浙教版数学九年级上册第3章 圆的基本性质
- 格式:docx
- 大小:214.59 KB
- 文档页数:4
第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。
浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。
浙教版九年级上册第三章圆的基本性质《3.7正多边形》《3.7正多边形》《正多边形》是新教材九年级(上)第三章的内容。
学生已经学习了圆的性质和与圆有关的三种位置关系,这些知识都将为本节的学习起着铺垫作用。
本节内容正多边形和圆也是今后进一步研究圆的性质的基础,在教才中有着承上启下的重要地位。
在当今的改革大潮中,我们应以《新课标》的眼光来重新审视它。
《新课标》对数学学习内容的要求是:现实的、有意义的、富有挑战性的。
数学作为一种普遍适用的技术,要有助于人们收集信息、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
本节课从定性、定量的两个角度去探讨,挖掘蕴涵的数学知识,把感性认识转化成理性认识,具体到抽象,让学生主动参与,亲身体验知识的发生与发展的过程。
利用正多边形和圆的位置关系探究数量关系,把形的问题转化成了数的问题,体现了数形结合的思想。
【知识与能力目标】了解正多边形和圆的有关概念;理解并掌握正多边形半径、中心角、弦心距、边(一)、创设情景,导入新课本节课开始,让他们观察美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从生活中感受到数学美。
同时,提出本节课要研究的问题:正多边形和圆有什么关系?你能借助圆做出一个正多边形吗?然后引导学生观思考这个问题。
采用小组合作交流的方式,给他们足够的时间和空间,这里用到了等分圆周的方法,提示学生等分圆心角,即360°/n.讨论完后让学生自由发言,阐述自己的观点,对他们的观点我将给予及时的表扬和鼓励,同时,纠正学生的学法和知识错误。
(二)、实践说明,深入新知提出本节课的第三个问题:将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论。
首先,我将在黑板上演示这个作图,用等分圆心角的方法,把圆分成相等的五段弧,依次连接各个分点得到五边形,剩下的证明引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析。
浙教版九年级上册数学第3章圆的基本性质含答案一、单选题(共15题,共计45分)1、下列说法中,正确的有()①圆的半径垂直于弦;②直径是弦;③圆的内接平行四边形是矩形;④圆内接四边形的对角互补;⑤长度相等的两条弧是等弧;⑥相等的圆心角所对的弧相等.A.2个B.3个C.4个D.5个2、如图,等边三角形ABC内接于⊙O,若边长为cm,则⊙O的半径为( )A.6cmB.4cmC.2cmD.3、在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点AB.点BC.点CD.点D4、如图,△OAB绕点O逆时针旋转90到△OCD的位置,已知∠AOB=45,则∠AOD的度数为()A.55B.45C.40D.355、⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外6、如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)7、如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°8、如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA的长度为6cm,且OA与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至点A再一次接触地面,如图(乙)所示,则O点移动了()cm.A.11πB.12πC.10π+2D.11π+9、如图,的直径CD过弦EF的中点G,,则等于()A. B. C. D.10、已知圆锥的母线长为6,将其侧面沿着一条母线展开,所得扇形的圆心角为120°,则该扇形面积是().A.4πB.8πC.12πD.16π11、已知,将点A1(4,2)向左平移3个单位到达点A2的位置,再向上平移4个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转90°,则旋转后A3的坐标为()A. B. C. D.12、如图,在扇形纸片AOB中,OA =10,AOB=36°,OB在桌面内的直线l 上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为().A.12πB.11πC.10πD.10π+513、如图,在方格纸上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为 ( )A.( -3, 1)B.(1, -3)C.(1, 3)D.(3, -1)14、如图,从一块半径为的圆形铁皮上剪出一个圆心角是的扇形,则此扇形围成的圆锥底面圆的半径为()A. B. C. D.15、已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于弧PQ点M,N;(3)连接OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD二、填空题(共10题,共计30分)16、如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为________.17、已知扇形的半径为6 cm,圆心角为150°,则此扇形的面积等于________cm2(结果保留π).18、已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段ac’,连接dc’,当dc’ bc时,旋转角度α 的值为________,19、如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)20、如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为________.(结果保留π)21、如图,四边形 ABCD 内接于⊙O ,AB 为⊙O 的直径,点 C 为弧 BD 的中点.若∠DAB=40°,则∠A BC=________.22、到原点的距离等于4的点是________ .23、如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧弧MN的长度为________.24、如图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合,AD是⊙O的直径,AB=BC=CD,连结PA,PB,PC.