平分,由角平分线定理可知,, 2BF 1F BC ∠11222142BF F F c BC F C c ===所以,所以, 126BC BF t ==2123AF BC t ==由双曲线定义知,即,,① 212AF AF a -=22t t a -=2t a =又由得,122B F B F a -=2322BF t a t =-=所以,即是等边三角形, 222BF AB AF t ===2ABF △所以.2260F BC ABF ∠=∠=︒在中,由余弦定理知,12F BF 22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅即,化简得, 22214942223t t ct t+-=⋅⋅2274t c =把①代入上式得. ce a==故选:A .8. 高斯是德国著名的数学家,近代数学奠基者之一;享有“数学王子“的称号.用他名字定义的函数称为高斯函数,其中表示不超过x 的最大整数,已知数列满足,,()[]f x x =[]x {}n a 12a =26a =,若,为数列的前n 项和,则( )2156n n n a a a +++=[]51log n n b a +=n S 11000n n b b +⎧⎫⎨⎬⋅⎩⎭[]2023S =A. 999 B. 749 C. 499 D. 249【答案】A 【解析】【分析】根据递推关系可得为等比数列,进而可得,由累加法可求解{}1n n a a +-1145n n n a a -+=⨯-,进而根据对数的运算性质可得,根据裂项求和即可求解.151n n a +=+[]51log n n b a n +==【详解】由得,因此数列为公比为5,2156n n n a a a +++=()2115n n n n a a a a +++-=-{}1n n a a +-首项为的等比数列,故,进而根据累加法214a a -=1145n n n a a -+=⨯-得,()()()()1111112024555251n n n n n n n n a a a a a a a a ++---=+++=++-+-++=+- 由于,又,()515log log 51nn a +=+()()()5555log 5log 51log 55log 511nnnnn n <+<⨯⇒<+<+因此,则,故[]51log n n b a n +==()11000100011100011n n n c b b n n n n +⎛⎫===- ⎪⋅⋅++⎝⎭,12110001n n S c c c n ⎛⎫=+++=- ⎪⎝⎭所以, []20231100010001100099920232023S ⎡⎤⎛⎫⎡⎤=-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦故选:A【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于n n n c a b =+{}n a {}n b ()11n a n n =+,其中为等差数列,为等比数列等. n n n c a b =⋅{}n a {}n b 二、多选题(共20分)9. 已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A. m 的取值范围为 B. 若该椭圆的焦点在y 轴上,则 ()4,12()8,12m∈C. 若,则该椭圆的焦距为4 D. 若,则该椭圆经过点6m =10m =(【答案】BC 【解析】【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D错误. ((故选:BC.10. 设等差数列的前项和为,,公差为,,,则下列结论正确的是{}n a n n S 10a >d 890a a +>90a <( ) A.0d <B. 当时,取得最大值 8n =n S C.45180a a a ++<D. 使得成立的最大自然数是15 0n S >n 【答案】ABC 【解析】【分析】根据已知可判断,,然后可判断AB ;利用通项公式将转化为可判80a >90a <4518a a a ++9a 断C ;利用下标和性质表示出可判断D.1617,S S 【详解】解:因为等差数列中,,, {}n a 890a a +>90a <所以,,,A 正确; 80a >90a <980d a a =-<当时,取得最大值,B 正确;8n =n S ,C 正确; ()45181193243830a a a a d a d a ++=+=+=<,,()()1611689880S a a a a =+=+>11717917()1702a a S a +==<故成立的最大自然数,D 错误. 0n S >16n =故选:ABC .11. 已知的展开式中第3项与第7项的二项式系数相等,则( ) ()1nx +A.8n =B. 的展开式中项的系数为56 ()1nx +2x C. 奇数项的二项式系数和为128 D. 的展开式中项的系数为56()21nx y +-2xy 【答案】AC 【解析】【分析】利用二项式定理求得的展开通项公式,从而得到关于的方程,解出的值判断AB ,()1nx +n n 利用所有奇数项的二项式系数和为判断C ,根据二项式定理判断D.12n -【详解】因为的展开式通项为,()1nx +1C C k k k kr n n T x x +==所以的展开式的第项的二项式系数为,()1nx +1k +C kn 所以,解得,A 正确; 26C C n n =8n =的系数为,B 错误;2x 28C 28=奇数项的二项式系数和为,C 正确; 1722128n -==根据二项式定理,表示8个相乘,()821x y +-()21x y+-所以中有1个选择,1个选择,6个选择,()21x y+-x 2y-1所以的展开式中项的系数为,D 错误;()21nx y +-2xy ()71187C C 156-=-故选:AC12. 已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为13,p .记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路X 口遇到红灯个数之和为,则( ) Y A. ()54243P X ==B. ()109D X =C. 当时,小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为25p =216625D. 当时, 25p =()443E Y =【答案】BC 【解析】【分析】对于AB ,确定,即可求出和,对于C ,表示一天至少遇到红灯15,3X B ⎛⎫ ⎪⎝⎭()4P X =()D X 的概率为,可求出星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的表达式,再将1233p +代入即可求得结果,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则25p =ξ()5,B p ξ~,,即可求出.Y X ξ=+()E Y 【详解】对于AB ,小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,且他X 在甲路口遇到红灯的概率为, 13则,15,3X B ⎛⎫ ⎪⎝⎭所以,, ()44511104C 133243P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭()111051339D X ⎛⎫=⨯⨯-= ⎪⎝⎭所以A 错误,B 正确,对于C ,由题意可知一天至少遇到一次红灯的概率为, ()112111333p p ⎛⎫---=+ ⎪⎝⎭则小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为, 32351212C 13333p p ⎛⎫⎛⎫+--⎪ ⎪⎝⎭⎝⎭当时,, 25p =323233551212122122216C 1C 13333335335625p p ⎛⎫⎛⎫⎛⎫⎛⎫+--=+⨯--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以C 正确,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则,, ξ()5,B p ξ~Y X ξ=+所以, ()()()()1553E Y E X E X E p ξξ=+=+=⨯+当时,,所以D 错误, 25p =()121155353E Y =⨯+⨯=故选:BC三、填空题(共20分)13. 圆心在直线上,且与直线相切于点的圆的方程为______. 2x =-20x +-=(-【答案】 ()2224x y ++=【解析】【分析】设圆心为,记点为,由已知直线与直线垂直,由此可()2,C t -(-A AC 20x -=求,再求可得圆的半径,由此可得圆的方程. t AC【详解】记圆心为点,点为点,C (-A 因为圆心在直线上,故可设圆心的坐标为, C 2x =-C ()2,t -因为圆与直线相切于点, C 20x -=(A -所以直线与直线垂直, CA 20x +-=直线的斜率为 CA 20x +-=, 1⎛=- ⎝所以,0=t 所以圆心为, ()2,0C -圆的半径为,2CA r ===所以圆的方程为. ()2224x y ++=故答案为:.()2224x y ++=14. 已知随机变量,且,若,则的最小()21N ξσ ,()()0P P a ξξ≤=≥()00x y a x y +=>>,12x y+值为_________.【答案】 32+【解析】【分析】先根据正态曲线的对称性可求,结合基本不等式可求答案. 2a =【详解】,可得正态分布曲线的对称轴为,()21,N ξσ1x =又,,即. ()()0P P a ξξ≤=≥12a∴=2a =则()(121121213332222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当,即时,等号成立.y=2,4x y ==-故答案为:. 