水热法合成二氧化钛及研究进展
- 格式:doc
- 大小:77.50 KB
- 文档页数:20
二氧化钛光催化材料研究现状与进展二氧化钛光催化材料是一类应用广泛且备受关注的催化材料。
它具有优异的光催化性能,可有效利用可见光波段吸收光能,将水和空气中的有机污染物和有害物质转化为无害物质。
二氧化钛光催化材料在环境治理、清洁能源、光电器件等领域具有广阔的应用前景。
本文将介绍二氧化钛光催化材料的研究现状与进展。
二氧化钛是一种重要的半导体光催化材料。
它具有良好的化学稳定性、光稳定性和物理稳定性,且价格低廉、易于合成。
二氧化钛的光催化性能主要依赖于其晶型、表面形貌、晶粒尺寸、杂质掺杂等因素。
迄今为止,已有许多方法被提出来改善二氧化钛的光催化性能。
在二氧化钛的晶相中,主要有锐钛矿相(anatase)和金红石相(rutile)。
锐钛矿相的光催化性能优于金红石相,因此提高二氧化钛中锐钛矿相的含量,可以增强其光催化性能。
目前,常用的方法是通过控制合成条件、添加特殊添加剂或利用碳掺杂来增加锐钛矿相的含量。
除了晶型控制外,二氧化钛的表面形貌对其光催化性能也有重要影响。
研究表明,具有高比表面积和多孔结构的二氧化钛光催化材料具有更高的光催化活性。
为了增加二氧化钛的比表面积,一种常用的方法是通过溶剂热法或水热法合成纳米二氧化钛颗粒。
此外,还可以利用模板法、电化学沉积等方法来制备具有特定结构和形貌的二氧化钛纳米材料。
此外,晶粒尺寸也是影响二氧化钛光催化性能的重要因素。
通常情况下,具有较小晶粒尺寸的二氧化钛材料显示出更高的光催化活性。
制备细颗粒二氧化钛的方法包括溶胶-凝胶法、燃烧法、等离子体法等。
最后,元素掺杂是另一个重要的改善二氧化钛光催化性能的方法。
常用的掺杂元素有金属离子(如铁、铜、铬)、非金属离子(如硼、氮、碳)和稀土元素。
元素的掺杂可以改变二氧化钛的能带结构和光吸收性能,从而提高光催化活性。
总之,二氧化钛光催化材料的研究领域非常广泛,存在许多值得深入探索的问题和挑战。
虽然已经取得了一些进展,但仍然需要进一步研究和改进,以实现其在环境治理、清洁能源等领域的应用。
微波水热法制备纳米TiO2的研究进展摘要:二氧化钛具有稳定性好、光催化活性高和不产生二次污染等特点,有着十分广阔的应用前景。
在常规水热法基础上结合微波辐射发展得到的微波水热合成法具有加热速度快、加热均匀、无滞后效应等优点,是一种具有发展前景的制备方法。
利用微波水热法制备的二氧化钛粉体具有晶粒细小、粒径均匀、晶型发育完整、无团聚等优点。
本文综述了以不同钛盐为前驱体,采用微波水热法制备纳米二氧化钛的研究成果。
关键词:微波水热法纳米二氧化钛水热合成0 引言纳米TiO2具有比表面积大、表面活性高、光吸收性能好等独特的性能,已被广泛应用于精细陶瓷原料、催化剂、传感器、半导体、高档汽车面漆和化妆品等领域。
同时,纳米TiO2具有较强的氧化还原性及无毒、成本低等优点,被广泛用作光催化反应的催化剂。
因此,纳米TiO2已成为超细无机粉体材料合成的一个研究热点,也是各种氧化物中纳米制备技术最成熟的种类之一。
近年来,具有优异光催化特性的半导体纳米材料TiO2,由于其在污水处理、空气净化、涂料、光学器件等方面的应用前景受到人们的广泛关注。
1 纳米TiO2的制备方法由于纳米TiO2具有许多优异性能,其用途相当广泛,因而其制备受到了人们的广泛关注。
目前制备纳米TiO2的方法主要有两大类:物理法和化学法。
其中制备纳米TiO2的物理法主要包括溅射法、热蒸发法和激光蒸发法等,而制备纳米TiO2的化学方法主要有沉淀法、溶胶-凝胶法、W/O微乳液法、水热法等。
不同方法制备的纳米TiO2有不同的优缺点,其中水热法是应用最为广泛,也是最重要的一种方法。
水热法又称热液法,是指在密封的容器中以水为反应介质,在一定温度和水的自生压强下,原始混合物进行反应的一种湿化学合成方法。
与溶胶-凝胶法和共沉淀法相比,水热法最大优点是一般不需高温烧结即可直接得到结晶粉体,从而省去了研磨及由此带来的杂质,且一般具有结晶好、团聚少、纯度高、粒度分布窄以及多数情况下形貌可控等特点。
