第十二讲 盈亏问题
- 格式:doc
- 大小:35.00 KB
- 文档页数:3
【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数.(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数.(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数.(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数.(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)盈亏问题的关系式:1、(盈+亏)÷两次分配的差=份数2、(大盈-小盈)÷两次分配的差=份数3、(大亏-小亏)÷两次分配的差=份数每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量,1、幼儿园中(1)班的小朋友分橘子,若每人分4个橘子就多出10个,若每人分6个橘子,就少6个橘子,请问该班有多少个小朋友?橘子有多少个?2、五(4)班同学春游去划船,如果少租一条船,每条船上正好坐9个人,如果多租一条船,每条船上正好坐6个人,五(4)班有学生多少人?3、学校将一批钢笔奖给三好学生,若每人奖8支就缺11支;若每人奖7支就缺7支.问:这批钢笔有多少只?三好学生有多少人?4、同学们打羽毛球,若没组分6个羽毛球,则少10个球;若每组分4个羽毛球,则少2个球.问:共有多少个学生打球?有多少个羽毛球?5、饲养员分桃子给小猴,如果每只小猴分10个桃子,则有两个小猴没有;如果每只小猴分7个桃子,则还会剩下10个桃子.请问:桃子有多少个?小猴有多少只?6、甲、乙两个工程队同时抢修两短距离同样长的铁路,开工12天后,乙队完成了任务,甲队还需再修300米才能完成任务.问:两条铁路全长多少米?7、同学们修补图书,若每人修5本,还剩5本,若其中两人各修4本,其余人就要各修6本,正好修完,这里有多少名同学?多少本书?8、工人们修公路,如果每天修200米,那么修完全程就得延期10天;如果每天修220米,那么修完全程就得延期5天.问:这条路全长多少米?9、幼儿园某班学生做游戏,如果每个学生分得的子弹一样多,弹子就多12颗,如果再增加12颗子弹,那么每人正好分的12颗.问:这个班有多少学生?有多少颗子弹?10李娟从家去学校,如果每分钟走60米,那么要迟到5分钟;如果每分钟走90米,那么能提前4分钟到.请问:李娟的家到学校的距离是多少米?c巧汧7H棜t 2014-11-061、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
第十二讲盈亏问题【专题导引】在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量【典型例题】【例1】学校图书馆买来一批新书,分给12个班,如果每班分6本,还多8本,如果每班7本呢?够不够分?【思路导航】可以先算出一共的书的本数,12×6+8=80本,书的总数不变,按照第二种方案,如果每人分7本,12×7=84本,84>80,所以不够分。
【试一试】1.一小组6个人去植树,若每人植3棵,还剩3棵没人植。
那么共有多少棵树?2.幼儿园有一些玩具,如果平均分给8个班,每班分6个,则会少2个。
若每班分7个,则会少多少个?【例2】有一袋糖果,平均分给4个小朋友,刚好分完,平均分给6个小朋友,也正好分完,至少有多少粒糖果?【思路导航】这个类型属于不盈也不亏,糖果的总数就正好是4和6的最小公倍数12。
【试一试】1.老师拿了一些图画纸发给学生,如果发给8个人,刚好分完,如果发给9个人,也正好分完,至少要多少张?2.小立、小英有相同个数的苹果,小立每天吃的个数一样,3天吃完;小英每天吃的个数一样,2天吃完,他们每人至少有多少个苹果?【例3】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【思路导航】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
【第十二讲】盈亏问题学前导航:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况。
分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),这一类算法的应用题叫做“盈亏问题”。
盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数例1:三年级(1)班部分同学参加学校植树活动.如果每人植4棵树,还剩7棵;如果每人植5棵,则少2棵树。
参加植树的有几个人?共有多少棵树?练习:1.欢庆元旦,春田花花幼稚园把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有多少人?2.中秋节到了,王老师请同学们吃月饼。
如果每人6个就剩12个,每人7个便少11个。
那么一共有多少个月饼?多少位学生?例2:王校长去琴行买小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问小提琴多少钱一把?王校长一共带了多少钱?练习:1.小明去买苹果,想买3千克,付钱时发现还少3元,结果买了2千克,又剩下7元,小明一共带了多少钱?例3:一家旅店,若每个房间住6人,则16人没有床位;若每个房间住8人,则有一间房间是空出来的。
这家旅店有多少个房间?要住宿的人数有多少?练习:1.春田花花小学三年级合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多一个长椅。
问:合唱队有多少人?有多少个长椅?2.在安排学生宿舍时,如果每间住5人,则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?例4:小明从家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。
