维纳滤波
- 格式:doc
- 大小:195.50 KB
- 文档页数:17
维纳滤波滤波器概念常用的滤波器是采用电感、电容等分立元件构成,如RC低通滤波器、LC谐振回路等。
但对于混在随机信号中的噪声滤波,这些简单的电路就不是最佳滤波器,这是因为信号与噪声均可能具有连续的功率谱。
不管滤波器具有什么样的频率响应,均不可能做到噪声完全滤掉,信号波形的不失真。
因此,滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。
所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。
维纳滤波定义及发展维纳滤波滤除背景噪声20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。
即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。
在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。
实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。
因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。
维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。
维纳滤波基本概念从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。
维纳滤波原理维纳滤波是一种信号处理中常用的滤波方法,它的原理是基于最小均方误差准则,通过对信号和噪声的统计特性进行分析,设计一种能够最小化系统输出与期望输出之间均方误差的滤波器。
维纳滤波在图像处理、语音处理、雷达信号处理等领域都有广泛的应用,下面我们来详细了解一下维纳滤波的原理和应用。
首先,我们需要了解维纳滤波的基本模型。
维纳滤波的输入信号可以表示为s(n),噪声信号表示为v(n),系统输出信号表示为x(n),那么维纳滤波器的输出可以表示为:x(n) = w(n) s(n) + v(n)。
其中,表示卷积操作,w(n)表示滤波器的权值。
维纳滤波的目标是设计一个滤波器,使得系统输出信号x(n)与期望输出信号d(n)之间的均方误差最小,即最小化误差信号e(n)的均方值E[e^2(n)]。
根据最小均方误差准则,我们可以得到维纳滤波器的最优解为:w(n) = R_ss^(-1) p_s。
其中,R_ss表示输入信号s(n)的自相关矩阵,p_s表示输入信号s(n)与期望输出信号d(n)的互相关向量。
这个公式描述了维纳滤波器的权值与输入信号和期望输出信号的统计特性之间的关系。
维纳滤波器的设计需要对输入信号和噪声信号的统计特性有一定的了解。
通常情况下,输入信号和噪声信号被假设为高斯分布,因此可以通过它们的均值和方差来描述它们的统计特性。
在实际应用中,我们可以通过对信号和噪声的样本进行统计分析,估计它们的均值和方差,进而设计维纳滤波器。
除了基本的维纳滤波器设计原理,维纳滤波还有一些扩展应用。
例如,当输入信号和噪声信号的统计特性未知或难以估计时,我们可以通过自适应滤波的方法来实现维纳滤波。
自适应滤波器可以根据系统的实时输入信号和输出信号来动态地调整滤波器的权值,以适应信号和噪声的变化特性,从而实现更好的滤波效果。
维纳滤波在图像处理中有着广泛的应用。
在数字图像处理中,图像通常会受到噪声的影响,例如加性高斯噪声、椒盐噪声等。
维纳滤波1. 简介维纳滤波(Wiener filtering)是一种经典的信号处理技术,用于消除信号中的噪声并恢复原始信号。
它是由诺贝尔奖获得者诺里斯·伯特·维纳(Norbert Wiener)于1949年提出的。
维纳滤波基于统计信号处理理论,通过在频域对信号和噪声进行建模,利用最小均方误差准则来估计信号。
它可以应用于许多领域,例如图像处理、语音信号处理、雷达信号处理等。
2. 维纳滤波的原理维纳滤波的目标是根据信号和噪声的统计特性,对接收到的被噪声污染的信号进行优化处理,以尽可能地恢复原始信号。
其基本原理可以分为以下几个步骤:2.1 信号与噪声建模首先,需要对信号和噪声进行建模。
假设接收到的信号为s(s),噪声为s(s),那么接收到的被噪声污染的信号可以表示为:s(s)=s(s)+s(s)2.2 计算信号和噪声的统计特性通过观测和采样,可以估计信号和噪声的统计特性,例如均值、方差、功率谱密度等。
以图像处理为例,可以通过对图像的样本进行统计分析来估计信号和噪声的统计特性。
2.3 估计滤波器函数利用信号和噪声的统计特性,可以估计滤波器函数s(s),其中s为频率。
滤波器函数描述了在不同频率上应该对信号进行的滤波程度。
通过估计滤波器函数,可以为不同频率的信号分配适当的增益。
2.4 滤波过程在维纳滤波中,滤波器函数s(s)是根据信号和噪声的功率谱密度来估计的。
通过将接收到的信号进行频谱变换,将频谱域中的信号与滤波器函数相乘,然后再进行逆向频谱变换,即可得到滤波后的信号。
3. 维纳滤波的应用维纳滤波在信号处理领域有广泛的应用,下面以图像处理为例说明其应用场景。
3.1 噪声去除在图像处理中,噪声往往是由于图像的采集、传输等过程中产生的。
维纳滤波可以根据图像的统计特性,将噪声进行估计,并对图像进行滤波,从而实现去噪的效果。
3.2 图像恢复图像的失真往往是由于拍摄条件、传输等因素引起的。
维纳滤波可以通过估计图像的信号特性,去除噪声和失真,从而恢复图像的细节和清晰度。
第3讲:Wiener 滤波Wiener 滤波器是从统计意义上的最优滤波, 它要求输入信号是宽平稳随机序列, 本章主要集中在FIR 结构的Wiener 滤波器的讨论。
由信号当前值与它的各阶延迟)}1(,),1(),({+--M n u n u n u ,估计一个期望信号)(n d ,输入信号)(n u 是宽平稳的,)(n u 和)(n d 是联合宽平稳的, 要求这个估计的均方误差最小.。
Wiener 滤波器的几个实际应用实例如下: ①通信的信道均衡器。