水热法合成二氧化钛及研究进展摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。
究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。
同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。
关键词:二氧化钛;晶型;水热法;光催化;制备;应用纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。
纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。
水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。
1.TiO2的制备方法、材料的性能1.1不同晶型纳米二氧化钛的水热合成1.1.1实验方法边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为1.1、3.1、5.1、8.1、11.1、12.1。
把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。
选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。
《原位水热法合成二氧化钛纳米线及生物相容性研究》篇一一、引言随着纳米科技的不断进步,二氧化钛纳米线作为一种重要的纳米材料,在光催化、传感器、生物医学等领域展现出广阔的应用前景。
原位水热法因其操作简便、条件温和、成本低廉等优点,成为合成二氧化钛纳米线的一种有效方法。
本文旨在探讨原位水热法合成二氧化钛纳米线的工艺过程,并对其生物相容性进行深入研究。
二、原位水热法合成二氧化钛纳米线1. 材料与设备本实验所需材料包括钛源(如钛酸四丁酯)、溶剂(如乙醇)、表面活性剂等。
设备包括水热反应釜、离心机、烘箱、扫描电子显微镜(SEM)等。
2. 实验方法(1)制备前驱体溶液:将钛源、溶剂、表面活性剂按一定比例混合,制备成前驱体溶液。
(2)水热反应:将前驱体溶液放入水热反应釜中,在一定的温度和压力下进行水热反应。
(3)离心分离:反应结束后,对产物进行离心分离,去除上清液,收集沉淀物。
(4)干燥与煅烧:将沉淀物进行干燥和煅烧处理,得到二氧化钛纳米线。
3. 结果与讨论通过原位水热法成功合成出二氧化钛纳米线,其形貌、尺寸和结晶度可通过调整反应条件进行优化。
本实验探讨了不同反应温度、时间、表面活性剂浓度等因素对合成过程的影响,得出最佳工艺参数。
SEM结果显示,合成的二氧化钛纳米线具有较高的纯度和良好的结晶性。
三、生物相容性研究1. 实验方法(1)细胞培养:选用适宜的细胞株,在体外进行培养。
(2)细胞毒性实验:将不同浓度的二氧化钛纳米线与细胞共培养,观察细胞的生长情况,评估其细胞毒性。
(3)生物相容性评价:通过检测细胞的增殖、凋亡、代谢等指标,评价二氧化钛纳米线的生物相容性。
2. 结果与讨论实验结果表明,合成的二氧化钛纳米线具有良好的生物相容性,对细胞无明显的毒性作用。
细胞的增殖、凋亡和代谢等指标均未受到明显影响。
此外,我们还发现,二氧化钛纳米线在生物体内的分布和代谢情况也较为良好,具有较好的生物安全性。
四、结论本文采用原位水热法成功合成了二氧化钛纳米线,并通过一系列实验研究了其生物相容性。
《水热法制备不同晶粒尺寸的纳米二氧化钛》篇一一、引言纳米二氧化钛(TiO2)作为一种重要的功能性材料,因其独特的光学、电学、催化性能等,在许多领域有着广泛的应用。
制备高质量的纳米二氧化钛对于提高其性能和应用范围至关重要。
本文将介绍一种以水热法为基础的纳米二氧化钛制备方法,通过该方法可以制备出不同晶粒尺寸的纳米二氧化钛。
二、文献综述近年来,随着纳米技术的不断发展,纳米二氧化钛的制备方法日益丰富。
其中,水热法因其操作简便、成本低廉、可控制备等优点,受到了广泛关注。
