2017年春季新版北师大版八年级数学下学期5.2、分式的乘除法学案3
- 格式:doc
- 大小:120.50 KB
- 文档页数:2
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
5.2 分式的乘除法1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力;(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入 观察下列运算:23×45=2×43×5,57×29=5×27×9, 23÷45=23×54=2×53×4,57÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?今天我们仿照分数的乘除来研究分式的乘除.二、合作探究探究点一:分式的乘法【类型一】 利用分式的乘法法则和除法法则进行计算计算下列各式:(1)3xy 24z 2·(-8z 2y ); (2)-3xy ÷2y 23x.解析:(1)直接利用分式的乘法运算法则,先找出公因式,然后进行约分;(2)变为乘法,再直接利用分式的乘法运算法则求出即可.解:(1)3xy 24z 2·(-8z 2y )=-6xy ;(2)-3xy ÷2y 23x =-9x 22y.方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.【类型二】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( )A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C.方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型三】 分式的乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab=2aba 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2aba 2+b 2倍.方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.【类型四】 分式乘除法的混合运算计算:a -1a +2·a -4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算.解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2.方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3 D .(-x n y 2n )n =x 2n y3n解析:A 、B 、C 计算都正确;D 中(-x n y 2n )n=(-1)nxn 2y 2n 2,原题计算错误.故选D.方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】 分式的乘除、乘方混合运算计算:(1)(-x 2y )2·(-y 2x )3·(-1x )4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4). 解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x 4y 2·(-y 6x 3)·1x 4=-y 4x 3;(2)原式=(x -2)(x -4)(x +4)(x -4)·(3x -4)2(x -2)2·(x -2)(x +4)(x -3)(3x -4)=3x -4x -3.方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】 分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V =43πR 3(其中R 为球的半径),求: (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积比是多少? (3)买大西瓜合算还是买小西瓜合算? 解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R -d )3,整个西瓜的体积是43πR 3;(2)西瓜瓤与整个西瓜的体积比是43π(R -d )343πR 3=(R -d )3R 3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R -d )3R 3<1,故买大西瓜比买小西瓜合算. 方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】 分式的化简求值化简求值:(2xy 2x +y)3÷(xy 3x 2-y 2)2·[12(x -y )]2,其中x =-12,y =23.解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x 3y 6(x +y )3·(x +y )2(x -y )2x 2y 6·14(x -y )2=2x x +y.将x =-12,y =23代入得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式是解决此类问题的常用方法.三、板书设计1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.。
5.2 分式的乘除法学习目标:1、经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;2、会进行简单分式的乘除法计算,具有一定的化归能力;3、在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题; 学习方法:自主探究与小组合作交流相结合.学习重难点:重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。
预习作业:1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的 ,把分母相乘的积作为积的 ;两分式相除,把除式的分子和分母颠倒位置后再与被除式 。
2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。
当分解因式完成以后,要进行____________,直到分子、分母没有______________时再进行乘除。
(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。
【引例】3、()222244229164311yx x y y xy x y x x y y x +-∙+--∙2 ) 计算:(例 分析:(1)题中分子、分母都是单项式,可直接运用法则计算;(2)应先分解因式,然后约分,但需注意符号的变化。
变式训练:4、计算:(1)222c a b ab c ⋅ (2)223425n m m n-⋅ (3)2222412144a a a a a a --⋅-+++(4)285y xy x -÷ (5) 27y x x ⎛⎫÷- ⎪⎝⎭(6) 269(3)2y y y y -+÷-+5、计算:)22(22)1(11)1(1)1(22222ab ab b a a b ab ab a x x x x -÷-÷+--+∙-÷--) (拓展训练1、计算:(1)231x y x y ⎛⎫⋅- ⎪⎝⎭ (2)2510321b bc ac a ⎛⎫÷- ⎪⎝⎭(3)222432a b ab ab a b-⋅-(4)x y y x x y y x -÷-⋅--9)()()(3432 (5)22222)(xy x xy y xy x x xy -⋅+-÷-2、计算: (1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a(3)229612316244y y y y y y --÷+⋅-+- (4)xy y xy y x xy x xy x -÷+÷-+222)(。
