数学建模 第三章
- 格式:ppt
- 大小:1.37 MB
- 文档页数:48
第三章10.考虑3.4.3小节的“人口预报”案例,用前差公式计算美国人口的年增长率r k 与美国人口的数量x k 成二次函数关系,即21-10k k k k k kx x r ax bx c x +==++,k=1,2,…通过Matlab 编程并代入实际数据拟合出二项式的系数,代码如下:fun=@(a,x)a(1).*x.^2+a(2).*x+a(3);x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,... 92,106.5,123.2,131.7,150.7,179.3,204,226.5,251.4,281.4]; r=(x(2:22)-x(1:21))./(10.*x(1:21)); a=polyfit(x(1:21),r,2)输出结果为 a=7.0393e-07 -2.7030e-04 3.6840e-02即a=7.0393⨯10-7b=-2.7030⨯10-4c=3.6840⨯10-2则该假设模型为21-10()k k k k k x x x ax bx c +=++,k=1,2,…即3211010(101)k k k k x ax bx c x +=+++,k=1,2,…代入a,b,c 的值得734217.039310 2.703010 1.3684k k k k x x x x --+=⨯⨯-⨯⨯+,k=1,2,…利用Matlab 统计工具箱的非线性拟合函数nlinfit 计算参数,代码如下: M 文件fun.mfunction y=fun(a,x) SizeX=size(x); y=zeros(SizeX); y(1)=a(4);for i=2:SizeX(2)y(i)=a(1).*y(i-1).^3+a(2).*y(i-1).^2+a(3).*y(i-1);end脚本t=1790:10:2000;x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,...92,106.5,123.2,131.7,150.7,179.3,204,226.5,251.4,281.4];[b1,resd1]=nlinfit(t,x,@ fun,[7.0393e-7 -2.7030e-4 1.3684 3.9])sse1=sum(resd1.^2)x1=fun(b1,[t,2010,2020])(x1(23:24)-x1(22:23))./x1(22:23)./10.*100subplot(2,1,1);plot(t,x,'k*',t,x1(1:end-2),'ks',[2010 2020],x1(end-1:end),'kp');axis([1780,2030,0,350]);legend('统计值','模拟值','预测值',2);xlabel('年份');ylabel('人口数量x_k(百万)');title('非线性拟合美国人口增长效果图');subplot(2,1,2);plot(t,resd1,'k.',[1780 2030],[0 0],'k');axis([1780,2030,-10,10]);xlabel('年份');ylabel('模拟误差');title('非线性拟合美国人口增长模拟误差图');输出结果b1 =5.2615e-06 -0.0021 1.3239 4.9976resd1 =Columns 1 through 7-1.0976 -1.2651 -1.4034 -1.6394 -1.7244 -1.8325 -1.1541 Columns 8 through 140.3169 -0.6966 1.0726 2.2642 2.2108 3.5401 2.0489 Columns 15 through 211.6519 -7.8844 -7.8103 0.8436 4.1938 3.1885 1.0698 Column 22-1.9798sse1 =203.0297 x1 =Columns 1 through 74.9976 6.5651 8.6034 11.2394 14.6244 18.9325 24.3541 Columns 8 through 1431.0831 39.2966 49.1274 60.6358 73.7892 88.4599 104.4511 Columns 15 through 21121.5481 139.5844 158.5103 178.4564 199.8062 223.3115 250.3302 Columns 22 through 24 283.3798 327.5773 395.0407 ans =1.55972.0595即计算结果为63321 5.261510 2.110 1.3239k k k k x x x x --+=⨯⨯-⨯⨯+,且x 1=4.9976误差平方和为203.0297,预测2010年美国人口为327.5773百万,2020年美国人口为395.0407百万,经过计算得知预测2000年至2010年和2010年至2020年的年增长率分别为1.5597%和2.0595%,计算结果以及模拟效果图和模拟误差图表明(1)模拟效果基本令人满意,本模型能够很好地模拟1790年至2000年美国人口的演变过程,误差平方和不算大;(2)预测值基本合理,可能偏高,按照美国最近几十年的人口统计数据,一般推断未来20年美国人口增长率大约是1%,甚至更低,该模型得到的2000年的模拟值比实际值大 1.9798百万,预测2000年至2020年的年增长率约为 1.8096%,所以该模型对2010年和2020年的人口预报有可能偏高了一点。
