电子科技大学数值分析研究生期末考试习题二
- 格式:doc
- 大小:134.50 KB
- 文档页数:2
一、Please answer T or F for each of the following statements to indicate whether thestatement is true or false1. An algorithm is an instance, or concrete representation, for a computer programin some programming language. ( F )2. The following problem is a Decision Problem: What is the value of a bestpossible solution? ( F )3. The dynamic programming method can not solve a problem in polynomial time.( F)4. Assume that there is a polynomial reduction from problem A to problem B. Ifwe can prove that A is NP-hard, then we know that B is NP-hard. ( F )5. If one can give a polynomial-time algorithm for a problem in NP, then all theproblems NP can be solved in polynomial time. ( F )6. In an undirected graph, the minimum cut between any two vertices a and b isunique. ( F)7. Linear programming can be solved in polynomial time, but integer linearprogramming can not be solved in polynomial time. ( T )8. We can solve the maximum independent set problem in a graph with at most100 vertices in polynomial time. ( T ) 结论9. If an algorithm solves a problem of size n by dividing it into two subproblems ofsize n/2, recursively solving each subproblems, and then combine the solutions in linear time. Then the algorithm runs in O(n log n) time. ( T )10. Neural Computation, Fuzzy Computation and Evolution Computing are thethree research fields of Computational Intelligence. ( T )二、Given the following seven functions f1(n) = n5+ 10n4, f2(n) = n2+ 3n, f3(n) =f4(n) = log n + (2log n)3, f5(n) = 2n+n!+ 5e n, f6(n) = 3log(2n) + 5log n, f7(n) = 2n log n+log n n. Please answer the questions:第 1 页共5 页(a) Give the tight asymptotic growth rate (asymptotic expression with θ) to eachof them; (7分)(b) Arrange them in ascending order of asymptotic growth rate。
2012、11、10、09年电子科技大学研究生数理方程期末试卷电子科技大学研究生试卷(考试时间: 14点 至 16 点 ,共 2小时)课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写)1.把方程22222320u u ux x y y∂∂∂++=∂∂∂∂化为标准型,指出其类型,求出其通解. (10分)2.设定解问题:(10分)2000(),0,0,,0(),(),0.tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ϕψ====⎧-=<<>⎪⎪==>⎨⎪==≤≤⎪⎩将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。