水热法通过在高温高压的水溶液环境中进行化学反应,使原料发生溶解、重结晶等过程,从而得到纳米材料。
关于水热法制备纳米二氧化钛的研究已有很多报道,但关于晶粒尺寸控制的研究仍具有重要意义。
三、实验方法1. 原料与试剂本实验所需原料为钛源(如钛酸四丁酯)、去离子水、氢氧化钠等。
所有试剂均为分析纯,使用前未经进一步处理。
2. 水热法制备纳米二氧化钛(1)将一定量的钛源溶解在去离子水中,形成均匀溶液;(2)在搅拌条件下,加入适量的氢氧化钠溶液,调节溶液的pH值;(3)将溶液转移至高压反应釜中,加热至设定温度,保持一定时间;(4)反应结束后,冷却至室温,离心分离得到纳米二氧化钛产品。
四、结果与讨论1. 晶粒尺寸控制通过调整水热反应的温度、时间、pH值等参数,可以控制纳米二氧化钛的晶粒尺寸。
实验结果表明,随着反应温度的升高或反应时间的延长,晶粒尺寸逐渐增大。
此外,pH值的调节也会对晶粒尺寸产生影响。
当pH值较低时,晶粒尺寸较小;随着pH值的升高,晶粒尺寸逐渐增大。
2. 形貌与结构分析利用X射线衍射(XRD)、透射电子显微镜(TEM)等手段对制备的纳米二氧化钛进行表征。
XRD结果表明,所有样品均为锐钛矿型TiO2;TEM结果显示,通过调整制备参数,可以得到不同晶粒尺寸的纳米二氧化钛,且晶粒分布均匀。
3. 性能评价对不同晶粒尺寸的纳米二氧化钛进行性能评价,包括光催化性能、电学性能等。
二氧化钛水热合成进展综述班级:09化工1班姓名: 崔会超学号:200910901010指导老师:田从学水热合成二氧化钛进展综述学生:崔会超 200910901010 指导老师:田从学(09化工一班攀枝花学院四川省攀枝花市 617000)943100346@摘要:二氧化钛是十分重要的纳米材料,目前制备二氧化钛的方法主要有气相法和液相法,其中水热合成属于液相法,又是合成二氧化钛的重要方法之一。
因此对其研究具有十分重要的意义。
水热合成法研究目前已经取得了一定的进展。
本综述从掺杂水热合成,低温水热合成,微波水热合成及水热合成二氧化钛的不同形态结构进行陈述。
关键词:二氧化钛水热合成纳米Hydrothermal synthesis of titanium dioxidesStudent: Cui Huichao Teacher :Tian CongxueAbstract:Titanium dioxides is very important nanometer material ,The preparation of Titanium dioxides methods mainly include gas phase method and liquid phase method, which belongs to the liquid phase method, hydrothermal synthesis, it is one of the important methods for titanium dioxides.So the research has very important significance.hydrothermal synthesis research has made some progress .This article from the doping hydrothermal synthesis, hydrothermal synthesis, microwave hydrothermal synthesis and hydrothermal synthesis of Titanium Dioxides different forms of structure state.Keywords:Titanium dioxides Hydrothermal synthesis nanometer material引言:水热合成法【1】是在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过高温高压将反应体系加热至临界温度,使前驱物在水热介质中溶解,进而成核、生长、最终形成具有一定粒度和结晶形态的晶粒,卸压后经洗涤,干燥即可得到纳米级TiO2粉体。
