电子科技大学数值分析研究生期末考试习题一
- 格式:doc
- 大小:163.50 KB
- 文档页数:3
西安电子科技大学何超电磁场数值分析考点1:矩量法的一般过程(算子方程、离散化过程、选配过程、矩阵方程求解)。
给定算子方程和基函数,采用伽略金法,计算阻抗矩阵和激励电压矩阵,从而求得电流系数矩阵,即得到方程的近似解。
(矩阵维数一般为2×2,或3×3,便于计算)。
1/link?url=oRwkn_6gajdEKC3YUFvvipOKLuZJXnVk43odUwyDWYRao nT1SlZLKEq9PCQba5xPYg_7mXpK8pZW0R-_RfT5EOXLvj0BKqKmQ6cfXMuW8P7有3个矩量法例题考点2:ScaLAPACK 的矩阵分布方式。
给定进程网格,矩阵分块大小,要求能写出按ScaLAPACK矩阵分布方式,每个进程对应的矩阵元素。
?1 并行矩阵填充在PC集群系统中MPI并行矩量法研究36 37考点3:temporary block column 对active block column 分解产生的影响.对于当前活动列块(即正在进行LU分解的列块),要能够分析其左侧临时列块对其LU分解所产生的影响。
?英文书写得很详细了啊45--55有lu分解将系数矩阵A转变成等价两个矩阵L和U的乘积,其中L和U分别是下三角和上三角矩阵。
当A 的所有顺序主子式都不为0时,矩阵A可以分解为A=LU,且当L的对角元全为1时分解唯一。
其中L是下三角矩阵,U是上三角矩阵。
4阶矩阵的LU分解[1]高斯消元法见数值分析教材考点4:积分方程的建立要求掌握EFIE 、MFIF 、PMCHW(电场、磁场、表面积分方程)根据等效原理建立的过程,即对于给定的问题(PEC (理想导体)或介质)能根据等效原理建立积分方程(不要求写出场的位函数表达式,主要考察方程建立的思想)。
看矩量法的书那个英文书只有EFIE 等效原理EFIE考点 5:RWG 基函数考察 RWG 基函数的 表达式,以及其 特点,对于给定的一个三角形网格图要能够标出哪些地方( 公共边上) 存在基函数。
1I(a,b) 2ax2b x dx2005~2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析 学生所在院: ________ 学号: ________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12 3x 2cosx 0根的迭代法/ 2X ki 4 cosx k3(1) 证明对X o R ,均有lim X k x *,其中X *为方程的根.k(2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 30.0 0a非病态的。
(范数用HI )求f (X )的Hermite 插值多项式H 3(x ),并给出截断误差R (x ) f (x ) H 3(x ) 五、(10分)在某个低温过程中,函数 y 依赖于温度x (T )的试验数据为已知经验公式的形式为 y ax bx 2,试用最小二乘法求出a , b、(8分)若矩阵A 2a a 00 a 0,说明对任意实数a0,方程组AX b 都是四、(15六、(12分)确定常数 a ,b 的值,使积分、(15分)设求方程 12 3x 2cosx 0根的迭代法取得最小值。
七、(14分)已知Legendre 勒让德)正交多项式L n (x )有递推关系式:L o (x) 1, L i (x) x (n 1, 2,)试确定两点的咼斯一勒让德(G — L )求积公式11 f (x )dx 入仁花)A 2f (x 2)的求积系数和节点,并用此公式近似计算积分12 一e x dx1八、(14分)对于下面求解常微分方程初值冋题dx f (x,y )的单步法: y (x 。
) y 。
11 y n 1 y n h(?k 1 - k 2)k 1 f(X n ,y n )k 2f(X n h, y n hkj(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
2012、11、10、09年电子科技大学研究生数理方程期末试卷电子科技大学研究生试卷(考试时间: 14点 至 16 点 ,共 2小时)课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写)1.把方程22222320u u ux x y y∂∂∂++=∂∂∂∂化为标准型,指出其类型,求出其通解. (10分)2.设定解问题:(10分)2000(),0,0,,0(),(),0.tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ϕψ====⎧-=<<>⎪⎪==>⎨⎪==≤≤⎪⎩将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。
