2014圆锥曲线高考压轴题汇编
- 格式:doc
- 大小:1.28 MB
- 文档页数:53
高考数学试题汇编---圆锥曲线1. 【2014高考安徽卷文第3题】抛物线241x y =的准线方程是( )A. 1-=yB. 2-=yC. 1-=xD. 2-=x2. 【2014高考全国1卷文第4题】已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A. 2 B.26 C. 25D. 1 3. 【2014高考大纲卷文第9题】已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.22132x y += B. 2213x y += C. 221128x y += D. 221124x y+= 4. 【2014高考大纲卷文第11题】双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A. 2B. 22C.4D.425. 【2014高考天津卷卷文第6题】已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A .120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 6. 【2014高考广东卷文第8题】若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等7. 【2014高考江西卷文第9题】过双曲线12222=-by a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A 则双曲线C 的方程为( )A.112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x 8. 【2014高考辽宁卷文第8题】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12- 9. 【2014高考全国2卷文第10题】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )303(B )6 (C )12 (D )73 10. 【2014高考湖北卷文第8题】设a 、b 是关于t 的方程0sin cos 2=+θθt t 的两个不等实根,则过),(2a a A ,),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A. 0 B. 1 C. 2 D. 311. 【2014高考重庆卷文第8题】设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得2212(||||)3,PF PF b ab -=-则该双曲线的离心率为( )2 B.15 C.4 D.1712. 【2014高考四川卷文第10题】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A .2 B .3 C .1728D .101.【2014高考陕西卷文第11题】抛物线24y x =的准线方程为________.2. 【2014高考四川卷文第11题】双曲线2214x y -=的离心率等于____________. 3. 【2014高考上海卷文第4题】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 【2014高考北京卷文第10题】设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点为()1,0,则C 的方程为 .5. 【2014高考浙江卷文第17题】设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于A 、B ,若)0,(m P 满足||||PB PA =,则双曲线的离心率是 .6. 【2014高考江西卷文第14题】设椭圆()01:2222>>=+b a b y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.7. 【2014高考辽宁卷文第15题】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .8. 【2014高考湖南卷文第14题】平面上以机器人在行进中始终保持与点()01,F 的距离和到直线1-=x 的距离相等.若机器人接触不到过点()01,-P 且斜率为k 的直线,则k 的取值范围是___________.23. 【2014高考安徽卷文第21题】设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率.24. 【2014高考北京卷文第19题】已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.25. 【2014高考大纲卷文第22题】已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.26. 【2014高考福建卷文第21题】已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.27. 【2014高考广东卷文第20题】已知椭圆()2222:10x yC a b a b+=>>的一个焦点为()5,0,离心率为53. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.28. 【2014高考湖北卷文第22题】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.29. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.30. 【2014高考江苏第17题】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C 的坐标为41(,)33,且22BF =,求椭圆的方程; (2)若1F C AB ⊥,求椭圆离心率e 的值.31. 【2014高考江西文第20题】,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y=相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.32. 【2014高考辽宁文第20题】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.xyOP33. 【2014高考全国2文第20题】设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .34. 【2014高考山东文第21题】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求CMN ∆面积的最大值.35. 【2014高考陕西文第20题】已知椭圆22221(0)x y a b a b+=>>经过点(0,3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程; (2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程.36. 【2014高考上海文第22题】在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.37. 【2014高考四川文第20题】已知椭圆C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -,离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.38. 【2014高考天津文第18题】设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.39. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =;(1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.40. 【2014高考重庆文第21题】如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.答案与解析:一、选择题:1-5:ADACA 6-10:DACCA 11-12:DB 二、填空题:1、1-=x2、25 3、2-=x 4、122=-y x 5、25 6、337、12 8、()()∞+⋃∞,,11-- 三、解答题:23. 【2014高考安徽卷文第21题】设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (3) 若2||4,AB ABF =∆的周长为16,求2||AF ;(4) 若23cos 5AF B ∠=,求椭圆E 的离心率. 【答案】(1)5;(2)22. 【解析】试题分析:(1)由题意11||3||,||4AF F B AB ==可以求得11||3,||1AF F B ==,而2ABF ∆的周长为16,再由椭圆定义可得12416,||||28a AF AF a =+==.故21||2||835AF a AF =-=-=.(2)设出1||F B k =,则0k>且1||3,||4AF k AB k ==.根据椭圆定义以及余弦定理可以表示出,a k 的PBA M Fyx关系()(3)a k a k +-=,从而3a k =,212||3||,||5AF k AF BF k ===,则2222||||||BF F A AB =+,24. 