小强家到学校的路程是多少米?练习:1.小红从家去学校,如果每分钟走80米,结果比上课提前6分钟到校,如果每分钟走50米,则要迟到3分钟,那么小红家到学校的路程是多少米?2.学校规定上午8时到校,小尧去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小尧几时几分离家刚好8时到校?由家到学校的路程是多少?作业:1.开学了,有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2.学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间。
第12讲盈亏问题第12讲盈亏问题第12课损益一、知识要点盈亏问题,也称为利润不足问题,是指将一定数量的项目平均分配给一个固定的对象。
如果按照一定的标准进行分配,分配后会有盈余(利润);根据另一个标准,分配后会出现缺陷(损失)。
计算物品数量和分发对象数量。
例如:给小班的孩子们一代饼干,每人3块,多给12块;如果每人分成4元,少8元。
有多少孩子?有多少饼干?这种一盈一亏的情况就是我们通常所说的标准损益问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准损益问题是从标准损益问题演变而来的。
解决问题时,我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两利”问题的数量关系是:两利之差÷两分之差=参与分配的对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?【思路导航】(1)从“少一个女孩,多一个男孩,然后男孩总数的一半”我们可以知道女孩比男孩多两个;(2)在“少一个男孩,多一个女孩”之后,将会有2+2=4个女孩比男孩多。
此时,男孩占女孩人数的一半,即现在有4个女孩×2=8人。
结果是,有8-1=7个女孩和7-2=5个男孩,总共是7+5=12。
练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数这是彩色粉笔的五倍。
学校买了多少盒两种粉笔?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。
此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。
标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。
基本的数量关系是:(盈+亏)三两种分配标准的数量之差=固定对象数量。
广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。
解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。
此类问题基本数量关系有:①盈适足问题:盈余部分三两种分配标准的数量之差=固定对象数量。
②亏适足问题:亏欠部分三两种分配标准的数量之差=固定对象数量。
③两盈问题:(盈多一盈少)三两种分配标准的数量之差=固定对象数量。
④两亏问题:(亏多一亏少)三两种分配标准的数量之差=固定对象数量。
⑤盈亏问题:(盈+亏)三两种分配标准的数量之差=固定对象数量。
比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。
较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。
【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。
问这个小队有多少人一共要栽多少棵树解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。
雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)三(7—5)=8(人)。
由小队人数和任意一种栽法,可以求出栽树总棵数:5X8+12=52(棵)或7X8—4=52(棵)。
第十二讲盈亏问题解盈亏问题,常常用到比较法。
例1三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?分析比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(7+2)÷(5-4)=9(人)4×9+7=43(块)或5×9-2=43(块)答:共有少先队员9人,砖的总数是43块。
如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗?由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数.例2妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
解:(48+8)÷(6-4)=56÷2=28(天)6×28-8=160(个)或4×28+48=160(个)答:妈妈买回苹果160个,计划吃28天。
如果条件“每天吃4个,多出48个”不变,另一条件改为“每天吃6个,则还多出8个”,问苹果应该有多少个,计划吃多少天?分析改题后每天吃的苹果个数没有变,也就是说每天多吃2个条件没变,苹果总数由原来多出48个变为多出8个.那么所需苹果总数要相差:48-8=40(个)解:(48-8)÷(6-4)=40÷2=20(天)4×20+48=128(个)或6×20+8=128(个)答:有苹果128个,计划吃20天.例3学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?分析小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10=600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走600-400=200(米),从而可以求出小明由家到校所需时间。
思维训练第十二讲四年级训练目标:行程问题1、行程问题中常用的概念有:船速、水速、顺水速度和逆水速度,船在静水中航行的速度叫船速,江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