线性规划和整数规划实验3.2.基本实验1.生产计划安排解:(1)设A、B、C三种产品的生产量为x、y、z,则可以得出生产利润:f=3*x+y+4*z;约束条件为:6*x+3*y+5*z≤45;3*x+4*y+5*z≤30;x、y、z均大于0;只要f取得最大值即为最大利润则可以得出以下lingo程序;model:max=3*x+y+4*z;6*x+3*y+5*z<=45;3*x+4*y+5*z<=30;end运行程序后可得;Global optimal solution found.Objective value: 27.00000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 3Nonlinear variables: 0Integer variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 9Nonlinear nonzeros: 0Variable Value Reduced Cost X 5.000000 0.000000Y 0.000000 2.000000Z 3.000000 0.000000Row Slack or Surplus Dual Price1 27.00000 1.0000002 0.000000 0.20000003 0.000000 0.6000000则可得当x=5、y=0、z=3时fmax=27为获利最大的生产方案;(2)由(1)中的程序Objective Coefficient Ranges:Current Allowable AllowableVariable Coefficient Increase DecreaseX 3.000000 1.800000 0.6000000Y 1.000000 2.000000 INFINITYZ 4.000000 1.000000 1.500000Righthand Side Ranges:Current Allowable AllowableRow RHS Increase Decrease2 45.00000 15.00000 15.000003 30.00000 15.00000 7.500000可以得出A的利润范围[4,4.8],B的利润范围[1,3],C的利润范围为[2.5,5](3)假设购买材料的数量为d,生产利润:f=3*x+y+4*z-0.4d;约束条件为:6*x+3*y+5*z≤45;3*x+4*y+5*z-d≤30;x、y、z、d均大于0;则可以得到下面新的lingo程序;model:max=3*x+y+4*z-0.4*d;6*x+3*y+5*z<=45;3*x+4*y+5*z-d<=30;end运行程序后可以得出:Global optimal solution found.Objective value: 30.00000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 4Nonlinear variables: 0Integer variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 11Variable Value Reduced Cost X 0.000000 0.6000000 Y 0.000000 1.800000Z 9.000000 0.000000D 15.00000 0.000000Row Slack or Surplus Dual Price1 30.00000 1.0000002 0.000000 0.40000003 0.000000 0.4000000由以上程序可以得出当z=9,d=15时,利润可以达到30,(4)假设新产品的数量为D,可以得出如下的生产利润:f=3*x+y+4*z+3D;约束条件为:6*x+3*y+5*z+8*D≤45;3*x+4*y+5*z+2*D≤30;x、y、z、D均大于0;则可以得到下面新的lingo程序;model:max=3*x+y+4*z+3*D;6*x+3*y+5*z+8*D<=45;3*x+4*y+5*z+2*D<=30;End运行程序可以得出:Global optimal solution found.Objective value: 27.50000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 4Nonlinear variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 12Nonlinear nonzeros: 0Variable Value Reduced Cost X 0.000000 0.1000000 Y 0.000000 1.966667Z 5.000000 0.000000D 2.500000 0.000000Row Slack or Surplus Dual Price1 27.50000 1.0000002 0.000000 0.23333333 0.000000 0.5666667利润为27.5>27但是z=5,D=2.5,由于D只能取整数,故当D=3时则不满足约束条件,当D=2是,利润为26<27,所以如果其他条件不变化的话,这种产品不值得生产。