图1. 信道均衡器的结构示意②系统辨识:图2. 线性系统辨识的结构③一般结构:图3. Wiener 滤波器的一般结构Wiener 滤波器的目的是求最优滤波器系数o w ,使⎥⎦⎤⎢⎣⎡-==22)(ˆ)(]|)([|)(n d n d E n e E n J 最小。
§3.1 从估计理论观点导出Wiener 滤波FIR 结构(也称为横向)的Wiener 滤波器的核心结构如图4所示.图4. 横向Wiener 滤波器为了与第2讲中估计理论一致,假设信号,滤波器权值均为实数由输入)(n u 和它的1至(M-1)阶延迟,估计期望信号)(n d ,确定权系数}1,0,{-=M i w i 使估计误差均方值最小,均方误差定义为:]))(ˆ)([(2n d n d E J -= 这里估计)(ˆn d写为: ∑-=-⋅=10)()(ˆM k k k n u w n d除了现在是波形估计外,与线性Bayesian 估计一一对应。
∑-=⋅=1)(ˆN k kk x a θ∑-=-⋅=10)()(ˆM k k k n u w n dT N a a a ],,[110-= aT N w w w ],,[110-= wT N x x x )]1(),1(),0([-= xT M n u n u n u n )]1(),1(),([)(+--= uθ)(n dxx C R (零均值假设)θx CT M p p p n d n E )]1(),1(),0([)]()([+--=⋅= u P这里)])()([)((n d k n u E k p -=-, Wiener 滤波与线性Bayesian 估计变量之间具有一一对应关系, 设最优滤波器系数为0w ,由线性Bayesian 估计得到Wiener 滤波器系数对应式:p w C =⋅⇒=⋅0R C x xx θa上式后一个方程称为Wiener-Hopf 方程, 或p w ⋅=⇒=--101R C C x xx θa)()()(ˆˆ011n n R n d C C T T xx T x u u ⋅=⋅⋅=⇒⋅⋅=--w p x θθ p p ⋅⋅-=⇒⋅⋅-=--12min 1)ˆ(R J C C C C Bmse T d x xx T x σθθθθθ结论:1) Wiener 滤波器是线性FIR 滤波器中的最优滤波器,但非线性滤波可能会达到更好结果。
维纳滤波7.2 维纳滤波从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。
根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。
滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。
所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。
20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。
即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。
在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。
实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。
因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。
维纳滤波理论用于解决最小均方误差下的线性滤波问题。
设接收到(或观测到)的信号为随机信号(7-1)其中s(t)是未知的实随机信号,n(t)是噪声。
要设计的线性滤波器,其冲击响应为h(t, τ),输入为x(t),输出为,即(7-2)令为估计误差。
冲击响应h(t, τ)按最小均方误差准则确定,即h(t, τ)必须满足使(7-3)达到最小。
根据最小均方误差估计的正交条件,有以下关系成立(7-4)令(7-5)(7-6)则有(7-7)上述方程通常称为非平稳随机过程条件下的维纳-霍甫(Wiener-Kolmogorov)积分方程。
特别当x(t),s(t)均为广义(或宽)平稳随机信号,而滤波器是线性时不变系统的情况下,x(t)与s(t)必为联合平稳,式(7-7)可写为(7-8)令,,则有(7-9)此处,“*”号表示卷积,对上式两边取Fourier变换,可得(7-10)(7-11)对于因果线性系统,有(7-12)采用完全相同的分析方法,推得因果平稳维纳-霍甫积分方程如下(7-13)(7-14)其中,表示的零、极点位于,表示的零、极点位于。
表示位于的零、极点。
MATLAB图像处理工具箱提供了wiener2函数进行自适应滤出图像噪声,它根据图像的局部方差来调节滤波器的输出,往往较线性滤波效果好,可以更好地保存图像的边缘和高频细节信息。
Wiener2函数采用的算法是首先估计像素的局部均值和方差:(7-15)Ø (7-16)其中,Ω是图像中每个像素的M×N的邻域。
然后,对每个像素利用wiener滤波器估计其灰度值:(7-17)2式中,v是图像中噪声的方差。
Wiener2的语法格式为:J=wiener2(I,[m,n])J=wiener2(I,[m,n],noise)[J,noise]=wiener2(I,[m,n])其中,J=wiener2(I,[m,n])返回有噪声图像I经过wierner(维纳)滤波后的图像,[m,n]指定滤波器窗口大小为,默认值为。
J=wiener2(I,[m,n],noise)指定噪声的功率,[J,noise]=wiener2(I,[m,n])在图像滤波的同时,返回噪声功率的估计值noise。
【例7-1】对加入高斯噪声的图像saturan.png作维纳滤波。
例程7-1 噪声图像维纳滤波% e.g.7-1.m for example7-1;%test the function of weina filter.RGB = imread('saturn.png');I = rgb2gray(RGB);J = imnoise(I,'gaussian',0,0.005);figure, imshow(J);K = wiener2(J,[5 5]); %指定滤波器窗口大小figure, imshow(K);图7-1 噪声图像图7-2 维纳滤波复原图像实现维纳滤波的要求是:?输入过程是广义平稳的;?输入过程的统计特性是已知的。