2、各种速度之间的关系;顺水速度=船速+水速逆水速度=船速-水速(顺水速度+ 逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例题精讲例1:甲、乙两港间的水路长252米,一只船从甲港开往乙港,顺水9小时达到,从乙港到甲港,逆水14小时到达。
求船在静水中的速度和水流速度?例2:轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,达到相距144千米的乙港,再从乙港返回甲港需要多少小时?例3:一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?例4:一条大河,河中间(主航道)水的速度为每小时8千米,沿岸边水的流速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地,需要多少小时?例5:甲、乙两个码头相距112千米,一只船从乙码头逆水而行,行了8小时达到甲码头,已知船速是水速的15倍,这只船从甲码头返回乙码头需要多少小时?例6:一只轮船往返于相距240千米的甲乙两港之间。
逆水速度是每小时18千米,顺水速度是每小时26千米。
一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需要多少小时?1、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米,这只船从甲港逆水航行到乙港需要5小时,甲乙两港的距离是多少千米?2、一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米,问这只船顺水航行50千米需要几小时?3、一艘轮船在静水中的速度是每小时15千米,它逆水航行11小时,走了88千米,问这艘船返回原地需要多少小时?4、一只船往返于一段长为120千米的航道之间,上行时行了10小时,下行时行了6小时,船在静水中航行的速度和水速各是多少?5、两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,问行驶这段路程逆水比顺水多用几小时?6、一艘轮船往返于相距198千米的甲乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺水而下需要9小时,这艘轮船往返于甲乙两码头需要多少小时?7、甲、乙两港相距90千米,一艘轮船顺流而下要6小时,逆流而上需要10小时,如果一艘汽艇顺流而下需要5小时,那么汽艇逆流而上需要几小时?8、静水中甲、乙两船的速度分别是每小时22千米和每小时18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若速度是每小时4千米,问甲开出后几小时可以追上乙?9、A河是B河的支流,A河水的速度是每小时3千米,B河水的速度是每小时2千米,一艘轮船沿着A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,问这艘轮船还要航行几小时?10、一条大河,河中间(主航道)水的速度为每小时6千米,沿岸边水的流速为每小时4千米,一条船在河中间顺流而下,12小时行驶480千米,求这条船沿岸边返回原地,需要多少小时?测试题十二一、填空题1、一艘客轮每小时行驶27千米,在大河中顺水行驶160千米,每小时水速5千米,需要航行()小时。
教师:年级:学生:日期:上课时间:学生上课情况:主题课:《盈亏问题》知识点:基本概念:把一定数量的物品平均分给固定对象时,如果按其中一种标准分,则分配后会有剩余(或不足);如果按另一种标准分,则分配后会不足(或剩余),求物品的数量或对象的数量,这类题型称为盈亏问题。
基本公式:一次有余(盈),一次不够(亏):份数=(盈+亏)÷两次每份的差额两次都有余(盈):份数=(大盈-小盈)÷两次每份的差额两次都不够(亏):份数=(大亏-小亏)÷两次每份的差额模块一一盈一亏例题精讲:[例1]李老师给幼儿园小朋友分糖,若每个小朋友分5颗糖,则多17颗。
若每个小朋友分6颗糖,则差14颗。
问:有多少个小朋友多少颗糖?[例2]悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。
求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?实战演练:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。
求这个小组有多少人?一共有多少棵树苗?模块二两盈[例1]学校将一批铅笔发给三好学生,每人4支多10支,每人6支多2支,问三好学生有多少人?铅笔有多少支?[例2]晶晶读一本故事书,原计划若干天读完。
如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。
求原计划多少天读完?这本书共有多少页?实战演练:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴11个桃,则多出2个桃,那么一共有多少小猴子?多少个桃子?模块三两亏[例1]数学兴趣小组的同学做练习题,如果每人做6道则少18道,如果每人做5道则少6道。
问:有多少个学生?共做多少题?[例2]某学校给学生安排宿舍,如果每间住3人,则多23人;如果每间住5人,则空出3个房间。
请问:学校的宿舍有多少间?住宿的学生又有多少人?实战演练:学校新近一批书,将他们分给几位老师,如果每人发9本,还差9本,每人发10本,还差16本,那么一共有多少位老师,多少本书?巩固训练:1、幼儿园把一箱苹果分给一批小朋友,如果每人2个,则多18个,如果每人3个,则少12个。
第十二讲盈亏问题
解盈亏问题,常常用到比较法。
例1三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
分析比较两种搬砖法中各个量之间的关系:
每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)
每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(7+2)÷(5-4)=9(人)
4×9+7=43(块)或 5×9-2=43(块)
答:共有少先队员9人,砖的总数是43块。
如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗?