32+15. 已知数列是等差数列,并且,,若将,,,去掉一项后,剩{}n a 1476a a a ++=60a =2a 3a 4a 5a 下三项依次为等比数列的前三项,则为__________. {}n b 4b 【答案】## 120.5【解析】【分析】先求得,进而求得,,,,根据等比数列的知识求得. n a 2a 3a 4a 5a 4b 【详解】设等差数列的公差为,{}n a d 依题意,则,147660a a a a ++=⎧⎨=⎩1139650a d a d +=⎧⎨+=⎩解得,所以,151a d =⎧⎨=-⎩6n a n =-+所以, 23454,3,2,1a a a a ====通过观察可知,去掉后,3a 成等比数列,2454,2,1a a a ===所以等比数列的首项为,公比为,{}n b 412所以.3411422b ⎛⎫=⨯= ⎪⎝⎭故答案为:1216. 设奇函数在上为单调递减函数,且,则不等式的解集()f x (0,)+∞()20f =3()2()05f x f x x--≤为___________【答案】 [)(]2,00,2-U 【解析】【分析】分析函数的奇偶性、单调性和取值范围,即可得到不等式的解集. 【详解】由题意,,x ∈R 在中,为奇函数且在上单调递减,()y f x =()f x ()0,∞+()20f =∴,,函数在和上单调递减,()()f x f x =--()()220f f -==(),0∞-()0,∞+∴当和时,;当和时,. (),2-∞-()0,2()0f x >()2,0-()2,+∞()0f x >∵,3()2()05f x f x x--≤∴,即,3()2()3()2()()055f x f x f x f x f x x x x ----==-≤()0f x x≥当时,解得:;当时,解得:, 0x <20x -≤<0x >02x <≤∴不等式解集为:,3()2()05f x fx x--≤[)(]2,00,2-U 故答案为:.[)(]2,00,2-U 四、解答题(共70分)17. 已知向量,,且函数.()cos ,1m x =)2,cos n x x =()f x m n =⋅(1)求函数的单调增区间;()f x (2)若中,分别为角对的边,,求的取值范围. ABC ,,a b c ,,A B C ()2cos cos -=a c B b C π26A f ⎛⎫+ ⎪⎝⎭【答案】(1)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2) 30,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题知,再根据三角函数性质求解即可; ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭(2)由正弦定理边角互化,结合恒等变换得,进而得,,再根据三角函数1cos 2B =π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭的性质求解即可. 【小问1详解】因为向量,,且函数()cos ,1m x =)2,cos n x x =()f x m n =⋅所以 ()211π1cos cos cos2sin 22262f x m n x x x x x x ⎛⎫=⋅=+=++=++ ⎪⎝⎭ 令,解得, πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈所以,函数的单调增区间为.()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦【小问2详解】因为,()2cos cos -=a c B b C由正弦定理可得:, 2sin cos sin cos sin cos A B C B B C -=即,2sin cos sin cos sin cos A B C B B C =+因为, ()sin cos sin cos sin sin C B B C B C A +=+=所以,2sin cos sin A B A =因为,所以, ()0,π,sin 0A A ∈≠1cos 2B =因为,所以,所以, ()0,πB ∈π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭所以, πππ11sin cos 263622A f A A ⎛⎫⎛⎫+=+++=+ ⎪ ⎪⎝⎭⎝⎭所以;π13cos 0,2622A f A ⎛⎫⎛⎫+=+∈⎪ ⎪⎝⎭⎝⎭所以,的取值范围为.π26A f ⎛⎫+⎪⎝⎭30,2⎛⎫⎪⎝⎭18. 已知正项数列中,.{}n a 2113,223(2)n n n a S S a n -=+=-≥(1)求的通项公式; {}n a (2)若,求的前n 项和. 2nn na b ={}n b n T 【答案】(1) 21n a n =+(2) 2552n nn T +=-【解析】【分析】(1)根据计算即可得解;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩(2)利用错位相减法求解即可.【小问1详解】当时,,2n =2212212222324212,0S S a a a a a +=-=+=+>解得,25a =由当时,, 2n ≥21223n n n S S a -+=-得当时,,3n ≥2121223n n n S S a ---+=-两式相减得,即,()22112n n n n a a a a --+=-()()()1112n n n n n n a a a a a a ---++-=又,所以,0n a >()123n n a a n --=≥又适合上式,212a a -=所以数列是以为首项,为公差的等差数列, {}n a 32所以; 21n a n =+【小问2详解】, 2122n n n n a n b +==则, 1223521222n n n n T b b b +=+++=+++ , 231135212122222n n n n n T +-+=++++ 两式相减得 2311322221222222n n n n T ++=++++- 211111121122222n n n -++⎛⎫=+++++- ⎪⎝⎭111121212212n n n +-+=+--, 152522n n ++=-所以. 2552n nn T +=-19. 如图,在四棱锥中,侧面底面,,底面是平行四边形,S ABCD -SCD ⊥ABCD SC SD =ABCD ,,,分别为线段的中点. π3BAD ∠=2AB =1AD =,MN ,CD AB(1)证明:平面;BD ⊥SMN (2)若直线与平面所成角的大小为,求二面角的余弦值. SA ABCD π6C SBD --【答案】(1)证明见解析(2)【解析】【分析】(1)利用勾股定理、面面垂直和线面垂直的性质可证得,,由线面垂直BD MN ⊥SM BD ⊥的判定可证得结论;(2)根据线面角的定义可知,设,取中点,根据垂直关系可以为π6SAM ∠=MN BD O = SN F O 坐标原点建立空间直角坐标系,利用二面角的向量求法可求得结果. 【小问1详解】,,,, 2AB = 1AD =π3BAD ∠=2222cos 3BD AB AD AB AD BAD ∴=+-⋅∠=即,,,BD =222AD BD AB ∴+=AD BD ∴⊥分别为中点,四边形为平行四边形,,;,M N ,CD AB ABCD //MN AD ∴BD MN ∴⊥,为中点,,SC SD = M CD SM CD ∴⊥平面平面,平面平面,平面,SCD ⊥ABCD SCD ABCD CD =SM ⊂SCD 平面,又平面,;SM ∴⊥ABCD BD ⊂ABCD SM BD ∴⊥,平面,平面.SM MN M = ,SM MN ⊂SMN BD ∴⊥SMN 【小问2详解】 连接,AM 由(1)知:平面,则与平面所成角为,即, SM ⊥ABCD SA ABCD SAM ∠π6SAM ∠=在中,,, ADM △1AD DM ==2ππ3ADC BAD ∠=-∠=,解得:2222cos 3AM AD DM AD DM ADC ∴=+-⋅∠=AM =,; 2πcos 6AMSA ∴==πtan 16SM AM ==设,取中点,连接,MN BD O = SN F OF 分别为中点,,又平面,,O F ,MN SN //OF SM ∴SM ⊥ABCD 平面,又,OF ∴⊥ABCD MN BD ⊥则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,O ,,OM OB OF,,x y z则,,,,C ⎛⎫- ⎪⎝⎭1,0,12S ⎛⎫- ⎪⎝⎭B ⎛⎫ ⎪ ⎪⎝⎭0,D ⎛⎫ ⎪ ⎪⎝⎭,,,112SB ⎛⎫∴=- ⎪ ⎪⎝⎭()1,0,0CB =()DB = 设平面的法向量,SBC (),,n x y z =则,令,解得:,,;1020SB n x y z CB n x ⎧⋅=+-=⎪⎨⎪⋅==⎩2y =0x=z=(0,n ∴= 设平面的法向量,SBD (),,m a b c =则,令,解得:,,;1020SB m a c DB m ⎧⋅=+-=⎪⎨⎪⋅==⎩2a =0b =1c =()2,0,1m ∴= ,cos m n m n m n⋅∴<⋅>===⋅ 二面角为钝二面角,二面角的余弦值为C SBD --∴C SB D --20. 2023年1月26日,世界乒乓球职业大联盟(WTT )支线赛多哈站结束,中国队包揽了五个单项冠军,乒乓球单打规则是首先由发球员发球2次,再由接发球员发球2次,两者交替,胜者得1分.