北师大版数学八年级下册5.2《分式的乘除法》教学设计一. 教材分析北师大版数学八年级下册5.2《分式的乘除法》是学生在掌握了分式的基本概念、分式的加减法的基础上进行学习的。
本节内容主要介绍了分式的乘除法运算规则,通过实例引导学生理解并掌握分式乘除法的运算方法,培养学生解决实际问题的能力。
本节课的内容在初中数学知识体系中占有重要地位,对于学生进一步学习函数、方程等数学知识具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、分式的加减法,具备了一定的数学思维能力。
但部分学生对分式的乘除法运算规则理解不够深入,容易在实际运算中出错。
因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况进行有针对性的教学。
三. 教学目标1.理解分式乘除法的运算规则,掌握相应的运算方法。
2.能够运用分式乘除法解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.分式乘除法的运算规则。
2.如何运用分式乘除法解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生运用分式乘除法解决问题,提高学生的应用能力。
2.启发式教学法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握分式乘除法的运算规则。
3.小组合作学习:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解分式乘除法的运算规则。
2.实际问题:准备一些与生活密切相关的实际问题,引导学生运用分式乘除法解决问题。
3.练习题:准备一些分式乘除法的练习题,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生运用已学的分式加减法知识解决问题。
在此基础上,引出本节课的内容——分式的乘除法。
2.呈现(10分钟)教师通过课件展示分式乘除法的运算规则,让学生直观地理解分式乘除法的运算方法。
同时,教师进行讲解,帮助学生掌握分式乘除法的运算规则。
北师大版数学八年级下册5.2《分式的乘除法》教案一. 教材分析北师大版数学八年级下册5.2《分式的乘除法》是学生在掌握了分式的基本概念、分式的加减法的基础上,进一步学习分式的乘除法。
本节内容是分式运算的重要部分,为后续的高中数学学习打下基础。
教材通过例题和练习,使学生掌握分式乘除法的运算方法,理解乘除法与加减法之间的关系。
二. 学情分析学生在学习本节内容时,已具备了分式的基本概念、分式的加减法的基础知识。
但部分学生对分式的运算规律理解不深,容易混淆。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和辅导。
三. 教学目标1.理解分式乘除法的运算方法。
2.掌握分式乘除法与加减法之间的关系。
3.提高学生的分式运算能力。
四. 教学重难点1.重点:分式乘除法的运算方法。
2.难点:分式乘除法与加减法之间的关系的理解。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生的动手操作能力和思维能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板、粉笔等教学工具。
3.准备练习题和测试题。
七. 教学过程1.导入(5分钟)利用一个实际问题,引出分式的乘除法运算。
例如,某商品的原价是100元,现在进行打折活动,打八折后的价格是多少?让学生思考如何用分式来表示打折后的价格,从而引出分式的乘除法运算。
2.呈现(10分钟)通过PPT展示分式乘除法的运算方法,结合例题进行讲解。
例如,讲解分式乘法时,可以呈现一个分式乘法的例子:ab ×cd=acbd。
让学生观察、理解并记住这个规律。
3.操练(10分钟)让学生分组进行分式乘除法的练习,教师巡回指导。
可以设置一些简单的题目,让学生动手操作,巩固所学知识。
例如,计算以下分式的乘除法:2 3×45;a b ÷cd;4.巩固(10分钟)让学生独立完成一些分式乘除法的题目,教师选题讲解,巩固所学知识。
北师大版八年级下册数学《5.2 分式的乘除法》教学设计一. 教材分析《5.2 分式的乘除法》这一节主要介绍了分式乘除法的运算方法,包括分式乘以分式、分式除以分式以及分式乘以整数和整数乘以分式。
这些内容是分式运算的基础,对于学生来说,掌握这些运算方法对于后续的数学学习具有重要意义。
二. 学情分析八年级的学生已经学习了分式的基本概念和性质,对于分式的加减法有一定的了解。
但是,学生在分式乘除法的运算上可能还存在一定的困难,特别是对于分式乘除法的运算规则理解不够深入。
因此,在教学过程中,需要帮助学生深化对分式乘除法的理解,提高运算能力。
三. 教学目标1.理解分式乘除法的运算规则,能够熟练地进行分式乘除法的运算。
2.能够运用分式乘除法解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式乘除法的运算规则。
2.如何将实际问题转化为分式乘除法的问题。
五. 教学方法采用讲授法、案例分析法、小组讨论法等多种教学方法,引导学生通过自主学习、合作学习,深入理解分式乘除法的运算规则,提高运算能力。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出分式乘除法的重要性。
2.呈现(10分钟)讲解分式乘除法的运算规则,并通过PPT课件展示,让学生清晰地理解分式乘除法的运算过程。
3.操练(10分钟)让学生通过练习题,运用分式乘除法的运算规则进行计算,巩固所学知识。
4.巩固(5分钟)通过小组讨论,让学生分享自己的解题过程,互相学习,巩固分式乘除法的运算方法。
5.拓展(5分钟)引导学生思考如何将实际问题转化为分式乘除法的问题,提高学生解决问题的能力。
6.小结(3分钟)对本节课的内容进行小结,让学生明确分式乘除法的运算规则及其应用。
7.家庭作业(2分钟)布置适量的家庭作业,让学生进一步巩固分式乘除法的运算方法。
8.板书(1分钟)板书本节课的重点内容,方便学生复习。
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。
3.2 分式的乘除法
课题 3.2 分式的乘除法第 1 课时
编制人审核
人
班
级
学生
姓名
使用
时间
第周星期 2013年月日
预习内容1、复习回顾:同分母分数加减法法则
2、观察下列运算:
2424
3535
⨯
⨯=
⨯,
5252
7979
⨯
⨯=
⨯,
242525
353434
⨯
÷=⨯=
⨯,
525959
797272
⨯
÷=⨯=
⨯
(1)上面运算根据是什么?分数的乘法、除法法则是怎样的?
(2)猜一猜:=
⨯
c
d
a
b
;=
÷
c
d
a
b
.
3、分式乘除法的法则:
两个分式相乘,把作为积的分子,把作为积的分母;
两个分式相除,把颠倒位置后再与被除式相乘。
4、计算:(提示:先用法则,再约分;对分子、分母是多项式的,要先分解因式,再约分。
)
(1)
2
2
3
2
8
6
a
y
y
a
∙(2)
a
a
a
a
2
1
2
2
2+
∙
-
+
课堂巩固5、计算:(注意:当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
)
(1)
x
y
xy
2
2
6
3÷(2)
4
1
4
4
1
2
2
2-
-
÷
+
-
-
a
a
a
a
a。