学 号 姓 学 院 教 座位……………………密……………封……………线……………以……………第 1页3.长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ϕ,求杆内温度分布(,)u x t .(20分)4.求下面的定解问题:(10分)22009,(,0)18,sin 18tttxx t t t u u x e x R t u x x u x ==⎧-=∈>⎪⎨=++=+⎪⎩.第2页5.求22cos()a e x d ϖτϖϖ+∞-⎰.(10分)6. 22223()(22)(25)s s F s s s s s ++=++++,求Laplace 逆变换1(())L F s -.(10分)第3页7.写出球形域的Dirichlets 问题对应的:(1) Green 函数及其定解问题. (2) Green 函数相对于边界外侧的方向导数.(10分)8.设n ϖ(n=1,2,…)是0()0J x =的所有正根,将函数2()1(01)f x x x =-<<展开为Bessel 函数0()n J x ϖ的级数.(10分)9.(1)写出Legendre 多项式的一般形式或罗德利克表示形式; (2)将函数2()23,1f x x x x =++≤用Legendre 多项式展开.(10分)第4页。
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差r i= (b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。
、已知方程 exp x gsin x 1
1、确定方程全部正根的隔根区间。
2、设最小正根为x *,取猜测值X o ,写出x *的牛顿迭代法计算格式。
1 1 1
2 3
1 1 1
2 3
1、求雅可比迭代矩阵h (I 1)1A 的范数G。
2、写出高斯-赛德尔迭代矩阵。
3、判定是否有R f''(x *)
2f'(x *
) 1求成立,并解释其意义。
的LU 分解,并求出用“込范数”计算矩阵 U 的条件数
1
Cond(U)。
四、给点数表
用最小二乘法确定线性拟合函数 x C 0 C 1x
五、根据等距结点:为1,X j ,X j 1 (满足X j 1 X j X j X j 1 h ),写出二次拉格朗日插值
三、求A 1
基函数:I j 1 X ,I j X ,I j ! x 。
求:
f k x xI k' x ' ,(k j 1,j,j 1) 在x X j处的值
六、将积分上限函数
x
y x exp x t exp t dt转换为一阶常微分方程初值冋题,取
1
h ,记x jh
n
j 0,1,2,..., n,写出用Euler方法计算y 1的计算公式。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
一、填空题:(30分,每空3分)1. 迭代公式11,01n n n p p λλ-=<<,设01p =,若0p 有误差,按照迭代公式生成的数列误差随着n的增大而_____增大2. 线性方程组Ax b =,其中410141014A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,565b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,如果采用Jacobi 迭代法解该线性方程组,其迭代矩阵为00.2500.2500.2500.250-⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦3.一个问题是否病态与 问题本身 有关4.当1,3,4x =时,()3,6,2f x =,则()f x 的二次拉格朗日插值多项式2()L x =21153246x x -+- 5. 矩阵123635301⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的1l 范数等于 10 6. 三次样条插值具有 2 阶光滑性7. 如果插值求积公式()()1n b k k a k f x dx A f x =≈∑⎰为高斯公式,那么其求积公式具有 2n+1 次代数精度。
8. 线性方程组Ax b =中,1203A ⎡⎤=⎢⎥-⎣⎦,则()A ρ= 3 9. 对于插值型积分公式,其积分节点越多,积分精度 不确定 。
(越高,越低,不确定)10.对于微分方程初值问题()2,01y xy y '=-=,取步长0.1h =,则其显式Euler 方法的计算公式为()10.201n n n n y y x y y +=-⎧⎨=⎩二、判断题:错误用“×”、正确用“√”示意(10分,每小题2分)1. 解线性方程组Ax b =的迭代法收敛的充分必要条件为()1A ρ< ( × )2. 如果线性方程组Ax b =中矩阵A 为严格对角占优矩阵,那么对于任意迭代格式都是收敛的。
( × )3. 只要插值节点是互异的,则一定存在唯一的插值多项式满足插值条件。
( √ )4. 曲线拟合比三次样条插值好的一个原因是曲线拟合的计算量小。
西安电子科技大学何超电磁场数值分析考点1: 矩量法的一般过程(算子方程、离散化过程、选配过程、矩阵方程求解)。
给定算子方程和基函数,采用伽略金法,计算阻抗矩阵和激励电压矩阵,从而求得电流系数矩阵,即得到方程的近似解. (矩阵维数一般为2×2,或3×3,便于计算)。
1http://wenku.baidu。
com/link?url=oRwkn_6gajdEKC3YUFvvipOKLuZJXnVk43odUwyDWYRaonT1SlZLKEq9PCQba5xPYg _7mXpK8pZW0R—_RfT5EOXLvj0BKqKmQ6cfXMuW8P7有3个矩量法例题考点2:ScaLAPACK 的矩阵分布方式.给定进程网格,矩阵分块大小,要求能写出按ScaLAPACK矩阵分布方式,每个进程对应的矩阵元素。
?1 并行矩阵填充在PC集群系统中MPI并行矩量法研究36 37考点3:temporary block column 对active block column 分解产生的影响.对于当前活动列块(即正在进行LU分解的列块),要能够分析其左侧临时列块对其LU分解所产生的影响。