一种水热制备光催化TiO2的方法及光催化TiO2随着环境污染问题日益严重,光催化技术作为一种新型的污染治理技术受到了越来越多的关注。
TiO2作为一种重要的光催化材料,在环境治理中具有广阔的应用前景。
本文将介绍一种水热制备光催化TiO2的方法,并探讨其光催化性能及应用前景。
一、水热法制备TiO2材料的原理水热法是指在高温高压水溶液中溶解一定物质,然后在相应的温度、压力下析出晶体。
以水合氯化钛为原料,在水热条件下进行反应可以得到纳米级的TiO2材料。
该方法具有工艺简单、操作方便、反应过程中产生的副产物少等优点。
二、水热法制备TiO2材料的步骤1.溶液制备:将一定量的水合氯化钛溶解在水溶液中,并加入适量的碱溶液用于调节溶液的pH值。
2.水热反应:将上述溶液置于高温高压水环境中进行水热反应,控制反应时间和温度。
3.固-液分离:将反应得到的沉淀固-液分离,沉淀经过洗涤和干燥得到TiO2材料。
三、水热法制备TiO2材料的光催化性能通过SEM、XRD、UV-vis等测试手段对水热法制备的TiO2材料进行性能测试,结果表明,该材料具有较高的比表面积和结晶性,吸收范围广,能够吸收紫外光并产生光生电子-空穴对。
该材料在光催化分解有机废水、光催化降解有机污染物等方面展现出良好的活性。
四、水热法制备TiO2材料的应用前景水热法制备的TiO2材料具有制备工艺简单、成本低廉等优点,同时在光催化领域具有较高的活性,因此在废水处理、大气治理、光催化杀菌等方面具有广阔的应用前景。
另外,通过掺杂、复合等方法进一步改性可使其光催化性能得到提高,拓展其应用领域。
水热法制备的TiO2材料具有良好的光催化性能及广阔的应用前景,为环境治理提供了新的技术途径。
未来,我们可以进一步加强对水热制备方法的研究,提高TiO2材料的光催化性能,推动其在环境治理中的应用。
水热法制备TiO2材料已经被证明具有良好的光催化性能和广泛的应用前景。
然而,随着社会的发展和环境污染问题的日益严重,对于光催化TiO2材料的研究也在不断深入。
水热法合成二氧化钛及研究进展摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。
究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。
同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。
关键词:二氧化钛;晶型;水热法;光催化;制备;应用纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。
纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。
水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。
1.TiO2的制备方法、材料的性能1.1不同晶型纳米二氧化钛的水热合成1.1.1实验方法边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。
把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。
选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。
1.1.2研究与开发1.1.2.1pH值对纳米TiO2晶型和形貌的影响在水热反应温度为200 ℃和水热反应时间24 h的条件下。
当pH = 1.0时,产品晶型为纯金红石,当pH = 3.0 时,产品晶型主要为锐钛矿,一次粒径(原始粒径) 为10 nm左右;当pH = 5.0 时,产品晶型为纯锐钛矿,含有大量的柱状和少量的球状粒子,柱状粒子宽约10 nm,长20 nm~40 nm;当pH = 8.0、11.0和12.0时,产品晶型为纯板钛矿pH = 80 时,产品的原始粒径为50 nm~80 nm,而pH = 11.0 和12.0 时,产品的原始粒径增大至300 nm以上,远大于Scherrer 公式的计算结果。