学 号 姓 学 院 教 座位……………………密……………封……………线……………以……………第 1页3.长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ϕ,求杆内温度分布(,)u x t .(20分)4.求下面的定解问题:(10分)22009,(,0)18,sin 18tttxx t t t u u x e x R t u x x u x ==⎧-=∈>⎪⎨=++=+⎪⎩.第2页5.求22cos()a e x d ϖτϖϖ+∞-⎰.(10分)6. 22223()(22)(25)s s F s s s s s ++=++++,求Laplace 逆变换1(())L F s -.(10分)第3页7.写出球形域的Dirichlets 问题对应的:(1) Green 函数及其定解问题. (2) Green 函数相对于边界外侧的方向导数.(10分)8.设n ϖ(n=1,2,…)是0()0J x =的所有正根,将函数2()1(01)f x x x =-<<展开为Bessel 函数0()n J x ϖ的级数.(10分)9.(1)写出Legendre 多项式的一般形式或罗德利克表示形式; (2)将函数2()23,1f x x x x =++≤用Legendre 多项式展开.(10分)第4页。
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数据结构试卷(一)一、单选题(每题 2 分,共20分)1.栈和队列的共同特点是( A )。
A.只允许在端点处插入和删除元素B.都是先进后出C.都是先进先出D.没有共同点2.用链接方式存储的队列,在进行插入运算时( D ).A. 仅修改头指针B. 头、尾指针都要修改C. 仅修改尾指针D.头、尾指针可能都要修改3.以下数据结构中哪一个是非线性结构?( D )A. 队列B. 栈C. 线性表D. 二叉树4.设有一个二维数组A[m][n],假设A[0][0]存放位置在644(10),A[2][2]存放位置在676(10),每个元素占一个空间,问A[3][3](10)存放在什么位置?脚注(10)表示用10进制表示。
CA.688 B.678 C.692D.6965.树最适合用来表示( C )。
A.有序数据元素B.无序数据元素C.元素之间具有分支层次关系的数据D.元素之间无联系的数据6.二叉树的第k层的结点数最多为( D ).A.2k-1 B.2K+1 C.2K-1 D. 2k-17.若有18个元素的有序表存放在一维数组A[19]中,第一个元素放A[1]中,现进行二分查找,则查找A[3]的比较序列的下标依次为( D )A. 1,2,3B. 9,5,2,3C. 9,5,3D. 9,4,2,38.对n个记录的文件进行快速排序,所需要的辅助存储空间大致为CA. O(1)B. O(n)C. O(1og2n)D. O(n2)9.对于线性表(7,34,55,25,64,46,20,10)进行散列存储时,若选用H(K)=K %9作为散列函数,则散列地址为1的元素有(D)个A.1 B.2 C.3 D.410.设有6个结点的无向图,该图至少应有( A )条边才能确保是一个连通图。
A.5B.6C.7D.8二、填空题(每空1分,共26分)1.通常从四个方面评价算法的质量:正确性易读性强壮性和_高效率。
2.一个算法的时间复杂度为(n3+n2log2n+14n)/n2,其数量级表示为___0(n)_____。
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差r i= (b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。
电子科技大学数值分析研究生期末考试习题一习题请尽可能提供程序1.用二分法求方程012=--x x 的正根,要求误差05.0<。
2. 为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式:1)2/11x x +=,迭代公式21/11k k x x +=+;2)231x x +=,迭代公式3211k k x x +=+;3)112-=x x ,迭代公式1/11-=+k k x x ;4)132-=x x ,迭代公式131-=+k k x x 。
试分析每种迭代公式的收敛性。
3. 给定函数)(x f ,设对一切x ,)(x f '存在且M x f m ≤'≤<)(0,证明对于范围M /20<<λ内的任意定数λ,迭代过程)(1k k k x f x x λ-=+均收敛于)(x f 的根*x 。
4.设a 为正整数,试建立一个求a1的牛顿迭代公式,要求在迭代公式中不含有除法运算,并考虑公式的收敛性。
请提供程序。
5.用Gauss 消去法求解方程组:-=????? ??????? ??----503121312111321x x x (请提供程序)用列主元Gauss 消去法求解下列方程组:(1)=????? ??????? ??13814142210321321x x x (请提供程序)6.用追赶法解三对角方程组b Ax =,其中--------=2100012100012100012100012A ,=00001b 。
7.设n n R P ?∈且非奇异,又设x 为n R 上一向量范数,定义Px xp =。
试证明px 是n R 上向量的一种范数。
8.用平方根法(Cholesky 分解)求解方程组:=????? ??????? ??7351203022323321x x x9.用改进的平方根法(T LDL 分解)求解方程组:=????? ??????? ??3016101795953533321x x x 。
