串联式混合动力汽车
- 格式:pptx
- 大小:4.31 MB
- 文档页数:30
汽车串联式、并联式和混联式三种系统优势和区别对比就目前而言,新能源汽车主要分为两大块,一种是纯电动、一种是混合动力。
纯电动比较好理解,就是单独依靠电机来驱动车辆。
但混动嘛却不是那么简单,相信老铁们在看一些新车资讯时,经常会看到某某车采用了插电式混动或者油电混动。
看似是两种混动系统,实际上却有三种混动系统形式,分别是串联式、并联式和混联式。
它们之间的区别在哪儿?哪种更有优势?发动机只为电动机充电的串联式串联式混动系统是三种混动形式中结构最简单的,同时也是三种混动系统中油耗表现最差的。
例如采用这种混动形式的雪佛兰沃蓝达,在高速行驶时,油耗高达6.4L/100km。
而一台普通1.4L纯汽油车,高速行驶油耗也不过5.5L/100km。
造成这样的原因,就不得不说说串联式混动系统的结构了。
串联式混动系统与另外两种混动形式最大的不同,就在于发动机在任何情况下都不参与驱动汽车的工作,发动机只能通过带动发电机为电动机提供电能。
串联混动系统的动力来源于电动机,发动机只能驱动发动机发电,并不能直接驱动车辆行驶,因此,串联结构中电动机功率通常要大于发动机功率。
这种结构通俗点来说,就相当于一辆纯电动汽车里加了一台汽油发动机。
并且由于取消了汽油车上的变速箱,所以在结构的布置上要相对灵活许多。
同时,发动机总是工作在高效转区,因此在车辆中低速行驶时,串联式混合动力车要比普通汽油车的油耗低30%左右。
但问题也随之而来,由于串联式结构的混动汽车发动机动能要经过二次转换才能为电动机供电。
这样一来,转换过程中会使得大量能量流失,所以在高速行驶时串联式的混动车油耗甚至比普通汽油车还要高。
目前采用这种混动形式的车有:雪佛兰沃蓝达、宝马i3等增程式电动车。
更主流的并联式混动结构由于串联式混动系统存在较大的弊端,所以目前市面上大多混动车都采用了并联式混动结构。
并联式混动结构与串联式混动结构最大的不同,就在于发动机与电动机共同参与驱动车辆的工作。
串联HEV的结构与运行模式分析所谓HEV,指的是混合动力汽车。
其特点为传递到驱动轮来推进车辆的能量至少来自两种不同的能量转换装置(其中有一个为电动机),且这些能量转换装置可从至少两种能量储能装置获取输入量(其中至少有一种能量储能装置提供的是电能),同时,能量储能装置也可吸收电能。
混合动力汽车按动力系统分类可分为:串联式,并联式和混联式。
这里,我们仅分析串联式HEV。
通常,我们把车辆驱动系统的驱动力只来源于电动机的混合动力汽车称为串联式混合动力汽车,即串联HEV。
串联式混合动力汽车动力系统主要由发动机、发电机、电池、电动机、功率变换器和机械传动装置等组成,如下图所示为通用汽车公司的Series-SHEV结构布置图。
串联结构,顾名思义就是发动机和电动机“串”在一条动力传输路径上。
串联结构最大的特点就是发动机在任何情况下都不参与驱动汽车的工作,它只能通过带动发电机为电动机提供电能。
串联结构的动力来源于电动机,发动机只能驱动发电机发电,并不能直接驱动车辆行驶。
因此,串联结构中电动机功率一般要大于发动机功率。
其中,动力电池既可单独向电动机供电,亦可与发电机共同向发动机供电,以驱动车辆行驶。
串联式HEV驱动系统的结构比较简单,可以分为两大动力总成:1.发动机—发电机组;2.驱动系统。
动力电池组、发动机—发电机组和驱动电动机在底盘上的布置有较大的自由度,控制系统也比较简单,因为只有唯一的电动机驱动模式,其特点是动力性更加趋近于纯电动汽车。
串联式HEV必须装置一个大功率的发动机—发电机组,再用驱动电机来驱动车辆。
发动机,发电机和驱动电动机的功率都要求等于或接近与串联式HEV的最大驱动功率,在热能—电能—机械能之间的转换过程中,总效率低于内燃机汽车。
三大动力总成的体积较大,质量也较重,还有庞大的动力电池组,使得在中小型汽车上布置有一定的困难,一般适合大型客车采用。
与传统汽车相比,混合动力汽车多了一个能量存储单元,因此有多种工作模式。
串联式混合动力汽车结构特点及工作原理
嘿,你知道串联式混合动力汽车不?这玩意儿可有意思啦!咱就先
来说说它的结构特点吧。
它就像是一个团队,发动机、发电机和电动
机紧密合作。
发动机就像那个稳定输出的老大哥,一直勤勤恳恳地工作,给发电机提供动力。
发电机呢,就像个转化器,把发动机的能量
变成电能,储存起来。
而电动机呀,那就是冲锋陷阵的小能手,在需
要的时候爆发出强大的动力,推动车子前进。
比如说,就像一场接力赛,发动机先跑,把接力棒交给发电机,发电机再把能量传递给电动机,电动机最后奋力冲刺!
再讲讲它的工作原理。
当车子启动或者低速行驶的时候,主要就是
电动机在工作,这时候发动机可能都还在休息呢,是不是很神奇?就
好比你刚开始跑步,还不需要用尽全力,那肌肉就先不用太使劲嘛。
等车子速度起来了,或者需要更大动力的时候,发动机就开始干活啦,它带动发电机发电,给电动机提供能量。
这就像你跑累了,这时候你
的心脏就得更努力地跳动,给身体提供更多的能量呀!
