【华南理工考研 有机化学】仪分实验-实验 10- -分子荧光光谱法
- 格式:pptx
- 大小:2.86 MB
- 文档页数:5
分子荧光光谱法分子荧光光谱法是一种非常有用的分析技术,它可用于测定溶液中分子结构、组成、组分和吸收特性,以及提供关于反应机理的许多信息。
它被广泛应用于化学研究、生物研究、环境研究和制药技术等多个领域。
荧光光谱反应的本质是,一些物质能够从激发态吸收来自外部光源的一定能量,并从激发态到低能量的稳定态跃迁,从而释放出某种光,而这些释放出来的光就是荧光光谱。
基本原理在分子荧光光谱中,激发态是将能量投射到分子上,使其进入一种不稳定的、能量较高的激发态,然后分子会自动以一定的速率从这种高能态向低能态跃迁,跃迁过程中会释放出一定能量的荧光光谱。
具体而言,当激发态的分子能量超过一定的最低能量时,它将进入具有较低能量的稳定态,从而释放出光子。
通常说,这些释放出的光子的频率与激发态的能量有关。
应用分子荧光光谱法可以用于识别、测定和分离不同物质,它可以用于研究有机物、无机物、金属离子和药物,也可用于检测有毒物质。
分子荧光光谱法还可以用于研究分子间相互作用、分子构型变化和反应机理等问题,可以用来研究复杂有机化合物中的加合反应,也可以用来研究金属离子与有机物之间的相互作用。
优缺点分子荧光光谱法具有灵敏度高、分析结果准确、操作简单、检测范围广等优点,可用于大量的物质的有效分析。
此外,它还具有自动控制设备、能测出大量小浓度物质等优点。
然而,分子荧光光谱法也有一些缺点,比如它只能测量没有涂料、沉淀物和色素的物质,而且只有在激发态跃迁释放出荧光时,它才能完成光谱测量。
结论分子荧光光谱法是一种广泛应用的分析技术,它具有敏锐的测量特性,可以快速、准确地测量多种物质,因此被广泛应用于诸多研究领域。
不仅如此,它的测量过程还简单易行,使它可以成为一个非常有用的分析工具。
一、实验目的1. 理解分子荧光光谱分析的基本原理和操作方法;2. 掌握荧光光谱仪器的组成及各部分作用;3. 分析影响荧光强度的内部结构因素和外部环境因素;4. 了解光谱分析法的应用范围。
二、实验原理分子荧光光谱分析是利用某些物质分子受光照射时所发生的荧光的特性和强度,进行物质的定性分析或定量分析的方法。
当分子吸收紫外和可见光后,电子跃迁到激发态,随后以发射辐射的方式释放能量,再回到基态。
如果发射的波长与吸收的波长相同或不同,这种现象称为光致发光,其中最常见的光致发光现象是荧光和磷光。
荧光光谱分析主要包括激发光谱、发射光谱、同步光谱和三维荧光光谱。
激发光谱表示激发光波长与荧光强度之间的关系,发射光谱表示荧光光波长与荧光强度之间的关系。
同步光谱是指激发光波长和发射光波长同时改变时,荧光强度的变化情况。
三维荧光光谱是指在三维坐标系中,激发光波长、发射光波长和荧光强度之间的关系。
影响荧光强度的因素包括内部结构因素和外部环境因素。
内部结构因素主要包括分子的共轭程度、取代基、分子结构等。
外部环境因素主要包括溶剂、温度、pH值、浓度等。
三、实验内容与步骤1. 实验仪器与试剂:荧光光谱仪、激发光源、样品池、标准样品、溶剂等。
2. 实验步骤:(1)将荧光光谱仪开机预热,调整好仪器参数;(2)将标准样品放入样品池,调整样品池位置;(3)设置激发光波长,进行激发光谱扫描;(4)设置发射光波长,进行发射光谱扫描;(5)设置同步光谱参数,进行同步光谱扫描;(6)设置三维荧光光谱参数,进行三维荧光光谱扫描;(7)记录实验数据,分析数据,得出结论。
四、实验结果与分析1. 激发光谱扫描结果显示,标准样品在特定波长范围内有明显的荧光峰,说明该样品在该波长范围内具有荧光特性。
2. 发射光谱扫描结果显示,标准样品在激发光波长下具有明显的发射峰,说明该样品在该激发光波长下具有荧光发射特性。
3. 同步光谱扫描结果显示,激发光波长和发射光波长同时改变时,荧光强度也随之变化,说明激发光波长和发射光波长对荧光强度有显著影响。
分子荧光光谱分析分子荧光光谱分析的原理是基于分子的激发态能级和基态能级之间的电子跃迁。
当分子受到外界的激发能量(如光能)时,部分分子中的电子从基态跃迁到激发态。
当电子从激发态返回基态时,会释放出荧光光子,其能量与激发态的能级差相关。
这种发光现象被称为荧光。
荧光光谱是通过测量荧光发射的强度和波长来获得的。
通常情况下,荧光光谱的波长范围较宽,可以从紫外到可见光甚至红外。
荧光峰的位置和强度可以提供分子的结构信息,如它们的共振结构、官能团的位置和取代基的影响等。
因此,荧光光谱分析被广泛应用于有机分析化学、生物化学、医药化学等领域。
在分子荧光光谱分析中,常用的实验方法包括荧光激发光谱、荧光发射光谱和荧光寿命测量。
荧光激发光谱是测量分子在不同激发波长下产生的荧光发射强度的方法。
通过测量不同波长的激发光强度和相应的荧光发射强度,可以绘制激发光谱图。