在一局比赛中,先得11分的一方为胜方(胜方至少比对方多2分),10平后,先多得2分的一方为胜方,甲、乙两位同学进行乒乓球单打比赛,甲在一次发球中,得1分的概率为,乙在一次发球中,得1分35的概率为,如果在一局比赛中,由乙队员先发球.12(1)甲、乙的比分暂时为8:8,求最终甲以11:9赢得比赛的概率; (2)求发球3次后,甲的累计得分的分布列及数学期望. 【答案】(1)625(2)分布列见详解, 85【解析】【分析】(1)根据题意可得甲以11:9赢得比赛,则甲再得到3分,乙得到1分,且甲得到最后一分,再根据独立事件的乘法公式求概率即可;(2)根据题意可得X 的可能取值为0,1,2,3,求出相应的概率列出分布列,再求其数学期望即可. 【小问1详解】甲以11:9赢得比赛,共计20次发球,在后4次发球中,需甲在最后一次获胜,最终甲以11:9赢得比赛的概率为:. 22212131236C 2525525P ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【小问2详解】设甲累计得分为随机变量X ,X 的可能取值为0,1,2,3.,()212102510P X ⎛⎫==⨯= ⎪⎝⎭, ()2212121371C 252520P X ⎛⎫⎛⎫==⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭,()2212131222C 25255P X ⎛⎫⎛⎫==⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()213332520P X ⎛⎫==⨯=⎪⎝⎭∴随机变量X 的分布列为: X 0123P110 720 25 320∴. ()17238012310205205E X =⨯+⨯+⨯+⨯=21. 已知某种商品的价格(单位:元)和需求量(单位:件)之间存在线性关系,下表是试营业期间记录的数据(对应的需求量因污损缺失): 24x =价格x16 17 18 192024需求量y 5549424036经计算得,,,由前组数据计算出的关于的线性回归5211630i ix==∑52110086ii y ==∑513949i i i x y ==∑5y x 方程为. 4710y x a=-+(1)估计对应的需求量y (结果保留整数);24x =(2)若对应的需求量恰为(1)中的估计值,求组数据的相关系数(结果保留三位小数).24x =6r 附:相关系数. r ==328.8769≈【答案】(1)16(2) 0.575-【解析】【分析】(1)计算前五组数据价格、需求量,,代入回归直线方程求出值,再代入18x =2225y =a 即可;24x =(2)求出六组数据价格、需求量的平均值,,以及与相关系数有关的数值,代入计算即可. x 'y '【小问1详解】记前五组数据价格、需求量的平均值分别为,,x y 由题设知,. 511185i i x x ===∑51122255i i y y ===∑因为回归直线经过样本中心,所以,解得. (),x y 2224718510a =-⨯+129a =即, 4712910x y -+=所以时对应的需求量(件). 24x =47241291610y =-⨯+≈【小问2详解】设六组数据价格、需求量的平均值分别为,,则,,x 'y '611196i i x x ===∑61111963i i y y ===∑,,.6212206ii x==∑62110342i i y ==∑514333i i i xy ==∑所以相关系数. 0.575r ==≈-22. 已知点,经过轴右侧一动点作轴的垂线,垂足为,且.记动点的(1,0)F y A y M ||||1AF AM -=A 轨迹为曲线.C (1)求曲线的方程;C (2)设经过点的直线与曲线相交于,两点,经过点,且为常数)的直(1,0)B -C P Q (1,)((0,2)D t t ∈t 线与曲线的另一个交点为,求证:直线恒过定点. PD C N QN 【答案】(1)()240y x x =>(2)证明见解析 【解析】【分析】(1)设,根据距离公式得到方程,整理即可;()(),0A x y x >(2)设、、,表示出直线的方程,由点在直线上,代()11,P x y ()22,Q x y ()33,N x y PQ ()1,0B -PQ 入可得,同理可得,再表示出直线,代入可得124y y =()13231y y ty y y ++=QN ,即可得到直线过定点坐标.()()()131441y y ty y x +-=-QN 【小问1详解】解:设,则, ()(),0A x y x >()0,M y 因为,||||1AF AM -=又,整理得.0x >1x =+()240y x x =>【小问2详解】证明:设、、,()11,P x y ()22,Q x y ()33,N x y 所以, 121222121212444PQ y y y y k y y x x y y --===-+-所以直线的方程为,PQ ()11124y y x x y y -=-+因为点在直线上,()1,0B -PQ 所以,即,解得①, ()111241y x y y -=--+21112414y y y y ⎛⎫-=-- ⎪+⎝⎭124y y =同理可得直线的方程为,PN ()11134y y x x y y -=-+又在直线上,所以,易得, ()1,D t PN ()111341t y x y y -=-+1y t ≠解得②,()13231y y ty y y ++=所以直线的方程为,即③,QN ()22234y y x x y y -=-+()23234y y y x y y +=+将②式代入③式化简得,又, ()1311234y y ty y x y y y +=+124y y =即, ()131344y y ty y x y +=+即, ()()()131441y y ty y x +-=-所以直线恒过定点.QN 41,t ⎛⎫ ⎪⎝⎭。
智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。
上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。
福建省龙岩第一中学2022-2023学年高二下学期第二次月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.总和生育率有时也简称生育率,是指一个人口群体的各年龄别妇女生育率的总和.
为了了解中国人均GDP x (单位:万元)和总和生育率y 以及女性平均受教育年限z
(单位:年)的关系,采用2012~2022近十年来的数据(),,(1,2,,10)i i i
x y z i =L 绘制了
散点图,并得到回归方程ˆ7.540.33z x =+,ˆ 2.880.41y x =-,对应的相关系数分别为1
r ,2r ,则( )
A .人均
GDP 和女性平均受教育年限正相关
B .女性平均受教育年限和总和生育率负相关
C .22
12
r r <D .未来三年总和生育率将继续降低
10.现有来自两个社区的核酸检验报告表,分装2袋,第一袋有5名男士和5名女士的报告表,第二袋有6名男士和4名女士的报告表.随机选一袋,然后从中随机抽取2
四、解答题
17.某新能源汽车公司对其产品研发投资额x(单位:百万元)与其月销售量y(单位:千辆)的数据进行统计,得到如下统计表和散点图.
征后,计划用()
ln
=+作为月销售量y关于产品研发投资额
y bx a
根据统计表和参考数据,求出y关于x的回归方程;
(2)根据回归方程和参考数据,当投资额为11百万元时,预测。
高二下学期第二次月考数学(理)试题一、选择题(60分)1.复数2i 1i -3⎪⎭⎫⎝⎛+=( )A .-3+4iB .-3-4iC .3-4iD .3+4i2曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )A.34 B.37 C.35 D.38 3、已知直线kx y =是x y ln =的切线,则k 的值为( )A.e 2 B.e 1- C.e 1 D.e2- 4.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件8. 设,,x y R ∈ 则“2x ≥且2y ≥”是“224x y +≥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 9、设常a R ∈,集合A ={|(1)()0x x x a --≥},B ={|1x x a ≥-},若AB =R ,则a 的取值范围为( )A .(-∞,-2)B .(-∞,2]C .(2,+∞)D .[2,+∞)10.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( ) A .一定大于0 B .一定等于0 C .一定小于0 D .正负都有可能11.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A .[0,π2)B .[0,π2)∪[2π3,π)C .[2π3,π)D .[0,π2)∪(π2,2π3]12.等比数列{a n }中a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215二、填空题(20分)13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为: 14.由曲线2y x =与2x y =所围成的曲边形的面积为________________ 15.观察下列不等式213122+< 353121122<++474131211222<+++……照此规律,第五个...不等式为 . 16. 函数g (x )=ax 3+2(1-a )x 2-3ax 在区间⎝ ⎛⎭⎪⎫-∞,a 3内单调递减,则a 的取值范围是________.三、解答题(共6题,70分)17.(10分)已知集合P ={x |x 2-8x -20≤0}, S ={x |1-m ≤x ≤1+m }(1)是否存在实数m ,使”x ∈P ”是”x ∈S ”的充要条件?若存在,求m 的取值范围;若不存在说明理由;(2)是否存在实数m ,使”x ∈P ”是”x ∈S ”的必要条件?若存在,求m 的取值范围。