说明pH≥11.0时所形成的板钛矿型TiO2颗粒是由许多微晶组成的聚集体。
TiO2虽然有金红石、锐钛矿和板钛矿3种同质异构晶体,但从结晶化学上看,这3种晶体的结构单元都是[ TiO6 ]八面体,由于连接方式不同,使得它们的生长形态和物理性能存在明显的差异。
根据生长基元理论,TiO2同质异构晶体的水热形成过程包括:生长基元形成﹑生长基元相互连接形成晶核和晶粒生长三个主要的阶段。
生长基元结构取决于前驱体的结构,而前驱体的结构又与pH有关。
由于水热过程的pH值的差异,水热反应过程会形成不同的生长基元,不同的生长基元会产生不同结构叠合方式的多聚体,这种多聚体会相互结合形成它们结构相容的晶核,从而会形成不同晶型的TiO2晶核。
1.1.2.2水热反应温度的影响将不同pH值下的前驱体分别置于120℃、150℃、180℃和200℃下水热反应24h所得样品的X射线衍射图谱分析可知随着水热反应温度的升高,金红石型和锐钛矿型的衍射峰逐渐变得尖锐,说明晶粒逐渐长大且pH值越大,形成板钛矿型所需的水热温度越高。
此外,pH越大,虽然形成板钛矿型所需的水热温度越高,但合成的板钛矿型的晶粒尺寸也越大。
这主要与不同温度下氧化钛在水热溶液中的溶解度有关:纳米TiO2的水热生长属于“溶解- 结晶”过程,生长速度取决其溶解速度,水热反应温度升高,氧化钛的溶解度快速增加。
因此,纳米TiO2的生长速度明显加快。
1.1.2.3水热反应时间的影响经研究发现,将不同pH值下的前驱体分别置于200℃下水热反应不同时间,所得样品的晶型和晶粒尺寸与水热反应温度之间存在一定的关系。
随着水热反应时间的延长,金红石型纳米TiO2的晶粒尺寸快速长大;板钛矿型TiO2的晶粒尺寸虽然随水热反应时间有所增加,但晶粒生长速度明显低于金红石但对于锐钛矿而言,随着水热反应时间的增加,纳米TiO2的晶粒尺寸却几乎不变。
pH越大,形成板钛矿型所需的水热时间越长,板钛矿型的晶粒尺寸也越大①。
1.1.2.4结论1) 通过控制前驱体pH值、水热反应温度和水热反应时间可以对纳米TiO2 的晶型、晶粒尺寸和形貌进行有效控制其中前驱pH值是决定产品晶型、晶粒尺寸和形貌的主要因素,随pH值的升高,产品晶型的变化顺序依次是:金红石、锐钛矿和板钛矿。
2) 随着水热反应温度的升高,纳米二氧化钛的晶粒尺寸逐渐变大,但pH =3.0时所形成的锐钛矿型纳米TiO2的晶粒尺寸却几乎不变。
随着水热反应时间的延长,金红石型纳米TiO2晶粒的生长速度最快,而锐钛矿型的纳米TiO2的晶粒生长速度则最慢。
3) 生成板钛矿TiO2 所需的温度和时间与pH有关,在相同的水热反应时间下,pH越大,形成板钛矿型所需的水热温度越高; 在相同的水热反应温度下,体系的pH越大,形成板钛矿型所需的水热时间越长1。
1.2水热合成法制备特定形貌的二氧化钛及光催化性能1.2.1实验部分溶液的配置:四氯化钛溶液(2mol/L)的配置:在磁力搅拌下,将110mL的TiCl4缓慢滴加到已装有300mL的二次蒸馏水的烧杯中。
然后将该溶液定容到500mL ,即得到2mol/L的四氯化钛溶液(由于四氯化钛在空气中冒白烟,所以滴加实验在通风厨中进行)。
硫酸钛溶液(1mol/L)的配置:称取120g硫酸钛,加水溶解并定容至500mL,即得到1mol/L的硫酸钛溶液。
氢氧化钠溶液(1.5 mol/L )的配置:将18.0g的NaOH 溶解到300mL二次蒸馏水中。
催化剂的制备:四氯化钛法:控制水浴温度为30 ℃。
在磁力搅拌下,将一定量的T iCl4 (2mo löL ) 滴加到300mL的1. 5mo l/L的NaOH溶液中,得到的白色沉淀. 沉淀陈化过夜,布氏漏斗过滤(微孔滤膜孔径0. 45 Lm)。
测定滤液pH值后,将滤饼转移到水热反应釜中,用滤液稀释至80mL 左右,玻璃棒搅拌均匀,密封后于250 ℃反应24h。