习 题
请尽可能提供程序
1.用二分法求方程012=--x x 的正根,要求误差05.0<。
2. 为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式:
1)2/11x x +=,迭代公式21/11k k x x +=+;2)231x x +=,迭代公式3211k k x x +=+;
3)1
12-=x x ,迭代公式1/11-=+k k x x ;4)132-=x x ,迭代公式131-=+k k x x 。
试分析每种迭代公式的收敛性。
3. 给定函数)(x f ,设对一切x ,)(x f '存在且M x f m ≤'≤<)(0,证明对于范围M /20<<λ内的任意定数λ,迭代过程)(1k k k x f x x λ-=+均收敛于)(x f 的根*x 。
4.设a 为正整数,试建立一个求
a
1的牛顿迭代公式,要求在迭代公式中不含有除法运算,并考虑公式的收敛性。
请提供程序。
5.用Gauss 消去法求解方程组: ⎪⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----50312131
2111321x x x (请提供程序) 用列主元Gauss 消去法求解下列方程组:
(1)⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13814142210321321x x x (请提供程序)
6.用追赶法解三对角方程组b Ax =,其中
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--------=210001
2100012100012100012A ,⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=00001b 。
7.设n n R P ⨯∈且非奇异,又设x 为n R 上一向量范数,定义Px x
p =。
试证明p
x 是n R 上向量的一种范数。
8.用平方根法(Cholesky 分解)求解方程组:
⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛7351203022323321x x x
9.用改进的平方根法(T LDL 分解)求解方程组:
⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛3016101795953533321x x x 。
10.设方程组
⎪⎩⎪⎨⎧=+-=++--=++3103220241225321
321321x x x x x x x x x ,
(a )考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性;
(b )用雅可比迭代法及高斯-赛德尔迭代法解此方程组,要求当4)
()1(10-∞+<-k k x x 时迭代终止。
11.设方程组
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+--=+--=--=--21414
121414121
4141214141421321432431x x x x x x x x x x x x , (a )求解此方程组的雅克比迭代法的迭代矩阵0B 的谱半径;
(b )求解此方程组的高斯-赛德尔迭代法的迭代矩阵的谱半径;
(c )考察解此方程组的雅克比迭代法及高斯-赛德尔迭代法的收敛性。
12.用SOR 方法解方程组(取9.0=ω)
⎪⎩⎪⎨⎧=+-=++--=++3103220241225321
321321x x x x x x x x x ; 要求当4)
()1(10-∞+<-k k x x 时迭代终止。
13.证明矩阵
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=111a a a a a a A 对于121<<-a 是正定的,而雅克比迭代只对2
121<<-a 是收敛的。
14.给定线性方程组⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--111211*********x x x ,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?
15.设线性方程组b Ax =的系数矩阵为
⎪⎪⎪⎭
⎫ ⎝⎛-=a a a A 232131,
试求能使雅可比迭代法收敛的a 的取值范围。
16.求一个次数不超过4次的多项式()P x ,使它满足:
(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.
17.求出在=0,1,2x 和3处函数
2()1f x x =+的插值多项式. 18.设2()[,]f x C a b ∈且()()0f a f b ==,求证
21max |()|()max |()|8
a x
b a x b f x b a f x ≤≤≤≤''≤-. 19.设f (x )=x 4,试利用L -余项定理写出以-1,0,1,2为插值节点的三次插值多项式.。