2023-2024学年河南省南阳市高二下学期第二次月考联考(6月)数学检测试题一、单选题(本大题共8小题,每小题5分,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 抛物线的焦点为F ,点M 在C 上,,则M 到y 轴的距离是()2:16C y x =12MF =A. 4 B. 8 C. 10 D. 122. 如图,四棱锥S -ABCD 的底面ABCD 是菱形,且,60BAD SAB SAD ∠=∠=∠=︒AB =AS =1,则SC=()A. 1110,022a b <<<<ξC .减小,增大D .减小,减小4. 已知变量,的关系可以用模型拟合,设,其变换后得到一组数据如下:x y y =c·we kxz =lny x 16171819z50344131由上表可得线性回归方程,则( )z =?4x +?a c =A. B. C. D. 4e4109e1096.若过点可以作曲线的两条切线,则( )(1,b )y =ln (x +1)A .B .ln2<b <2b >1C .D .0<b <ln2b >ln27. 数列的前n 项和为,对一切正整数n ,点在函数的图象上,{}n a n S (),n n S 2()2f x x x =+且,则数列的前n 项和()n b n *=∈N )1n ≥{}n b n T =A B1--C --8. 若其中为自然对数的底数,则,,的大小关系是( )e )a b c A. B. C. D. c <b <ac <a <b c <a <bb <c <a a <c <b二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,,,为//,//BC AD EF AD 4,2AD AB BC EF ====ED FB ==M 的中点,则下列说法正确的是( )AD A .BD AD ⊥B .平面//BM CDEC .与平面BF EMBD .平面与平面所成夹角的正弦值为BFM EMB 111310.已知函数,则( )()()()1ln 1f x ax x x=-+-图A .()()()1ln 1,(0)1a x f x a x x x+=-+->+'B .当时,的极大值为,无极小值2a =-()f x 0C .当时,的极小值为,无极大值2a =-()f x 0D .当时,恒成立,的取值范围为0x ≥()0f x ≥a 12⎛⎤-∞- ⎥⎝⎦,11. 已知双曲线:,、分别为双曲线的左,右顶点,、为左、C x 2a 2y 2b2=1(a >0,b >0)A B F 1F 2右焦点,,且,,成等比数列,点是双曲线的右支上异于点的任意一点,|F 1F 2|=2c a b c P C B 记,的斜率分别为,,则下列说法正确的是( )PA PB k 1k 2 A. 当轴时,PF 2⊥x B. 双曲线的离心率e =1+52C. 为定值k 1k 21+52D. 若为的内心,满足,则I S △IPF 1=S △IPF 2+xS △IF1F 2(x ∈R )x =5?12三、填空题:本题共3小题,每小题5分,共15分12. 已知数列满足 ,若 为数列 的前{a n }S n {a n }n 项和,则___S 10=13.设双曲线的左右焦点分别为,过作平行于轴的直线交2222:1(0,0)x y C a b a b -=>>12F F 、2F y C 于A ,B 两点,若,则C 的离心率为.1||13,||10F A AB ==14. 已知关于 的不等式 (其中 ). 的解集中恰有两个整数,则x 2x <(ax ?a )e x(x ∈R )a <1实数的取值范围是_________a 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤。
2023学年第二学期浙江省名校协作体试题高二年级数学学科(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束后,只需上交答题卷.选择题部分一、选择题:本题8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.抛物线24x y =的准线方程为()A.=2y -B.2x =- C.1y =- D.=1x -【答案】C 【解析】【分析】求出焦参数p ,根据焦点的位置确定准线方程.【详解】由题意焦点在y 轴正半轴,24p =,2p =,所以准线方程为1y =-.故选:C .2.数列1,53,52,…的通项公式可能是()A.211n n a n +=+ B.211n n a n +=+ C.221n n a n =- D.221n n a n -=【答案】A 【解析】【分析】代入即可结合选项逐一排除.【详解】当2n =时,对于B 中2221352153a +==≠+,当3n =时,对于C 中2339523152a ==≠⨯-,对于D 中3223155392a ⨯-==≠,四个选项中只有211n n a n +=+同时满足11a =,253a =,352a =.故选:A3.已知直线1l :10mx y ++=,2l :()3230x m y m +++=,若12//l l ,则m 的值为()A.1B.-3C.1或-3D.-1或3【答案】B 【解析】【分析】根据直线平行得到方程,求出3m =-或1,检验后得到答案.【详解】由题意得()230m m +-=,解得3m =-或1,当3m =-时,直线1l :310x y -++=,2l :390x y --=,两直线平行,满足要求.当1m =时,直线1l :10x y ++=,2l :10x y ++=,两直线重合,舍去,故选:B4.已知两条直线m ,n ,两个平面α,β,则下列命题正确的是()A.若//m n 且n ⊂α,则//m αB.若//m α且n ⊂α,则//m nC.若m α⊥且n ⊂α,则m n ⊥D .若αβ⊥且m α⊂,则m β⊥【答案】C 【解析】【分析】根据线面平行,线面垂直,面面垂直的判定和性质依次判断各选项.【详解】对于A ,若//m n ,n ⊂α,则//m α或m α⊂,故A 错误;对于B ,若//m α,n ⊂α,则//m n 或m 与n 异面,故B 错误;对于C ,由线面垂直的性质定理可知C 正确;对于D ,若αβ⊥,m α⊂,则m 可能在β内,可能与β平行,可能与β相交,故D 错误.故选:C.5.已知点()4,2P -和圆Q :()()224216x y -+-=,则以PQ 为直径的圆与圆Q 的公共弦长是()A. B. C. D.【答案】D 【解析】【分析】由题可得以PQ 为直径的圆的方程,两圆方程相减可得公共弦所在直线方程,后由弦长公式可得答案.【详解】由题可得()4,2Q ,则以PQ 为直径的圆的圆心坐标为()0,2,半径为4,则PQ 为直径的圆的方程为:()22216x y +-=.将两圆方程相减可得公共弦方程为:2x =.则圆Q 圆心到公共弦方程距离为2,又圆Q 半径为4,则公共弦长为:=.故选:D6.江南水乡多石拱桥,现有等轴双曲线形的石拱桥(如图),拱顶离水面10米,水面宽AB =水面上升5米,则水面宽为()A.米 B. C.米D.30米【答案】D 【解析】【分析】设双曲线方程为()222210,0y x a y a a-=><,如图建立直角坐标系,水面上升5米后,设水面宽为CD ,设D (),5x a --.由题可得()10B a --,代入方程可得a ,后可得x ,即可得答案.【详解】设双曲线方程为()222210,0y x a y a a-=><,如图建立直角坐标系.水面上升5米后,设水面宽为CD ,设D (),5x a --,其中0x >.又由题可得()10B a --,代入双曲线方程可得:()()222221050011050020a a a a a a+-=⇒+-=⇒=,则D (),25x -.将D 点坐标代入双曲线方程可得:2625115400400x x -=⇒=,则D ()15,25-.又由对称性可得()15,25C --,则水面上升5米,则水面宽为30米.故选:D7.在正三棱台111ABC A B C -中,111132A B AA AB ===,11A B AB O ⋂=,则异面直线OC 与1BC 所成角的余弦值是()A.13B.23C.33D.23【答案】B 【解析】【分析】如图建立空间直角坐标系,根据向量法求异面直线所成角.【详解】取AB 中点1O ,取11A B 中点Q ,连接1QO ,O 在1QO 上,且1332QO =,因为在正三棱台111ABC A B C -中,所以1O C AB ⊥,111QC A B ⊥,又111132A B AA AB ===,113333,2O C QC ==,在梯形11O CC Q 中,过点1C 作11C R O C ⊥,垂足为R ,过点Q 作1QS O C ⊥,垂足为S ,过点O 作1OT O C ⊥,垂足为T ,所以//OT QS ,则1111OT OO O T QSO QO S==,设1,C R h RC x ==,在1Rt C RC 和1Rt QSO 中,2222221111CC RC C R QS QO O S -===-,即22223333322x x ⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得3x =6h =,因为1A OQ 与1BOO 相似,所以11112OQ A Q OO O B==,即112623,3333OT QS O T O S ====,如图,分别以11,O B O C 所在直线为x 轴,y 轴,过1O 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,11A B AB O ⋂=,所以()()(13263,0,0,,0,,0,,33B C C O ⎛⎫⎪ ⎪⎝⎭,(13,,0,,33BC CO ⎛⎫=-=- ⎪ ⎪⎝⎭,设异面直线OC 与1BC 所成角为α,则111cos cos ,3BC COBC CO BC COα⋅===,故选:B.8.