?英文书写得很详细了啊45-—55有lu分解将系数矩阵A转变成等价两个矩阵L和U的乘积,其中L和U分别是下三角和上三角矩阵。
当A 的所有顺序主子式都不为0时,矩阵A可以分解为A=LU,且当L的对角元全为1时分解唯一.其中L是下三角矩阵,U是上三角矩阵。
4阶矩阵的LU分解[1]高斯消元法见数值分析教材考点4:积分方程的建立要求掌握EFIE 、MFIF 、PMCHW(电场、磁场、表面积分方程)根据等效原理建立的过程,即对于给定的问题(PEC (理想导体)或介质)能根据等效原理建立积分方程(不要求写出场的位函数表达式,主要考察方程建立的思想).看矩量法的书那个英文书只有EFIE等效原理EFIE考点 5:RWG 基函数考察 RWG 基函数的 表达式,以及其 特点,对于给定的一个三角形网格图要能够标出哪些地方( 公共边上) 存在基函数。
电子科技大学研究生试卷 (考试时间: 至 ,共 2 小时)课程名称 图论及应用 教师 学时 60 学分 3 教学方式 堂上授课 考核日期 2019 年 5 月 日 成绩 考核方式: (学生填写)一.填空题(每空3分,共15分) 1. 图G 的邻接矩阵为0111101111001100⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 则G 的生成树的棵数为 8 . 2. 设1G 是11(,)n m 简单图,2G 是22(,)n m 简单图,则1G 和2G 的(Cartesian)积图12G G ⨯的边数()m G =1221n m n m +. 3. 图1中最小生成树T 的权值()W T = 23 .4. 图2中S 到T 的最短路的长度为 8 .5. 设G 是n 阶简单图,且不包含三角形,则其边数一定不超过24n ⎢⎥⎢⎥⎣⎦. 二.单项选择题(每题3分,共15分) 学号姓名学院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………座位号 图1 图21. 关于彼得森(Petersen)图, 下面说法正确的是 ( B )A. 彼得森图是哈密尔顿图;B. 彼得森图是超哈密尔顿图;C. 彼得森图可1-因子分解;D. 彼得森图是可平面图.2. 下面说法正确的是 ( C )A. 有割点的三正则图一定没有完美匹配;B. 有割边的三正则图一定没有完美匹配;C. 存在哈密尔顿圈的三正则图必能1因子分解;D. 正则的哈密尔顿图必能2因子分解.3. 关于图的度序列, 下面说法正确的是 ( B )A. 任意两个有相同度序列的图都同构;B. 若图G 度弱于图H ,则图G 的边数小于等于图H 的边数;C. 若非负整数序列12(,,,)n d d d π=满足1ni i d =∑为偶数,则它一定是图序列;D. 如果图G 所有顶点的度和大于或等于图H 所有顶点的度和,则图G 度优于图H.4. 关于图的补图, 下面说法错误的是 ( A )A. 若图G 连通,则其补图必连通;B. 若图G 不连通,则其补图必连通;C. 图G 中的一个点独立集,在其补图中的点导出子图必为一个团;D. 存在5阶的自补图.5. 关于欧拉图, 下面说法正确的是 ( D )A. 每个欧拉图有唯一的欧拉环游;B. 每个顶点的度均为偶数的图是欧拉图;C. 欧拉图中一定没有割点;D. 欧拉图中一定没有割边.(三).(10分)若阶为25且边数为62的图G 的每个顶点的度只可能为3,4,5或6,且有两个度为4的顶点,11个度为6的顶点,求G 中5度顶点的个数。
考试时间 120 分钟一、基础部分(共40分)1.(2分)完成下列数制转换:(25.25)10 = ( )2= ( )16 2.(2分)将十进制数转换为相应的编码表示。
(12)10 = ( )8421BCD= ( )余3码3.(4分)按照反演规则和对偶规则分别写出下列函数的反函数和对偶函数。
F =AB +E̅̅̅̅̅̅̅̅̅̅̅∙D +BC F̅ =__________________________________ F ∗=_________________________________4.(3分)按照要求写出下列函数的等价形式:5.(9分)已知某逻辑函数F 表达式如下,试完成下列内容:F =A̅C ̅+A ̅B ̅+BC +A ̅C ̅D ̅(1)在下图基础上完成该逻辑函数的卡诺图(下画线处也需要填写)(3分)。
===+=BC B A F (或与式) (与非与非式) (与或非式)(2)用卡诺图化简,写出该逻辑函数的最简与或式(2分)。
(3)根据化简结果,列出函数F的真值表(2分)。
(4)根据最简与或式画出该逻辑函数的电路图(2分)。
6.(6分)下图所示电路用于产生2相时钟信号,按照要求完成下述内容。
CQ1Q2(1)分别写出该电路的输出Q1和Q2的逻辑表达式(2分)。
(2)完成下列波形图,并说明在A 取不同值的情况下电路功能(初态为0)(4分)。
C Q Q2AQ1该电路的功能:_______________________________________________________ ____________________________________________________________________。
7.(6分)74194是双向移位寄存器,试判断下列电路的功能,并画出其状态表和状态图。
1(1)在下表中填写电路的状态表,并画出状态图(4分)状态图如下:(2)该电路的功能是:__________________________;(2分)装 订 线8.(8分)阅读如下电路,完成各项以下内容。
