系统数学模型
- 格式:ppt
- 大小:2.96 MB
- 文档页数:131
系统数学模型是描述系统输入输出及系统内部变量之间关系的数学表达式
系统数学模型是一种描述系统内部变量之间的数学表达式,它是系统的核心。
这种类型的模型可以有效地分析现有系统的结构及性能,并且可以用于改善系统的设计和性能。
系统数学模型通常是由一组微分或微分方程、简化的函数和一组状态变量来描述的。
这组方程可用来计算系统的输入和输出,以及系统中各参数的行为。
通过求解这组方程,就可以求得系统的性能,从而得以评估系统的质量,并找出问题所在。
系统数学模型帮助人们更好地理解系统,探索它的行为规律,它有助于提高系统的可靠性、稳健性和可控制性。
此外,系统数学模型也可以帮助人们预测系统性能,避免不必要的损失,并有助于精确地合理安排系统的资源。
通过构建系统数学模型,可以实现现代科学技术的自动化控制。
这种模型可以应用于机器人控制、新能源转换、交通系统等方面,大大提高自动化控制系统的精准性和效能。
总之,系统数学模型是一种有效的表达方式,可以帮助我们更好地理解系统,改善系统的设计和性能,为进一步推动现代自动化技术发展做出重要贡献。
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。
系统的数学模型是建立在客观环境系统的基础上的,它反映了评价所涉及的各种环境要素和过程,以及它们之间的相互联系和作用。
这个模型是建立在物理定律和机械定律的基础上的,通过推导可以得到数学模型。
数学模型可以分为静态模型和动态模型,静态模型主要用于静态误差分析,而动态模型则主要用于分析连续系统(微分方程)和离散系统(差分方程)。
系统的数学模型还可以根据目的分为三类:用来帮助对象设计和操作的模型,用来帮助控制系统设计和操作的模型,以及用来进行系统仿真的模型。
在建模过程中,还需要注意掌握好复杂和简单的度,以作合理折中。
描述连续系统的数学模型
连续系统的数学模型可以由多个方程组成,以下是一些常见的连续系统模型:
1. 牛顿第二定律方程:这是一个描述物体运动的方程,它表达了物体的位置和速度随时间的演化,通常写成以下形式:
$dX/dt = -ax$
其中,$X$ 表示物体的位置,$a$ 表示物体的加速度,$t$ 表示物体运动的时间。
2. 热力学方程:热力学方程描述了系统的热力学性质,包括温度的演化和热传导等,通常写成以下形式:
$frac{mathrm{d}T}{mathrm{d}t} =
-kAfrac{mathrm{d}X}{mathrm{d}t}$
其中,$T$ 表示系统的温度,$A$ 表示系统的面积,$k$ 表示热导率,$X$ 表示物体的位置。
3. 电磁学方程:电磁学方程描述了电荷、电流和磁感应等电磁现象的数学模型,可以描述电磁波的传播、电路中电荷的分布等,通常写成以下形式:
$frac{mathrm{d}E}{mathrm{d}t} = -frac{partial V}{partial t}$
其中,$E$ 表示电场强度,$V$ 表示电场的电荷密度,$t$ 表示时间。
4. 波动方程:波动方程描述了声波或波动现象的数学模型,可以描述声波的传播、波动的产生等,通常写成以下形式:
$frac{mathrm{d}^2X}{mathrm{d}t^2} +
frac{mathrm{d}^2theta}{mathrm{d}t^2} = r^2sintheta$
其中,$X$ 表示物体的位置,$theta$ 表示物体的极角,$r$ 表示物体的距离,$t$ 表示时间。
这些方程只是连续系统模型中的一部分,还有很多其他的方程可以用来描述不同的连续系统现象。