如图,是由一系列直角三角形拼接而成的几何图形,已知1122311n n OA A A A A A A -===⋅⋅⋅==,记1OA ,2OA ,…,n OA 的长度构成的数列为{}n a ,则202411i ia =∑的整数部分是()A.87B.88C.89D.90【答案】B【解析】【分析】根据等差数列、放缩法、裂项求和法等知识进行分析,从而确定正确答案.【详解】由题意知,1122311n n OA A A A A A A -===⋅⋅⋅==,且12OA A △,23OA A △,…,1n n OA A -△都是直角三角形,所以11a =,且2211n n a a -=+,所以数列{}2n a 是以1为首项,1为公差的等差数列,所以()20242111111,1ni ia n n a ==+-⨯==∑,1111++<++121=+++1189=<=,11+++21=++288==,即188891<++,所以所求整数部分都是88.故选:B.【点睛】方法点睛:定义法:若1n n a a +-=常数,则{}n a 是等差数列;等差中项法:若122n n n a a a ++=+,则{}n a 是等差数列.数列求和的方法可以考虑等差数列的前n 项和公式,也即公式法,也可以考虑利用裂项求和法.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错和不选的得0分.9.已知向量()1,2,0a =- ,()2,4,0b =-,则下列正确的是()A.//a bB.a b⊥ C.2b a= D.a 在b方向上的投影向量为()1,2,0-【答案】ACD 【解析】【分析】ABC 选项,根据2b a =得到//a b 且2b a = ,AC 正确,B 错误;D 选项,利用投影向量的求解公式得到答案.【详解】ABC 选项,由题意得2b a =,故//a b 且2b a = ,AC 正确,B 错误;D 选项,a 在b方向上的投影向量为()01,2,a b b b b-⋅--⋅⋅=-,D 正确.故选:ACD10.若正项数列{}n a 为等比数列,公比为q ,其前n 项和为n S ,则下列正确的是()A.数列21n a ⎧⎫⎨⎬⎩⎭是等比数列B.数列{}lg n a 是等差数列C.若{}n a 是递减数列,则01q <<D.若13n n S r -=-,则1r =【答案】ABC 【解析】【分析】设正项等比数列{}n a 的首项为1a ,则通项公式11n n a a q-=,利用等比、等差数列的定义可判定A 、B ,由10n n a a +-<,可求q 的范围,判断C ,由n S 求出1a ,再由正项数列的条件,得r 的范围,判断D .【详解】设正项等比数列{}n a 的首项为1a ,则通项公式11n n a a q-=,则()2212111n n a a q -=,所以()2221122212111111n n n n a a q q a a q +-==,所以数列21n a ⎧⎫⎨⎬⎩⎭是首项为211a ,公比为21q 的等比数列,A 正确;则()1lg 1lg lg n a n q a =-+,所以数列{}lg n a 是以1lg a 为首项,以lg q 为公差的等差数列,故B 正确;若{}n a 是递减数列,则()110n n n n n a a a q a a q +-=-=-<,因为0n a >,则0q >,则01q <<,C 正确;若13n n S r -=-,则1110a S r ==->,则1r <,D 错误.故选:ABC11.如图所示,抛物线()220y px p =>的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,则()A.A ,B 两点的纵坐标之和为常数B.在直线l 上存在点P ,使90APB ∠>︒C.1,,A O B 三点共线D.在直线l 上存在点P ,使得APB △的重心在抛物线上【答案】CD 【解析】【分析】对于A :设出直线方程,与抛物线联立,通过韦达定理来判断;对于B :通过计算PA PB ⋅的正负来判断;对于C :通过计算1,OA OB k k 是否相等来判断;对于D :求出重心,代入抛物线方程,看方程是否有解来判断.【详解】对于A :设直线AB 的方程为2px ty =+,()()1122,,,A x y B x y ,联立222p x ty y px⎧=+⎪⎨⎪=⎩,消去x 得2220y pty p --=,所以122y y pt +=,不为常数,A 错误;对于B :设,2p P m ⎛⎫-⎪⎝⎭,122y y pt +=,212y y p =-,则()()11221212,,2222p p p p PA PB x y m x y m x x y m y m⎛⎫⎛⎫⎛⎫⎛⎫⋅=+-⋅+-=+++-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()221212121224p p x x x x y y m y y m =++++-++()()()221221212122424y y p p t y t p y y m y y m p =+++++-++⎡⎤⎣⎦42222222424p p p pt p p ptm m p ⎡⎤=+++--+⎣⎦()222220p t ptm m pt m =-+=-≥则90APB ∠≤ ,故在直线l 上不存在点P ,使90APB ∠>︒,B 错误;对于C :由题可得112212,2OA OB y y yk k p x p ===--,则1121121121112222OA OB p py y ty y y py x y k k x p px px ⎛⎫++ ⎪+⎝⎭-=+==()221212112220p y y ty y p t p tpx px ++-===,所以1=OA OB k k ,即1,,A O B 三点共线,C 正确;对于D :设,2p P m ⎛⎫-⎪⎝⎭,又()212122x x t y y p pt p +=++=+,则APB △的重心坐标为12122,33p x x y y m ⎛⎫+- ⎪++ ⎪⎪⎝⎭,即2222,33p pt pt m ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,代入抛物线方程得22222233p pt pt m p ++⎛⎫=⋅⎪⎝⎭整理得22224830m ptm p t p +--=,()222222221648348120p t p t p p t p ∆=++=+>,所以在直线l 上存在点P ,使得APB △的重心在抛物线上,D 正确.故选:CD12.在正三棱锥S ABC -中,,,SA SB SC 两两垂直,2AB =,点M 是侧棱SC 的中点,AC 在平面α内,记直线BM 与平面α所成角为θ,则当该三棱锥绕AC 旋转时θ的取值可能是()A.53°B.60°C.75°D.89°【答案】AB 【解析】【分析】建立空间直角坐标系,利用向量法求出直线BM 与平面α所成角的正弦,求其范围,然后比较角的大小即可.【详解】因为,,SA SB SC 两两垂直,如图建立空间直角坐标系:则)()(2,,,0,0,2AB C M ⎛⎫⎪ ⎪⎝⎭则(,0,2AC BM ⎛⎫== ⎪ ⎪⎝⎭,设面α的法向量为(),,n x y z =,则0n AC ⋅=+=,取1x =可得()1,,1n y =,所以sin BM nBM nθ⋅==⋅ ,令12y t -=,则12y t =+==当0=t时,0=,sin 0θ=,则0θ=,当0t ≠时,=又229113188142399t t t ⎛⎫⎛⎫++=++≥ ⎪ ⎪⎝⎭⎝⎭≤=,所以sin θ≤=又sin 602︒=<,()1sin 75sin 304522224+︒=︒+︒=⨯则当该三棱锥绕AC 旋转时θ的取值可能是AB.故选:AB.【点睛】方法点睛:对于线面角,可通过建立空间直角坐标系将其表示出,然后求其范围.非选择题部分三、填空题:本题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.已知数列{}n a 为等比数列,163a =,公比12q =,若n T 是数列{}n a 的前n 项积,当n T 取最大值时,n =______.【答案】6【解析】【分析】先求出{}n a 的通项公式,当111n n a a +≥⎧⎨≤⎩时,其前n 项积n T 最大,得解.【详解】由题意可得11632n n a -⎛⎫=⨯ ⎪⎝⎭,*N n ∈,12n n T a a a ∴=⋅L ,且0n a >,当111n n a a +≥⎧⎨≤⎩时,n T 最大,即11631216312n n-⎧⎛⎫⨯≥⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⨯≤ ⎪⎪⎝⎭⎩,解得6n =.故答案为:6.15.已知某圆锥底面直径与母线长之比为6:5,其内切球半径为1,则此圆锥的体积等于______.【答案】32π9##32π9【解析】【分析】画出圆锥的轴截面后进行分析,注意利用三角形面积公式与内切圆半径的关系()12S a b c r =++,然后利用圆锥体积公式即得.【详解】圆锥的轴截面如图所示:设该圆锥的底面直径为6x ,则底面半径为3x .因为底面直径与母线长之比为6:5,所以母线长5x ,所以该圆锥的高4h x ==,因为内切球的半径为1,根据面积相等,可得圆锥轴截面的面积为()1164556122x x x x x ⨯⨯=++⨯,解得23x =,所以圆锥的底面半径为2,高为83,所以此圆锥的体积211832ππ23339V Sh ==⨯⨯=.