研究生数值分析期末考试试卷参考答案太原科技大学硕士研究生2012/2013学年第1学期《数值分析》课程试卷参考答案一、填空题(每小题3分,共30分)1、x x ++11;2、2;3、20;4、6;5、kk k k k x x x x x cos 11sin 1----=+ ( ,1,0=k ); 6、12121)(2++=x x x f ;7、311+=+k k x x ( ,1,0=k );8、12-n ;9、2; 10、+++++++--100052552452552052552525524;二、(本题满分10分)解:Gauss-Seidel 迭代方法的分量形式为+--=+--=++-=++++++3221522)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x -----5分取初始向量T x )0,0,0()0(=时,则第一次迭代可得===315)1(3)1(2)1(1x x x ,--------------7分答案有错误第二次迭代可得=-==7119)2(3)2(2)2(1x x x ,-----------9分所以T x )7,11,9()2(-=.---------------10分三、(本题满分10分)解:构造正交多项式:取)()()()(,)(,1)(01112010x x x x x x x ?β?α?α??--=-==,1)()(402040200=∑∑===i i i i i x x x ??α,1)()(402140211=∑∑===i i i i i x x x ??α,2)()(402040211=∑∑===i i i i x x ??β;所以点集{}1,0,1,2,3-上的正交多项式为12)(,1)(,1)(2210--=-==x x x x x x .-------------------------5分则矩阵???????? ?-----=221111*********A , ??=14000100005A A T ,????? ??=3915y A T ;法方程=????? ??????? ??391514000100005210c c c ----------------8分解得===1431093210c c c ;--------9分所以要求的二次多项式为35667033143)12(143)1(109322++=--+-+=x x x x x y .-----------10分四、(本题满分10分)解:取基函数210)(,1)(x x x ==??,则1),(1000=?=dx ??,31),(10201=?=dx x ??, 51),(10411=?=dx x ?? ππ?2sin ),(100=?=xdx f , 3102141sin ),(πππ?-=?=xdx x f----------------------------------6分法方程-=???? ???????? ??34125131311πππb a -----------------8分解得-=+=33454151543ππππb a .---------------9分所以最佳平方逼近多项式233)45415(1543)(x x ππππ?-++=.---------10分五、(本题满分10分)解:在区间[]1,+n n x x 上对微分方程),(y x f dxdy =进行积分得 ??=++11),(n n n n x x x x dx y x f dx dxdy 即=-+n n y y 1?+1),(n n xx dx y x f -------2分对上式等号右边的积分采用梯形公式进行求解,即+1),(n n x x dx y x f []n n f f h +=+12-------5分所以原微分方程初值问题的数值求解公式为11()2n n n n h y y f f ++=++.-------6分上述数值求解公式的截断误差为 ))](,())(,([2)()(1111n n n n n n n x y x f x y x f h x y x y R +--=++++---8分而又由泰勒公式得)()()()(2'1h O x hy x y x y n n n ++=+;)())(,())(,(11h O x y x f x y x f n n n n +=++;所以))](,()())(,([2)()()()(2'1n n n n n n n n x y x f h O x y x f h x y h O x hy x y R ++--++=+ )()())(,()(22'h O h O x y x hf x hy n n n =+-= 故该方法是一阶的方法.-----------------10分六、(本题满分20分)解:(1)构造的差商表如下:x )(x f 一阶差商二阶差商三阶差商 1 22 4 23 5 1 21- 4 8 3 121 -----------------------------15分(2)取2、3、4作为插值点,----------------------------------------------------17分构造的二次牛顿插值多项式为84)3)(2()2(4)(22+-=--+-+=x x x x x x P -----19分所以25.6)5.3()5.3(2=≈P f .------------------------------20分七、(本题满分10分)解:由泰勒公式可得)2)(()2()('b a x f b a f x f +-++=ξ,),(b a ∈ξ. 把上式代入积分公式?b a dx x f )(可得dx b a x f b a f dx x f b a b a+-++=?)2)(()2()('ξ ?+-++-=b a dx b a x f b a f a b )2)(()2()('ξ 故求积公式的截断误差表达式为?+-b a dx b a x f )2)(('ξ,),(b a ∈ξ.-----------5分当1)(=x f 时,求积公式左边=右边=a b -.当x x f =)(时,求积公式左边=右边=222a b -. 当2)(x x f =时,求积公式左边=333a b -,右边=()()92a b a b +-,左边≠右边. -----8分所以求积公式具有一次代数精度.-------------------------- -----10分。