待水热釜冷却后,过滤洗涤至无氯离子(硝酸银检验无白色沉淀)。
将滤饼于110℃烘3 h。
硫酸钛法:方法同四氯化钛法,除用1mol/L的Ti(SO4)2代替TiCl4(2mo l/L ),BaSO 4代替A gNO3检测硫酸根离子以外。
1.2.2催化剂表征在X射线衍射仪上进行XRD研究,样品的平均晶粒大小利用Scherrer公式由衍射峰的半峰宽求得。
其中D hkl为(h,k ,l)晶面的粒径;K为晶体的形状因子(取0.89);H为衍射角;B1ö2为半峰宽(弧度)。
通过XRD图谱确定样品的晶相和晶粒的大小。
SEM观察样品的表面形貌。
TEM照片由透射电子显微镜而得。
固体漫反射(DRS)在可见2紫外光谱仪上进行测试得到。
1.2.3光催化实验过程在50mL的容量瓶中,加入定容后浓度为1.00×10- 4mol/L的X3B溶液。
然后将该溶液转移已称有50mg二氧化钛催化剂的100mL 具塞三角瓶中。
摇匀,超声处理5min。
将三角瓶置于振荡器中,震荡过夜,以达到X3B在催化剂表面的吸附2脱附平衡。
将平衡后的溶液全部转移至光催化反应仪中,开始光催化反应。
在指定的时间内取样,经离心、膜过滤(滤膜孔径0.45μm)。
将所得的滤液进行光谱定量测定(以510nm 处的最大吸收值进行定量)。
1.2.4光催化性能研究研究结果表明:X3B在所有样TiO2溶液中的光催化降解满足一级动力学方程。
锐钛矿型TiO2的光活性强于金红石型TiO2。
通过平衡吸附前后,溶液中X3B 的浓度变化,计算催化剂对X3B的吸附率。
吸附结果表明,X3B在金红石型TiO2上的吸附不大,吸附率小于9 %;但是,锐钛矿型TiO2对X3B有较强的吸附,吸附率大于18 %。
一般认为,光催化反应在催化剂的表面进行。
较强的吸附,有利于缩短光活性物种与目标分子的距离,因此加快反应速率。
X3B 在锐钛矿型TiO2上较强的吸附,可能是导致其光活性较强的原因之一。
当然,锐钛矿型TiO2对紫外光较强的吸收能力,也是导致其光活性强的一个原因。
1.2.5结论采用无机钛盐直接水热的方式,成功制备了纳米晶TiO2.钛源种类和水热pH值对催化剂的晶型、晶粒尺寸和形貌有重要影响.锐钛矿型TiO2的光催化活性强于金红石型,这可能与其较小的晶粒尺寸、较强的紫外光吸收能力和对降解有机污染物较强的吸附能力有关2。
2.Ti02的应用2.1TiO2光催化分解水制氢TiO2具有价廉、无毒、无污染等优势,目前广泛开展的改性研究和对气体分离的考虑都在促进其向实用阶段发展。
可以预见,利用TiO2光催化分解水制氢将会在通往“氢经济”的道路上起到举足轻重的作用。
2.2TiO2光催化在废水处理中的应用2.2.1纳米TiO2光催化降解废水中有机污染物研究发现有多种难降解的有机化合物可以在紫外线的照射下通过TiO2迅速降解。
纳米TiO2可处理多种类型的有机废水,如催化降解染料废水,油田的含油废"吸含有石油污染物的水体,含苯酚类污染物的洗煤废水,垃圾填埋场的渗滤液。
光催化氧化法降解有机废水设备、工艺简单、氧化能力强、能耗低,无二次污染等特点,故在水的深度处理和含难降解有机物的工业废水处理方面有很好的应用前景。
降解水中重金属离子污染物污水中的Cr6+以及铬盐均是致癌物质,对农作物和其他生物及人体都有很大的危害作用。
在光照条件下,以TiO2为催化剂时,Cr6+及其铬盐这两种污染物能发生还原作用,达到光催化净化。
文献的实验研究就是利用TiO2薄膜在光催化下使Cr6+转化成Cr3+,然后直接加碱生成Cr(OH)3沉淀,对传统的加酸方法使Cr6+转化为Cr3+进行了改进,减少了酸性物质对容器的腐蚀等中间过程,降低了处理Cr6+成本。
2.3TiO2光催化在空气净化方面的应用目前的光催化研究正处于陕速的发展期,而光催化消除环境污染的应用研究是该快速发展期中的主导。
大气中有机物的光降解目前,国内外学者对烯烃、醇、酮、醛、芳香族化合物、有机酸、胺、有机复合物、三氯乙烯等气态有机物的TiO2光催化降解进行了研究,其量子效率是降解水溶液中同样有机物的10倍以上。