故答案为:32π9.16.已知双曲线C 的渐近线方程为y x =±,两顶点为A ,B ,双曲线C 上一点P 满足3PA PB =,则tan APB ∠=______.【答案】43##113【解析】【分析】先设(),P x y ,根据3PA PB =列出方程,得到222502x ax y a -++=,联立椭圆方程得到53,44P a a ⎛⎫± ⎪⎝⎭,作出辅助线,得到tan 3APD ∠=,1tan 3BPD ∠=,利用正切的差角公式求出答案.【详解】不妨设双曲线C 的方程为()2220x y aa -=>,A ,B 为左右顶点.设(),P x y ,因为3PA PB =,所以()()222299x a y x a y ++=-+,化简得:222502x ax y a -++=,则222222502x y a x ax y a ⎧-=⎪⎨-++=⎪⎩,解得5434x a y a⎧=⎪⎪⎨⎪=±⎪⎩,所以53,44P a a ⎛⎫± ⎪⎝⎭,不妨设P 在第一象限,作PD x ⊥轴于D ,则34PD a =,544a a BD a =-=,94AD AB BD a =+=,故94tan 334a AD APD a PD ∠===,14tan 334a BD BPD a PD ∠===,()13tan tan 43tan tan 11tan tan 3133APD BPD APB APD BPD APD BPD -∠-∠∠=∠-∠===+∠⋅∠+⨯.故答案为:43四、解答题:共6大题,共70分,其中第17题10分,第18题~第22题每题12分,解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{}n a 的前n 项和为n S ,749=S ,59a =.(1)求n S ;(2)若3S 、118S S -、k S 成等比数列,求k 的值.【答案】(1)2n S n =(2)19k =【解析】【分析】(1)设等差数列的首项为1a ,公差为d ,依题意得到方程组,解得1a 、d ,即可求出通项公式与n S ;(2)由(1)可得3S 、118S S -、k S 的值,再根据等比中项的性质得到方程,求出k .【小问1详解】设等差数列的首项为1a ,公差为d ,由749=S ,59a =,所以715176749249S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩,解得121d a =⎧⎨=⎩,所以21n a n =-,则()21212n n n S n +-==.【小问2详解】由(1)可知2339S ==,11857S S -=,2k S k =,又3S 、118S S -、k S 成等比数列,所以()21183k S S S S -=⋅,即22579k =⨯,解得19k =或19k =-(舍去),19k ∴=.18.已知圆C 的圆心在直线25y x =+上,且过()2,4A -,()2,6B 两点.(1)求圆C 的方程;(2)已知l :()()()131510m x m y m ++--+=,若直线l 与圆C 相切,求实数m 的值.【答案】(1)()2255x y +-=(或2210200x y y +-+=)(2)35m =或3m =【解析】【分析】(1)方法一:设出圆心(),a b ,根据CA CB =和圆心在直线25y x =+上得到方程组,求出0a =,5b =,得到圆心和半径,得到答案;方法二:求出AB 的中垂线方程,联立25y x =+得到圆心坐标,进而得到半径,得到圆的方程;(2)利用圆心到直线的距离等于半径得到方程,求出实数m 的值.【小问1详解】方法一:设圆心C 的坐标为(),a b ,则25b a =+,又CA CB =,则=,即250a b +-=,解得0a =,5b =,所以圆C 的半径r AC ==,所以圆C 的方程是()2255x y +-=(或2210200x y y +-+=).方法二:AB 的中点坐标为()0,5,12AB k =,则AB 的中垂线方程为25y x =-+.则2525y x y x =+⎧⎨=-+⎩,解得05x y =⎧⎨=⎩,所以圆心C 的坐标为()0,5,所以圆C 的半径r AC ==,所以圆C 的方程是()2255x y +-=(或2210200x y y +-+=).【小问2详解】设圆心C 到直线的距离为d ,由题意可得d ==,平方整理后可得251890m m -+=,解得35m =或3m =.19.如图,已知斜三棱柱111ABC A B C -,底面ABC 是正三角形,12AA AB ==,11A AB A AC∠=∠,点N 是棱11B C 的中点,AN =.(1)求证:1BC AA ⊥;(2)求平面1A AN 与平面ANB 的夹角的余弦值.【答案】(1)证明见解析(2)34【解析】【分析】(1)取BC 的中点M ,连接AM ,1A B ,1AC ,1A M ,即可证明AM BC ⊥、1A M BC ⊥,从而得到BC ⊥平面1AA M ,即可得证;(2)解法一:连接MN ,1A N ,利用余弦定理求出AMN ∠,在平面1NMAA 中,过点M 作1MD A N ⊥交1A N 于点D ,则DM AM ⊥,从而建立空间直角坐标系,利用空间向量法计算可得;解法二:连接MN ,利用余弦定理求出AMN ∠,作MF AN ⊥于F ,连接BF ,即可得到BFM ∠为二面角B AN M --的平面角,再由锐角三角函数计算可得.【小问1详解】取BC 的中点M ,连接AM ,1A B ,1AC ,1A M ,∵三棱柱111ABC A B C -中,AB BC CA ==,∴AM BC ⊥,又∵11A AB A AC ∠=∠,∴11A AB A AC ≌△△,∴11A B A C =,∴1A M BC ⊥,又1A M AM M = ,1,A M AM ⊂平面1AA M ,∴BC ⊥平面1AA M ,又1AA ⊂平面1AA M ,∴1BC AA ⊥.【小问2详解】方法一:连接MN ,1A N ,在AMN 中,13AN =,3AM =2MN =,所以222cos 22AM MN AN AMN AM MN +-∠==-⋅,则150AMN ∠=︒,显然1//MN BB 且1MN BB =,11//BB AA 且11BB AA =,所以1MN AA //且1MN AA =,所以四边形1NMAA 为平行四边形,则1//MA NA ,在平面1NMAA 中,过点M 作1MD A N ⊥交1A N 于点D ,则DM AM ⊥,则60NMD ∠=︒,所以sin 301DM MN =︒=,如图建立空间直角坐标系,则)A,()0,1,0B,()N ,所以)1,0BA =-,()AN =-,设平面ABN 的法向量为(),,n x y z =,则0n BA y n AN z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取(n =,又平面1AA N 的一个法向量()0,1,0m =,∴cos ,4n m n m n m ⋅==,所以平面1A AN 与平面ANB 的夹角的余弦值为34.方法二:显然1//MN BB 且1MN BB =,11//BB AA 且11BB AA =,所以1MN AA //且1MN AA =,所以四边形1NMAA 为平行四边形,连接MN ,在AMN中,AN =,AM =2MN =,即2223cos 22AM MN AN AMN AM MN +-∠==-⋅,即150AMN ∠=︒.作MF AN ⊥于F ,连接BF .因为BC ⊥平面AMN ,AN ⊂平面AMN ,所以AN BC ⊥,又BC MF M = ,,BC MF ⊂平面BMF所以AN ⊥平面BMF ,BF ⊂平面BMF ,所以AN BF ⊥,所以BFM ∠为二面角B AN M --的平面角.在AMN 中,11sin15022AN FM AM MN =︒,解得13FM =.则BF =,所以cos 4FM BFM BF ∠==.所以平面1A AN 与平面ANB的夹角的余弦值为4.20.已知点F 为抛物线C :()2201y px p =<<的焦点,点()0,1A x 在抛物线C 上,且54AF =.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 交于M ,N 两点,设直线AM ,AN 的斜率分别为1k ,2k ,且1212k k ⋅=-,求证:直线l 过定点.【答案】(1)2y x =(2)证明见解析【解析】【分析】(1)根据抛物线的定义与点()0,1A x 在抛物线C 上列式求解即可;(2)方法一:分直线斜率存在于不存在两种情况,联立直线与抛物线的方程,得出韦达定理,进而表达12k k ⋅再化简即可;方法二:设()211,M t t ,()222,N t t ,代入1212k k ⋅=-化简,结合直线l 的方程为()221112221t t y t x t t t --=--即可.【小问1详解】由题意得:0052421p x px ⎧+=⎪⎨⎪=⎩,解得0121p x ⎧=⎪⎨⎪=⎩,或0214p x =⎧⎪⎨=⎪⎩(舍去),所以抛物线C 的方程为2y x =.【小问2详解】方法一:①当直线l 斜率存时,设直线l :()0y kx m k =+≠,()11,M x y ,()22,N x y ,则2y xy kx m⎧=⎨=+⎩,消去x ,整理得20ky y m -+=,则140km ∆=->,121y y k +=,12m y y k⋅=,而()()()121212121212111111111y y k k x x y y y y y y --⋅=⋅==--+++++112k m k ==-++,整理得310m k ++=,所以13m k =--,所以直线l :()1331y kx k k x =--=--,所以直线l 过定点()3,1-.