从激发光谱图中,可以确定最佳的激发波长和激发强度,以获得最大的荧光发射信号。
荧光发射光谱是测量荧光信号的强度和波长的方法。
在荧光发射光谱实验中,分子在固定的激发波长下,通过改变检测器的波长来测量荧光光谱。
从荧光发射光谱图中,可以观察到不同波长下的荧光发射峰,并判断荧光光谱的特征。
荧光寿命测量是测量分子从激发态退激发到基态的时间的方法。
荧光寿命是荧光信号从达到最大强度到减少到原始强度的时间。
荧光寿命的测量可以提供有关分子动力学和化学反应速率的信息。
分子荧光光谱分析在许多领域有着广泛的应用。
例如,在环境监测中,可以通过测量水中有机物的荧光光谱来检测水中有机污染物的存在和浓度。
在生物药物研究中,荧光标记的分子可以用于检测和定量分析生物标志物的表达和鉴定。
此外,荧光光谱分析还可以用于材料科学、食品分析等许多其他领域。
总之,分子荧光光谱分析是一种重要且常用的分析方法,通过测量荧光发射的强度和波长可以获得分子的结构和性质信息。
不同的实验方法可以用于研究不同的分子特性和反应过程。
分子荧光光谱实验报告一、实验目的:1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。
2.了解荧光分光光度计的构造和各组成部分的作用。
3.了解影响荧光产生的几个主要因素。
二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱;首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱;根据所得数据,用origin软件做出光谱图。
三、实验原理:某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。
光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。
本实验为荧光光谱的测定。
激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。
发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。
各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。
四、荧光光谱仪的基本机构五、实验结果与讨论:吸收池光源检测器单色器信号显示系统单色器截去所有的激发光和散射光只允许荧光通过激发光通过450500550600650700050000100000150000200000S 1 / R 1 (C P S / M i c r o A m p s )Wavelength (nm)S1 / R1固定激发波长473nm荧光黄/水体系 第一次发射光谱250300350400450500550100000200000300000400000S 1 / R 1 (C P S / M i c r o A m p s )Wavelength (nm)S1 / R1固定发射波长511nm荧光黄/水体系 第一次激发光谱500550600650700100000200000300000400000S 1 / R 1 (C P S / M i c r o A m p s )Wavelength (nm)S1 / R1固定激发波长489nm荧光黄/水体系 第二次发射光谱。
实验二、分子荧光光谱法实验一、实验目的1.掌握荧光光度计的基本原理及使用。
2.了解荧光分光光度计的构造和各组成部分的作用。
3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。
4.了解影响荧光产生的几个主要因素。
5.学会运用分子荧光光谱法对物质进行定性和定量分析。
二、实验原理原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。
对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。
具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。
(1)激发光谱是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。
横坐标为激发光波长,纵坐标为发光相对强度。
激发光谱反映不同波长的光激发材料产生发光的效果。
即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效率。
荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。
获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。
(2)发射光谱是指发光的能量按波长或频率的分布。