根据其他最佳准则的滤波器亦有同样要求。
然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而难以满足上述两个要求。
这就促使人们研究自适应滤波器。
卡尔曼滤波器由于维纳滤波器难以用于实时处理,满足不了20世纪50年代航天航空技术发展的要求,于是人们开始探索新的理论和技术途径。
20世纪60年代新出现的卡尔曼滤波理论,用信号与噪声的状态空间模型取代了相关函数,用时域的微分方程来表示滤波问题,得到了递推估计算法,适用于计算机实时处理,它突破了维纳滤波的平稳过程的限制,也没有无限时间的要求,这一对维纳滤波理论的重大突破很快地被用于空间技术、自动控制和信号处理等领域。
卡尔曼滤波由滤波方程和预测方程两部分组成。
7.5.1 滤波基本方程设信号状态方程和量测方程分别为(7-133)(7-134)式中,为信号的状态向量,为量测向量,和分别为状态噪声和量测噪声,且为互不相关的高斯白噪声向量序列,其协方差分别为和;,和分别为状态转移矩阵、输入矩阵和观测矩阵。
卡尔曼滤波基本方程为(7-135)(7-136)(7-137)(7-138)(7-139)其中,残差(新息)定义为(7-140)协方差矩阵为(7-141)7.5.2 一步预测基本方程卡尔曼一步预测基本方程为(7-142)(7-143)(7-144)式中,为一步预测增益阵。
【例7-16】利用卡尔曼滤波器跟踪机动目标。
例程7-14 基于卡尔曼滤波器的机动目标跟踪% Make a point move in the 2D plane% State = (x y xdot ydot). We only observe (x y).% X(t+1) = Φ(t) X(t) + noise(Q)% Y(t) = H X(t) + noise(R)ss = 4; % state sizeos = 2; % observation sizeF = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]; H = [1 0 0 0; 0 1 0 0];Q = 0.1*eye(ss);R = 1*eye(os);initx = [10 10 1 0]'; %target initial parameters initV = 10*eye(ss);seed = 9;rand('state', seed);randn('state', seed);T = 15;[x,y] = sample_lds(F, H, Q, R, initx, T); %generate target data%kalman filter[xfilt, Vfilt, VVfilt, loglik] = kalman_filter(y, F, H, Q, R, initx, initV);% one step predict[xsmooth, Vsmooth] = kalman_smoother(y, F, H, Q, R, initx, initV);%calculate the error between the filtered data and the real data dfilt = x([1 2],:) - xfilt([1 2],:);mse_filt = sqrt(sum(sum(dfilt.^2)));dsmooth = x([1 2],:) - xsmooth([1 2],:); mse_smooth =sqrt(sum(sum(dsmooth.^2)))figure(1)clf%subplot(2,1,1)hold onplot(x(1,:), x(2,:), 'ks-');plot(y(1,:), y(2,:), 'g*');plot(xfilt(1,:), xfilt(2,:), 'rx:'); for t=1:T,plotgauss2d(xfilt(1:2,t), Vfilt(1:2, 1:2, t)); end hold offlegend('true', 'observed', 'filtered', 3) xlabel('x')ylabel('y')% 3x3 inchesset(gcf,'units','inches');set(gcf,'PaperPosition',[0 0 3 3]) %print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_filter ed.eps');%print(gcf,'-djpeg','-r100','/home/eecs/murphyk/public_html/Bayes/Figures/aima_filtered.jpg');figure(2)%subplot(2,1,2)hold onplot(x(1,:), x(2,:), 'ks-');plot(y(1,:), y(2,:), 'g*');plot(xsmooth(1,:), xsmooth(2,:), 'rx:'); for t=1:T, plotgauss2d(xsmooth(1:2,t), Vsmooth(1:2, 1:2, t)); end hold offlegend('true', 'observed', 'smoothed', 3) xlabel('x')ylabel('y')% 3x3 inchesset(gcf,'units','inches');set(gcf,'PaperPosition',[0 0 3 3])%print(gcf,'-djpeg','-r100','/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoothed.jpg');%print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoo thed.eps');图7-27 卡尔曼滤波器跟踪机动目标仿真图7-27中“?”表示机动目标的真实轨迹,“,”表示目标观测轨迹,“…”表示经卡尔曼滤波后的目标轨迹,圆表示跟踪波门。