②当直线l 斜率不存在时,设直线l :()0,1x m m m =>≠,则(M m,(,N m,则1211111112k k m m m --⋅=⋅==----,得3m =,所以直线l :3x =,则点()3,1-在直线l 上.综上:直线l 过定点()3,1-.方法二:设()211,M t t ,()222,N t t ,则()()1212221212111111112t t k k t t t t --⋅=⋅==---++,则()12123t t t t =--+,直线l 的方程为()221112221t t y t x t t t --=--,则()()12122112211221311131t t t t y x x x t t t t t t t t t t --+=+=+=--+++++,所以直线l 过定点()3,1-.21.已知数列{}n a 满足12a =,()()*111pn n na pa n a +-=+-∈N .(1)若0p =,求数列{}3nn a ⋅的前n 项和n S ;(2)若1p =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:112n T ≤<.【答案】(1)1321344n n n S ++=-+⋅(2)证明见解析【解析】【分析】(1)由数列{}n a 递推公式可得其通项公式,再由错位相减法求数列{}3nn a ⋅的前n 项和;(2)若1p =,可得()111n n n a a a +-=-,从而111111n n n a a a +=---,利用裂项相消法推导出前n 项和为n T ,再由n T 的单调性可证明不等式成立.【小问1详解】当0p =时,则111n na a +-=,得11n n a a +-=,所以11n n a a +-=,所以数列{}n a 是以12a =为首项,公差为1的等差数列.所以()2111n a n n =+-⨯=+,则()313nnn a n ⋅=+⋅,所以()2323334313nn S n =⨯+⨯+⨯+++⋅ ,()2341323334313n n S n +=⨯+⨯+⨯+++⋅ ,两式相减得()234126333313nn n S n +-=+++++-+⋅ ()()21131361313n n n -+⨯-=+-+⋅-,所以1321344n n n S ++=-+⋅.【小问2详解】当1p =时,由111n n na a a +-=-,得211n n n a a a +=-+,所以()2212110n n n n n a a a a a +-=-+=->,所以数列{}n a 单调递增,因为12a =,所以2n a ≥,又由111n n na a a +-=-,可得()111n n n a a a +-=-,所以()11111111n n n n n a a a a a +==----,即111111n n n a a a +=---,则1212231111111111111111111111n n n n n T a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪ ⎪--------⎝⎭⎝⎭⎝⎭ ,所以1111n n T a +=--,易知1111n a +⎧⎫-⎨⎬-⎩⎭为递增数列,且23a =,所以21111111211n a a +=-≤-<--,即:112n T ≤<.【点睛】数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()d d ≠0的等差数列,利用裂项相消法求和.22.已知离心率为2的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<<⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S ,的取值范围.【答案】(1)22143x y -=(2),4⎛⎫+∞ ⎪ ⎪⎝⎭【解析】【分析】(1)根据椭圆与双曲线的基本量求解即可;(2)方法一:设直线AP :()0022y y x x =++,()11,D x y ,联立直线与双曲线的方程,结合()00,P x y 在双曲线上,化简可得104x x =,同理04Q x x =,代入20Q x x λ=化简,结合双曲线方程可得233,P λλ⎛⎫ ⎪ ⎪⎝⎭,再根据正弦定理,结合sin sin BDP ADB ∠=∠代入化简可得=,再根据102λ<<求解范围即可;方法二:设直线DE :x ty m =+,()11,D x y ,()22,E x y ,联立方程得出韦达定理,再根据P ,A ,D 三点共线,P ,B ,E 三点共线,列式化简可得002222x m m x --=++,进而可得02x λ=,结合双曲线方程可得2,P λλ⎛⎫ ⎪ ⎪⎝⎭,再根据正弦定理,结合sin sin BDP ADB ∠=∠=再根据102λ<<求解范围即可.【小问1详解】由题意得:22222c a c a b a ⎧=⎪⎪⎪=+⎨⎪=⎪⎪⎩,解得b =所以双曲线1C 的方程为22143x y -=.【小问2详解】方法一:设直线AP :()0022y y x x =++,()11,D x y ,则()0022223412y y x x x y ⎧=+⎪+⎨⎪+=⎩,消y 得:()()()2222000222000416163120222y y y x x x x x ⎡⎤+++-=⎢⎥+++⎢⎥⎣⎦,得:()()220012200161222324y x x x y-+-=++,又因为()00,P x y 在双曲线上,满足2200143x y -=,即22004312y x =-,所以()()()()()()2222000001222200000008626246224246232432312y x x x x x x x x x y x x -+--+-+--====+++++-,即104x x =.同理设直线BP :()0022y y x x =--,()22,E x y ,可得204x x =,所以04Q x x =.因为20Q x x λ=,所以2004x x λ=,因为00x >,所以02x λ=.把02x λ=代入双曲线方程得2204143y λ-=,解得033y λ=,则点2,P λλ⎛⎫⎪ ⎪⎝⎭.设DBP 与ABD △的外接圆的半径分别为1r ,2r ,由正弦定理得12sin PB r BDP=∠,22sin AB r ADB=∠,因为180ADB BDP ∠+∠=︒,所以sin sin BDP ADB ∠=∠.12BP r r AB===因为102λ<<,所以12λ>13,4∞⎛⎫+ ⎪ ⎪⎝⎭.方法二:设直线DE :x ty m =+,()11,D x y ,()22,E x y ,则223412x ty m x y =+⎧⎨+=⎩,消x 得:()2223463120t y tmy m +++-=,所以122634tm y y t -+=+,212231234m y y t -=+,得()2121242m y y y y mt-=+,因为P ,A ,D 三点共线,则011022y y x x =++,因为P ,B ,E 三点共线,则022022y y x x =--,两式相除得()()1202102222y x x y x x --=++,而()()()()()()()()()()()()2121121212122121122122422222222422m y y m m y y x y ty m ty y m y y x y ty m ty y m y m y y m m y-++--+-+-===+++++-+++()()()()()()121222222222m m y m y m mm m y m y ⎡⎤-++--⎣⎦==+⎡⎤+++-⎣⎦.因为20Q x x λ=,所以20m x λ=.因为002222x m m x --=++,所以2002002222x x x x λλ--=++,得02x λ=,把02x λ=代入双曲线方程得2204143y λ-=,解得033y λ=,则点2,P λλ⎛⎫⎪ ⎪⎝⎭.设DBP 与ABD △的外接圆的半径分别为1r ,2r ,由正弦定理得12sin PB r BDP=∠,22sin AB r ADB=∠,因为180ADB BDP ∠+∠=︒,所以sin sin BDP ADB ∠=∠,12BP r r AB===因为102λ<<,所以12λ>13,4∞⎛⎫+ ⎪ ⎪⎝⎭.【点睛】方法点晴:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,A x y B x y ;(2)联立直线与圆锥曲线的方程,得到关于x 或y 的一元二次方程,注意判别式的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +,12x x (或12y y +,12y y )的形式;。
第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2(1)41i Z i -+=+,则Z 的虚部为 ( )A.-1B.-3C.1D. 32.观察下列算式:122=,224=错误!未找到引用源。
,328=错误!未找到引用源。
,4216=错误!未找到引用源。
,5232=错误!未找到引用源。
,6264=,72128=错误!未找到引用源。
,82256=……用你所发现的规律可得20192错误!未找到引用源。
的末位数字是 ( )A .2B .4C .6D .83.设错误!未找到引用源。
为锐角三角形的两个内角,则复数()()i A B A B Z cos sin sin cos -+-=对应的点位于复平面的 ( )A .第一象限B .第二象限C .第三象限D .第四象限4.用数学归纳法证明: “(1)(2)()213(21)n n n n n n +++=⋅⋅+……错误!未找到引用源。
”.从“1n k n k ==+到”左端需增乘的代数式为 ( )A.()()2122k k ++ 错误!未找到引用源。