若PA=a,则点A到PB 和PC的距离之和AE+AF=________.25、如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称.28、如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°,求∠APB的度数.29、如图,已知等腰△ABC,AB=AC=8,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.30、作图题:在⊙O 中,点D是劣弧AB的中点,仅用无刻度的直尺画线的方法,按要求完下列作图:在图(1)中作出∠C的平分线;在图(2)中画一条弦,平分△ABC的面积.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、B5、A6、D7、C8、A9、C10、C11、B12、A13、D14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(−1,−2),B2(1,−3),C2(0,−5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,−1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C 是BD 的中点,∴CD =BC ,∴∠DBC=∠A ,∴∠ECB=∠DBC ,∴CF= BF ;(2)解:∵BC =CD ,∴BC=CD=6.在Rt △ABC 中,AB= BC 2+AC 2=62+82=10,∴⊙O 的半径为5;∵S △ABC = 12AB×CE= 12BC×AC ,∴CE= BC ×AC AB =6×810=245.22.【答案】(1)解:如图所示,连接OD ,∵D 为BC 的中点,∴∠CAD=∠BAD.∵OA=OD ,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD ∥AE.∵DE ⊥AC ,∴OD ⊥EF.∴OD 的长是圆心O 到EF 的距离.∵AB=90 cm ,∴OD=12AB=45 cm.(2)解:如图所示,过点O 作OG ⊥AD 交AD 于点G.∵DA=DF ,∴∠F=∠BAD.由(1),得∠CAD=∠BAD ,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2−O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52−32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP,所以∠ADP=∠ADQ.②∠ADP+∠ADQ=180°.理由如下:连接AC,因为AB是直径,AB⊥CD,所以AC=AD,CE=DE,所以△ACP≌△ADP(SSS),所以∠ACP=∠ADP,因为∠ACP=12ADQ,∠ADQ=12ACQ,所以∠ACP+∠ADQ=12(ADQ+ACQ)=180°.。
第三章圆的基天性质复习一、点和圆的地点关系:假如P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,则:1)d<r→2)d=r→3)d>r→1、两个圆的圆心都是O,半径分别为、r2,且r<OA<r,那么点A在()1A、⊙r1内B、⊙r2外C、⊙r1外,⊙r2内D、⊙r1内,⊙r2外2、一个点到圆的最小距离为4cm,最大距离为A、cm或cm B 、cm C⊙0的半径为13cm,圆心O到直线l的距离PD=12cm,QD<12cm,RD>12cm,则点9cm,则该圆的半径是()、cm D 、5cm或13cmd=OD=5cm.在直线l上有三点P,Q,R,且P在,点Q在,点R在.AB为⊙0的直径,C为⊙O上一点,过C作CD⊥AB于点D,延伸CD至E,使DE=CD,那么点E的地点()A.在⊙0内B.在⊙0上C.在⊙0外D.不可以确立二、几点确立一个圆问题:(1)经过一个已知点能够画多少个圆?2)经过两个已知点能够画多少个圆?这样的圆的圆心在如何的一条直线上?3)过同在一条直线上的三个点能画圆吗?定理:经过确立一个圆。
1、三角形的外心恰在它的一条边上,那么这个三角形是()A、锐角三角形B 、直角三角形 C 、钝角三角形 D 、不可以确立2、作以下三角形的外接圆:3、找出以下图残缺的圆的圆心二、圆的轴对称性:1、垂径定理:垂直弦的直径均分弦,而且均分弦所对的弧2、推论1:均分弦(不是直径)的直径垂直于弦,而且均分弦所对的弧3、推论2:均分弧的直径垂直均分弧所对的弦1、已知,⊙O的半径OA长为5,弦AB的长8,OC⊥AB于C,则OC的长为_______.2、已知,⊙O中,弦AB垂直于直径CD,垂足为P,AB=6,CP=1,则⊙O的半径为3、已知,⊙O的直径为10cm,A是⊙O内一点,且OA=3cm,则⊙O中过点A的最短弦长。
=-------cm4、如图,P为⊙O的弦BA延伸线上一点,PA=AB=2,PO=5,求⊙O的半径。
浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。
第3章圆的基本性质
3.1 圆(一)
1.已知⊙O的直径为4,点P到圆心O的长度OP为4,则点P与⊙O的位置关系为(C)
A. 点P在⊙O上
B. 点P在⊙O内
C. 点P在⊙O外
D. 不确定
2.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆.其中正确的有(C)
A. 0个
B. 1个
C. 2个
D. 3个
3.到圆心的距离不大于半径的所有点必在(D)
A. 圆的外部
B. 圆的内部
C. 圆上
D. 圆的内部或圆上
4.在一个三角形中,已知AB=AC=6 cm,BC=8 cm,D是BC的中点,以点D为圆心作一个半径为5 cm的圆,则下列说法中,正确的是(C)
A. 点A在⊙D外
B. 点B在⊙D上
C. 点C在⊙D内
D. 点A在⊙D上
(第5题)
5.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,CP,CM分别是AB上的高和中线.如果⊙A是以点A为圆心,半径为2的圆,那么下列判断中,正确的是(C)
A. 点P,M均在⊙A内
B. 点P,M均在⊙A外
C. 点P在⊙A内,点M在⊙A外
D. 以上选项都不正确
6.已知AB为⊙O的直径,C为⊙O上一点,过点C作CD⊥AB于点D,延长CD 至点E,使DE=CD,则点E的位置是在⊙O上.
(第7题)
7.如图,已知OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:∠A =∠B.。