有一次我和朋友聊起串联式混合动力汽车,我就说:“你想想看,
这多厉害呀,又节能又环保!”朋友还不太相信呢,反问我:“真有那
么好?”我就给他详细解释了一番。
然后他恍然大悟,直说:“哇,原
来是这样啊!”
串联式混合动力汽车真的是未来交通的一个重要方向啊!它不仅能
减少对传统燃油的依赖,还能降低尾气排放,对环境那是大大的好呀!
它的这些结构特点和工作原理让它在节能和环保方面有着独特的优势,难道我们不应该大力发展和推广它吗?。
一、串联汽车1. 优点:a. 节能环保:串联汽车采用电动机和发动机混合动力,可以减少燃油消耗,降低尾气排放,减少对环境的影响。
b. 高效性能:串联汽车在低速行驶时由电动机驱动,提供了良好的加速性能和低速扭矩,而在高速行驶时发动机可以提供更大的动力输出。
c. 平顺舒适:由于电动机的特性,串联汽车在启动和低速行驶时运转更加平稳,行驶过程中噪音和振动也相对较小。
2. 缺点:a. 复杂系统:串联汽车的混合动力系统包含电动机、发动机以及电池组等部件,维护和修理成本较高。
b. 车辆重量加大:由于混合动力系统的加入,串联汽车的整车重量较大,影响了燃油经济性和操控性能。
二、并联汽车1. 优点:a. 技术成熟:并联汽车采用电动机和发动机并联工作的方式,油电分离,技术比较成熟,稳定性较高。
b. 续航能力:并联汽车可以通过发动机发电来辅助电动机供电,有效提升了车辆的续航能力。
c. 维护成本低:相比串联汽车,普通的并联汽车维护成本更低,因为并联汽车没有复杂的混合动力系统。
2. 缺点:a. 效率不高:并联汽车在电动和燃油两种动力形式切换时可能存在能量损失,整体燃油经济性不如串联汽车。
b. 系统复杂度:虽然相对串联汽车而言,并联汽车的维护成本较低,但其涉及的技术和部件仍然比普通燃油车要复杂,容易出现故障。
三、混联汽车1. 优点:a. 融合优势:混联汽车同时具备串联和并联汽车的优点,可以兼顾燃油经济性、动力性能和环保性能。
b. 高效能:混联汽车可以根据行驶状况智能调配电动机和发动机的工作方式,实现最佳的能量利用。
c. 环保节能:混联汽车在动力转换和能量回收方面比传统燃油车更加高效,减少了燃料的消耗及尾气排放。
2. 缺点:a. 制造成本高:与串联汽车和并联汽车相比,混联汽车的制造成本较高,导致售价较高。
b. 技术复杂度:混联汽车的动力系统相对复杂,需要更加精密的控制策略和精确的零部件,维护和修理成本相对较高。
结语:串联、并联和混联汽车各自具有独特的优点和缺点,用户选择适合自己需求和使用习惯的混合动力汽车时,需要综合考虑各方面的因素,并对不同型号的车辆进行充分比较,才能做出理性的决策。
混合动力汽车的能量控制策略能量管理策略的控制目标是根据驾驶人的操作,如对加速踏板、制动踏板等的操作,判断驾驶人的意图,在满足车辆动力性能的前提下,最优地分配电机、发动机、动力电池等部件的功率输出,实现能量的最优分配,提高车辆的燃油经济性和排放性能。
由于混合动力汽车中的动力电池不需要外部充电,能量管理策略还应考虑动力电池的荷电状态(SOC)平衡,以延长其使用寿命,降低车辆维护成本。
混合动力汽车的能量管理系统十分复杂,并且因系统组成不同而存在很大差别。
下面简单介绍3种混合动力汽车的能量管理策略。
1、串联式混合动力汽车能量管理控制策略由于串联混合动力汽车的发动机与汽车行驶工况没有直接联系,因此能量管理控制策略的主要目标是使发动机在最佳效率区和排放区工作。
为优化能量分配整体效率,还应考虑传动系统的动力电池、发动机、电动机和发电机等部件。
串联式混合动力汽车有3种基本的能量管理策略。
(1)恒温器策略当动力电池SOC低于设定的低门限值时,起动发动机,在最低油耗或排放点按恒功率模式输出,一部分功率用于满足车轮驱动功率要求,另一部分功率给动力电池充电。
而当动力电池SOC上升到所设定的高门限值时,发动机关闭,由电机驱动车辆。
其优点是发动机效率高、排放低,缺点是动力电池充放电频繁。
加上发动机开关时的动态损耗,使系统总体损失功率变大,能量转换效率较低。
(2)功率跟踪式策略由发动机全程跟踪车辆功率需求,只在动力电池SOC大于设定上限,且仅由动力电池提供的功率能满足车辆需求时,发动机才停机或怠速运行。
由于动力电池容量小,其充放电次数减少,使系统内部损失减少。
但是发动机必须在从低到高的较大负荷区内运行,这使发动机的效率和排放不如恒温器策略。
(3)基本规则型策略该策略综合了恒温器策略与功率跟踪式策略的优点,根据发动机负荷特性图设定高效率工作区,根据动力电池的充放电特性设定动力电池高效率的SOC范围。
同时设定一组控制规则,根据需求功率和SOC进行控制,以充分利用发动机和动力电池的高效率区,使两者达到整体效率最高。