B. ()221k + 错误!未找到引用源。
C.211k k ++ 错误!未找到引用源。
D. 231k k ++错误!未找到引用源。
5.6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为 ( )A.144B.120C.72D.246.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点各不相同”,事件B =“小赵独自去一个景点”,则()|B P A = ( )A.29B.13C.49D.59错误!未找到引用源。
7.已知⎰=π0sin xdx n 错误!未找到引用源。
,则)51(1)nx -错误!未找到引用源。
的展开式中4x 的系数为 ( )A.-15B.15C.-5D.58.把15个相同的小球放到三个编号为1,2,3的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法 ( )A.18B. 28C.38D.429.已知()()5260126221+x x a a x a x x +-=+++…a 错误!未找到引用源。
,则024a a a ++=错误!未找到引用源。
( )A .123B .91C .-152D .-12010.已知离散型随机变量X 服从二项分布()~B ,X n p ,且()()4,E X D X q ==,则11p q +的最小值为 ( )A.2B.5211.若一个四位数的各位数字相加和为18,则称该数为“完美四位数”,如数字“4239”.试问用数字2,3,4,5,6,7,8,9组成的无重复数字且大于4239的“完美四位数”有 ( )个A .59B .66C .70D .7112.已知函数()f x 的导数为()f x ',且()()()10x f x xf x '++≥对[)0,x ∀∈+∞恒成立,则下列不等式一定成立的是( )A.()()122f ef <B.()()12ef f <C.()10f < 错误!未找到引用源。
D.()()22ef e f <错误!未找到引用源。
第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.若复数Z 满足2Z =,则34Z i +-(期中i 为虚数单位)的最小值为________.14.1227272727+S C C C =++…除以9的余数为________.15.已知随机变量()~1,4N ξ,且()30.84P ξ<=,则()11P ξ-<<=______.16.已知抛物线2:2C y x =错误!未找到引用源。
,过点(1,0)错误!未找到引用源。
任作一条直线和抛物线C 错误!未找到引用源。
交于B A ,两点,设点()2,0G 错误!未找到引用源。
,连接,AG BG 并延长,分别和抛物线C 交于点B A ''和,则直线B A ''过定点__________.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos cos C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC ∆错误!未找到引用源。
,求ABC ∆的周长.18. 甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率32. (Ⅰ)记甲击中目标的次数为X ,求X 的分布列和数学期望;(Ⅱ)求甲恰好比乙多击中目标2次的概率.19.已知数列{}n a 的前n 项和为*,n S n N ∈错误!未找到引用源。
,且3122n n S a =-错误!未找到引用源。
.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若1n n n b a +=错误!未找到引用源。
,求数列{}n b 的前n 项和n T .错误!未找到引用源。
20.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止. (I )求检验次数为4的概率;(II )设检验次数为ξ,求ξ的分布列和数学期望.21.已知椭圆()2222:10x y M a b a b +=>>的离心率为3错误!未找到引用源。
,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC ∆面积的最大值.22.已知函数)1()(2++-=x x a e x f x 错误!未找到引用源。
.(1)若0=x 是错误!未找到引用源。
)(x f 的极大值点,求a 的值;(2)若)(x f 在()+∞,0上只有一个零点,求a 的取值范围.答案与解析1.【答案】D 【解答】解:∵∴复数的虚部为3.故选D . 2. D 【详解】通过观察可知,末尾数字周期为错误!未找到引用源。
,错误!未找到引用源。
,故错误!未找到引用源。
的末位数字与错误!未找到引用源。
末尾数字相同,都是错误!未找到引用源。
.故选D .3.【答案】B 试题分析:因为错误!未找到引用源。
,错误!未找到引用源。
为锐角三角形的两个内角,所以A+B>2错误!未找到引用源。
,错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
<0,错误!未找到引用源。
=错误!未找到引用源。
=-错误!未找到引用源。
=-错误!未找到引用源。
>0,所以选B 。
4.【答案】B 【解答】解: 当n=k 时,左端=(k+1)(k+2)(k+3)…(2k ),当n=k+1时,左端=(k+2)(k+3)…(2k )(2k+1)(2k+2),从n =k 到n =k +1时左边需增乘的代数式是.故选B .5.【答案】D 【解答】解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选D .6.【答案】A 解:小赵独自去一个景点,则有4个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为3×3×3=27种,所以小赵独自去一个景点的可能性为4×27=108种,因为4个人去的景点不相同的可能性为4×3×2×1=24种,所以P (A|B )==.故选:A .7.【答案】D 【解答】解:,所以所以x 4的系数为.故选D.8.【答案】B 【解答】解:当a=1时,b+c=8,此时(b ,c )的情况有(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1)共7种情况;当a=2时,b+c=7,此时(b ,c )的情况(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种情况;当a=3时,b+c=6,此时(b ,c )的情况类比上面,共5种情况;当a=4时,b+c=5,此时(b ,c )的情况类比上面,共4种情况;当a=5时,b+c=4,此时(b ,c )的情况类比上面,共3种情况;当a=6时,b+c=3,此时(b ,c )的情况类比上面,共2种情况;当a=7时,b+c=2,此时(b ,c )的情况类比上面,共1种情况;∴方程a +b +c =9的正整数解(a ,b ,c )的个数有1+2+3+4+5+6+7=28种;故选B.9.C 【详解】在(x+2)(2x ﹣1)5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,取x=1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6=3,取x=﹣1,得a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6=﹣243,∴2(a 0+a 2+a 4+a 6)=﹣240,即a 0+a 2+a 4+a 6=﹣120,又a 6=32,则a 0+a 2+a 4=-152故答案为:C .10.【答案】C 【解答】解:若X=11,则取11次停止,第11次取出的是红球,前10次中有8次是红球,则P (X=11)==,故选C . 11. D 【解析】由题设中提供的信息可知:和为10四位数字分别是(0,1,2,7),(0,1,3,6),(0,1,4,5)(0,2,3,5),(1,2,3,4)共五组;其中第一组(0,1,2,7)中,7排首位有336A =种情形,2排首位,1、7排在第二位上时,有2224A =种情形,2排首位,0排第二位,7排第三位有1种情形,共64111++=种情形符合题设;第二、三组中3,、6与4、5分别排首位各有3322612A =⨯=种情形,共有21224⨯=种情形符合题设;第四、五组中2、3、5与2、3、4分别排首位各有3333618A =⨯=种情形,共有21836⨯=种情形符合题设。
依据分类计数原理可符合题设条件的完美四位数共有11243671n =++=种,应选答案D 。
12. A 解:构造函数F (x )=xe x f (x ),则F ′(x )=e x[(x+1)f (x )+xf′(x )]≥0对x∈[0,+∞)恒成立,∴函数F (x )=xe x f (x )在[0,+∞)上单调递增, ∴F(1)<F (2), ∴f(1)<2ef (2), 故选:A .13.【答案】3 14.【答案】7解答】解:∵=227-1=89-1=(9-1)9-1=•99-•98+•97+…+•9--1,∴除了最后两项外,其余的各项都能被9整除,故该式除以9的余数即最后两项除以9的余数,为715.【答案】0.34【解答】解:随机变量ξ~N(1,4),∴函数曲线关于ξ=1对称,又P(ξ<3)=0.84,∴P(ξ≥3)=1-P(ξ<3)=0.16,∴P(-1<ξ<3)=1-0.16×2=0.68;∴P (-1<ξ<1)=P(-1<ξ<3)=0.34.故答案为0.34.16.【答案】错误!未找到引用源。