由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数.
例2妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?
分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
解:(48+8)÷(6-4)
=56÷2
=28(天)
6×28-8=160(个)或 4×28+48=160(个)
答:妈妈买回苹果160个,计划吃28天。
如果条件“每天吃4个,多出48个”不变,另一条件改为“每天吃6个,则还多出8个”,问苹果应该有多少个,计划吃多少天?
分析改题后每天吃的苹果个数没有变,也就是说每天多吃2个条件没变,苹果总数由原来多出48个变为多出8个.那么所需苹果总数要相差:48-8=40(个)解:(48-8)÷(6-4)
=40÷2
=20(天)
4×20+48=128(个)或 6×20+8=128(个)
答:有苹果128个,计划吃20天.
例3学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
分析小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10=600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走600-400=200(米),从而可以求出小明由家到校所需时间。
解:①10分种走多少米?60×10=600(米)
② 8分种走多少米?50×8=400(米)
③需要多长时间?
(600+400)÷(60-50)=20(分钟)
④由家到校的路程:
60×(20-10)=600(米)
或:50×(20-8)=600(米)
答:小明7点40分离家去上学刚好8时到校;小明的家离校有600米。
例4学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?
分析每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5×3=15(人).由此可见,每一个房间增加5-3=2(人).两次安排人数总共相差23+15=38(人),因此,房间总数是:38÷2=19(间),学生总数是:3×19+23=80(人),或者5×19-5×3=80(人)。
解:(23+5×3)÷(5-3)
=(23+15)÷2
=38÷2
=19(间)
3×19+23=80(人)或 5×19-5×3=80(人)。
答:有19间宿舍,新生有80人。
例5少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
分析这是一道较难的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各种4棵,其余的人各种6棵,就恰好种完.这组条件中包含着两种种树的情况——2人各种4棵,其余的人各种6棵。
如果我们把它统一成一种情况,让每人都种6棵,那么,就可以多种树(6-4)×2=4(棵).因此,原问题就转化为:如果每人各种5棵树苗,还有3棵没人种;如果每人种6棵树苗,还缺4棵.问有多少少先队员,一共种多少树苗?
解:[3+(6-4)×2]÷(6-5)=7(人)
5×7+3=38(棵)
或6×7-4=38(棵)
答:有7个少先队员,一共种38棵树。
例6红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
分析每车多坐5人,实际是每车可坐5+65=70(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?
解:(5+5+65)÷5=15(辆)
65×15+5=980(人)
或(5+65)×(15-1)=980(人)
答:一共有15辆汽车,980名学生。
习题十二
1.阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?
2.某校同学排队上操.如果每行站9人,则多37人;如果每行站12人,则少20人.一共有多少学生?
3.小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?
4.少先队员参加绿化植树,他们准备栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,还余2棵;如果每人栽7棵苹果树苗,要少6棵.问有多少少先队员?他们准备栽多少棵苹果树和梨树?
5.学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?
习题十二解答
1.解:(4+16)÷(5-3)=10(人)
3×10+16=46(块)
答:有10个小朋友,有46块饼干。
2.解:(37+20)÷(12-9)=19(行)
9×19+37=208(人)
答:共有学生208人。
3.解:迟到3分钟转化成米数:50×3=150(米)提前两分钟到校转化成米数:60×2=120(米)
(150+120)÷(60-50)=27(分钟)
50×(27+3)=1500(米)
答:小强家到学校的路程是1500米。
4.解:每人栽3×2(棵)则余2×2(棵);
每人栽7棵则少6棵
(2×2+6)÷(7-3×2)=10(人);7×10-6=64(棵)64÷2=32(棵)或 3×10+2=32(棵)
答:有少先队员10人,要栽苹果树苗64棵,梨树32棵。
5.解:由其中两人各擦4块、其余各擦5块则余12块,可知,若每人都擦5块,则余12-(5-4)×2=10块,而每人擦6块则正好.可见每人多擦一块可把余下的10块擦完.则擦玻璃人数是[12-(5-4)×2]÷(6-5)=10(人),玻璃的块数是6×10=60(块)。
答:有10人擦玻璃,共有60块玻璃.。