图1一、填空题1.五个变量构成的所有最小项之和等于 ( )。
2.已知某数的二进制原码表示为 ( 110110) 2 , 则其对应的8-bit 补码表示为 ( )2。
3.已知∑=CB A F ,,)3,0(,则∑='C B A F ,,( )。
4.要使D 触发器按'*Q Q =工作,则D 触发器的输入D=( )。
5.用移位寄存器产生1101010序列,至少需要( )位的移位寄存器。
二、单项选择题:1. 若要将一异或门当作反相器(非门)使用,则输入端A 、B 端的连接方式是( )。
A. A 或B 中有一个接“0”B. A 或B 中有一个接“1”C. A 和B 并联使用D. 不能实现 2.组合电路的竞争冒险是由于( )引起的。
A. 电路不是最简B. 电路有多个输出C. 电路中使用不同的门电路D. 电路中存在延时3.某一逻辑函数真值表确定后,下面描述该函数逻辑功能的表达式中,具有唯一性的是( )。
A .该逻辑函数的最简与或式B .该逻辑函数的积之和标准型C .该逻辑函数的最简或与式D .该逻辑函数的和之积式4.若最简状态转换表中,状态数为n ,则所需状态变量数K 为 ( )的整数.A .n K 2log =B .n K 2log <C . n K 2log ≥D . n K 2log ≤5.某计数器的状态转换图如图1所示,其该计数器的模为( )。
A . 八 B. 五 C. 四 D. 三三、 组合电路分析:1.求逻辑函数 Z Y X Y X Z X F ⋅'⋅+⋅+⋅'= 的最简积之和表达式。
2.已知逻辑函数∑=ZY X F ,,)7,5,1(, 请写出该函数的标准和(最小项之和)表达式:3.找出逻辑表达式X W Y W F ⋅+'⋅'=对应的电路的所有静态冒险。
四、组合电路设计:1、试用一片三输入八输出译码器74X138和适当的与非门实现函数:∑=Z Y X W F ,,,)15,14,10,6,3(画出电路连接图。
习 题 二
请尽可能提供程序
1、假设)(x f 在[]b a ,上连续,求)(x f 的零次最佳一致逼近多项式。
2、选择常数a ,使得ax x x -≤≤31
0max 达到极小,又问这个解是否唯一?
3、如何选取r ,使r x x p +=2)(在[]1,1-上与零偏差最小?r 是否唯一?
4、设在[]1,1-上54323840
1653841524381211)(x x x x x x -----=ϕ,试将)(x ϕ降低到3次多项式.
求a 、b 使⎰-+20
2]sin [π
dx x b ax 为最小。
5、设{
}x span ,11=ϕ,{}
1011002,x x span =ϕ,分别在21,ϕϕ上求一元素,使其为]1,0[2C x ∈的最佳平方逼近,并比较其结果。
6、用最小二乘法求一个形如2bx a y +=的经验公式,使它与下列数据相拟合,并求均方误差。
i x 19 25 31 38 44
i y
19.0 32.3 49.0 73.3 97.8
7、确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度。
)()0()()(101h f A f A h f A dx x f h
h
++-≈--⎰
8、用辛普森公式求积分
1
x e dx -⎰
并估计误差。
9、求近似求积公式)]4
3
(2)21()41(2[31)(1
0f f f dx x f +-≈⎰的代数精度。
10、用三个节点(2=n )的Gauss 求积公式计算积分)2(14
112
π=+=⎰-dx x I 。
11、试确定常数A ,B ,C 和α,使得数值积分公式
)()0()()(2
2
ααCf Bf Af dx x f ++-=⎰
-为Gauss 型公式。
12、用三点公式求2
)1(1
)(x x f +=
在1.1,0.1=x 和1.2处的导数值,并估计误差,
)(x f 的值由下表给出:
X
1.0 1.1
1.2 1.3 1.4
)(x f
0.2500 0.2268 0.2066 0.1890 0.1736
13、就初值问题0)0(,=+='y b ax y 分别导出欧拉方法和改进的欧拉方法的近似解的表达式,并与准确解bx ax y +=
2
2
1相比较。
14、用改进的欧拉方法求解初值问题⎩⎨⎧=<<+='1)0(1
0,y x y x y ,取步长1.0=h 计算,
并与准确解x e x y 21+--=相比较。
15、用梯形方法解初值问题⎩⎨⎧==+'1)0(0y y y ,证明其近似解为n
n h h y ⎪⎭⎫
⎝⎛+-=22,并证明
当0→h 时,它收敛于原初值问题的准确解x e y -=。
16、取2.0=h ,用四阶经典的龙格-库塔方法求解下列初值问题:
⎩⎨
⎧=<<+='1
)0(1
0,y x y x y 17、证明解),(y x f y ='的下列差分公式)34(4
)(211111-+-+'+'-'++=n n n
n n n y y y h
y y y 是二阶的,并求出截断误差的首项。
18、取25.0=h ,用差分法解边值问题⎩⎨⎧===+''68
.1)1(,0)0(0
y y y y 。