3.8 选址模型问题描述设有m 个村庄12,,,m A A A 各有小学生12,,,m n n n 人,现要合建一所小学校,使全部学生所走的总路程最短,问应如何选择校址?建立模型设A i 的坐标为(x i ,y i ) ,(i =1,2,3……m )校址在 A (x,y )处,那么全部学生所走的总路程为:1(,)m i S x y n ==∑设e i 为i 方向上的单位向量。
∑--∑--==+-=∂∂+-=∂∂m i ii m i i i )y y ()x x (y y n )y y ()x x (x x n i i )(y S , i i )(x S 122122若令()()i i x x y y n ⎛⎫-- ⎪==-i F e 则 0, 0S S x y∂∂==∂∂ 等价于10m i i F ==∑ (3.8.1) S 的最小值只能在A i (i=1,2,3……m )(在这些点S 不可导)和满足(3.8.1)的点去找。
可以证明:若点A(x,y )满足(3.8.1),则在该点S 达最小值。
三角形的费尔马点考虑选址问题中, 3, 1, (1,2,3)i m n i ===的特例 费尔马问题---要在123A A A ∆所在平面上找一点A ,使A 到三顶点距离之和最小. 费尔马点---费尔马问题中的点A费尔马距离---费尔马问题中的点A 到三顶点距离之和,即123S AA AA AA =++.显然A 点不应在123A A A ∆之外。
(1)情形1,当123A A A ∆的内角都小于120º时,由上述(3.8.1)即得:230++=1e e e (3.8.3)对(3.8.3)两边分别点乘123e e e 、、, 得到下面方程组 232101010++=⎧⎪++=⎨⎪++=⎩121312313e e e e e e e e e e e e (3.8.4) 解得:212==-12133e e e e e e =,即 3231cos(,)cos(,)cos(,)2===-121e e e e e e 122313(,)(,)(,)120∴===︒e e e e e e A A 1 A 3 A 2 图3.8.3此时, 费尔马点唯一存在。
数学建模第三章第三章⾮线性最优化⽅法§3.1 最优化问题与建模⼀. 基本概念:因为⼈类所从事的⼀切⽣产或社会活动均是有⽬的的,其⾏为总是在特定的价值观念或审美取向的⽀配下进⾏的,经常⾯临求解⼀个可⾏的甚⾄是最优的⽅案的决策问题。
可以说,最优化思想是数学建模的灵魂。
⽽最优化⽅法作为⼀门特殊的数学学科分⽀有着⼴泛的实际应⽤背景。
典型的最优化模型可以被描述为如下形式:其中表⽰⼀组决策变量,通常在实数域内取值,称决策变量的函数为该最优化模型的⽬标函数;为维欧⽒空间的某个⼦集,通常由⼀组关于决策变量的等式或不等式刻画,形如:这时,称模型中关于决策变量的等式或不等式、为约束条件,⽽称满⾜全部约束条件的空间中的点为该模型的可⾏解,称,即由所有可⾏解构成的集合为该模型的可⾏域。
称为最优化模型的(全局)最优解,若满⾜:对均有,这时称处的⽬标函数值的为最优化模型的(全局)最优值;称为最优化模型的局部最优解,若存在,对,均有。
(全局)最优解⼀定是局部最优解,但反之不然,其关系可由下图得到反映:上图为函数在区间上的⼀段函数曲线(由Mathematica绘制),如果考察最优化问题,从图中发现它有三个局部最优解、、,其中是全局最优解,最优值为“”。
⼆. 最优化问题的⼀些典型的分类:优化⽅法涉及的应⽤领域很⼴,问题种类与性质繁多,根据不同的原则可以给出不同的分类。
从数学建模的⾓度,对最优化问题的⼀些典型分类及相关概念的了解是有益的。
根据决策变量的取值类型,可分为函数优化问题与组合优化问题,称决策变量均为连续变量的最优化问题为函数优化问题;若⼀个最优化问题的全部决策变量均离散取值,则称之为组合优化问题。
⽐⽅⼀些最优化问题的决策变量被限定只能取整数值,即为组合最优化问题,这类优化问题通常被称为整数规划问题,另外⼤多⽹络规划问题属于组合最优化问题。
当然,也有许多应⽤问题的数学模型表现为混合类型的,即模型的部分决策变量为连续型的,部分决策变量为离散型的;另外当谈论⼀个最优化问题是函数优化问题还是组合优化问题时,还需结合我们对这⼀问题的思考⽅式来进⾏确定,⽐⽅后⾯介绍的线性规划问题的求解,既有将其作为⼀个组合优化问题⽽开发的算法,也有将其作为⼀个函数优化问题⽽开发的算法;另外的⼀种分类⽅式是根据问题中⽬标、约束条件函数的形式或性质来加以划分的:若⼀个最优化问题的⽬标、约束条件函数均为决策变量的线性函数,则称之为线性规划问题,否则称之为⾮线性最优化问题。