通常实验测量的是发光的相对能量。
发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。
发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。
发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem 为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。
实验二分子荧光光谱法一实验目的1.理解并掌握荧光产生的机理。
2.学会测定不同浓度物质溶液的荧光激发光谱和发荧光射光谱。
3.了解影响荧光产生的几个主要因素。
二实验原理原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。
对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。
1.产生过程(如图1)光吸收:荧光物质从基态跃迁到激发态。
此时,荧光分子处于激发态。
内转换:处于电子激发态的分子由于内部的作用,以无辐射跃迁过渡到低的能级。
外转换:处于电子激发态的分子由于和溶剂以及其他分子的作用,以及能量转移,过渡到低的能级荧光发射:如果不以内转换的方式回到基态,处于第一电子激发态最低振动能级的分子将以辐射的方式回到基态,平均寿命约为10ns左右。
系间转换:不同多重态,有重叠的转动能级间的非辐射跃迁。
振动驰豫:高振动能级至低相邻振动能级间的跃迁。
发生振动弛豫的时间。
图12.光谱特性激发谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与激发光波长的关系曲线。
激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。
发射谱:固定激发波长,发射强度与发射波长的关系。
1) Stokes位移:激发光谱与发射光谱之间的波长差值。
发射光谱的波长比激发光谱的长,振动弛豫消耗了能量。
2) 发射光谱的形状与激发波长无关:电子跃迁到不同激发态能级,吸收不同波长的能量,产生不同吸收带,但均回到第一激发单重态的最低振动能级再跃迁回到基态,产生波长一定的荧光。
3) 镜像规则:通常荧光发射光谱与它的吸收光谱(与激发光谱形状一样)成镜像对称关系。
4) 荧光寿命和荧光量子产率。
去掉激发光以后,荧光强度并不是立即消失,而是以指数形式衰减。
定义荧光强度降低到激发状态最大荧光强度的1/e所需要的时间称为荧光寿命。
荧光寿命是个很重要的参数,可以不再对荧光的绝对强度进行测量。
三实验内容1 获得罗丹明B和2-萘酚的激发光谱和荧光光谱。
分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。
法。
该法是一种利用某一波长的光线照射试样,该法是一种利用某一波长的光线照射试样,该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,使试样吸收这一辐射,使试样吸收这一辐射,然后在发然后在发射出波长相同或波长较长的光线的化学分析方法。
如果这种再发射约在 s 内发生,则称为荧光;若能在生,则称为荧光;若能在 s 或更长的时间后发生,则称磷光。
分子荧光光谱法就是利用这种再发射的荧光的特性和强度来对荧光物质进行定性和定量分析的。
荧光分析法的突出优点是灵敏度高,其测定下限比一般分光光度法低二至四数量级。
级。
选择性也比分光光度法好,选择性也比分光光度法好,选择性也比分光光度法好,但其应用不如分光光度广泛,但其应用不如分光光度广泛,但其应用不如分光光度广泛,因为只有有限数量因为只有有限数量的化合物才能产生荧光。
的化合物才能产生荧光。
一、基本原理一、基本原理(一)(一) 荧光光谱的产生荧光光谱的产生荧光物质分子吸收了特定频率辐射后,荧光物质分子吸收了特定频率辐射后,由基态跃迁至第一电子激发态由基态跃迁至第一电子激发态由基态跃迁至第一电子激发态(或更(或更高激发态)高激发态)的任一振动能级,的任一振动能级,的任一振动能级,在溶液中这种激发态分子与溶剂分子发生碰撞,在溶液中这种激发态分子与溶剂分子发生碰撞,在溶液中这种激发态分子与溶剂分子发生碰撞,以以热的形式损失部分能量后,而回到第一电子激发态的最低振动能级(无辐射跃迁)。
然后再以辐射形式去活化跃迁到电子基态的任一振动能级,然后再以辐射形式去活化跃迁到电子基态的任一振动能级,便产生荧光。
便产生荧光。
由于无辐射跃迁的几率大,因此分子荧光波长常常比激发光长。
因此分子荧光波长常常比激发光长。
激发光源的波长通常是激发光源的波长通常是在紫外区,在紫外区,荧光也可能在紫外区,荧光也可能在紫外区,荧光也可能在紫外区,但更多是在可见区。