【2014高考北京卷文第19题】已知椭圆C :2224x y +=. (2) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.25. 【2014高考大纲卷文第22题】已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.26. 【2014高考福建卷文第21题】已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(2)求曲线Γ的方程;(3)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.由弦长,半径及圆心到直线的距离之关系,确定||6AB =.试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点,依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下:解法二:(1)设(,)S x y 为曲线Γ上任意一点,则22|(3)|(0)(1)2y x y --=-+-=,依题意,点(,)S x y 只能在直线3y =-的上方,所以3y >-, 所以22(0)(1)1x y y -+-=+, 化简得,曲线Γ的方程为24x y =. (2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.27. 【2014高考广东卷文第20题】已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为53. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点定位】本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用,属于难题.28. 【2014高考湖北卷文第22题】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围. 【答案】(1)⎩⎨⎧<≥=)0(,)0(42x o x x y ;(2)当),21()1,(+∞--∞∈ k 时直线l 与轨迹C 恰有一个公共点; 当)0,21[}21,1{--∈ k 时,故此时直线l 与轨迹C 恰有两个公共点;当)21,0()211( -∈k 时,故此时直线l 与轨迹C 恰有三个公共点.所以此时直线l 与轨迹C 恰有一个公共点)1,41(.当0≠k 时,方程①的判别式为)12(162-+-=∆k k ②设直线l 与x 轴的交点为)0,(0x ,则由)2(1+=-x k y ,令0=y ,得kk x 120+=③ (i )若⎩⎨⎧<<∆000x ,由②③解得1-<k 或21>k .即当),21()1,(+∞--∞∈ k 时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰有一个公共点. (ii )若⎩⎨⎧<=∆000x 或⎩⎨⎧≥>∆000x ,由②③解得}21,1{-∈k 或021<≤-k ,29. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.【考点定位】椭圆双曲线向量向量内积30. 【2014高考江苏第17题】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C 的坐标为41(,)33,且22BF =,求椭圆的方程; (2)若1F C AB ⊥,求椭圆离心率e 的值.由1F C AB ⊥得323()13b b a c c c ⋅-=-+,即42243b a c c =+,∴222224()3a c a c c -=+,化简得55c e a ==. 【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系. 31. 【2014高考江西文第20题】,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(2)证明:动点D 在定直线上;(3)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.32. 【2014高考辽宁文第20题】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.xyOP【答案】(Ⅰ)(2,2);(Ⅱ)22163x y += 【解析】试题分析:(Ⅰ)首先设切点P 00(x ,y )00(x 0,,y 0)>>,由圆的切线的性质,根据半径OP 的斜率可求切线斜率,进而可表示切线方程为004x x y y +=,建立目标函数000014482S x y x y =⋅⋅=.故要求面积最小值,26a =.从而所求C 的方程为22163x y +=. 【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.33. 【2014高考全国2文第20题】设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .【答案】(Ⅰ)12;(Ⅱ)7,27a b == 【解析】34. 【2014高考山东文第21题】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求CMN ∆面积的最大值.由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x mkx m +++-=. 所以122814mkx x k +=-+,因此121222()214my y k x x m k+=++=+, 由题意知,12x x ≠所以1211121144y y y k x x k x +==-=+,35. 【2014高考陕西文第20题】已知椭圆22221(0)x y a b a b+=>>经过点(0,3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (2)求椭圆的方程;(3)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程.试题解析:(1)由题意可得312222bcaa b c⎧=⎪⎪=⎨⎪⎪=+⎩解得2,3,1a b c===∴直线l 的方程为1323y x =-+或1323y x =--考点:椭圆的标准方程;直线与圆锥曲线的综合问题.36. 【2014高考上海文第22题】在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.37. 【2014高考四川文第20题】已知椭圆C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -,离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式. 将2x my =-代入椭圆方程得:22(3)420m y my +--=. 其判别式22168(3)0m m ∆=++>. 设1122(,),(,)P x y Q x y , 则121212122224212,,()4333m y y y y x x m y y m m m --+==+=+-=+++. 因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.所以122122123343x x m m y y m m -⎧+==-⎪⎪+⎨⎪+==⎪+⎩,解得1m =±. 此时四边形OPTQ 的面积2122214222||||2()423233OPTQ OPQ m S S OF y y m m -==⨯⋅-=-=++.【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积. 38.【2014高考天津文第18题】设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.39. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =; (1)若||3PF =,求点M 的坐标;(2)求ABP ∆面积的最大值.【答案】(1))32,322(-M 或)32,322(M ;(2)1355256. 【解析】PBA M Fyx40. 【2014高考重庆文第21题】如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.由(Ⅰ)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--,再由11F P ⊥22F P 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y20. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =; (1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.21.【2013浙江文22】已知抛物线C 的顶点为O (0,0),焦点F (0,1) (Ⅰ)求抛物线C 的方程;(Ⅱ) 过点F 作直线交抛物线C 于A 、B 两点.若直线AO 、BO 分别交直线l :y=x-2于M 、N 两点,求|MN|的最小值.PBA M Fyx。
2014高考圆锥曲线真题汇总(理科)1.(满分14分)如图在平面直角坐标系x o y 中,12,F F 分别是椭圆顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1FC .(1)若点C 的坐标为(2)若1FC AB ⊥,求椭圆离心率e 的值.2.已知点A ()02-,,椭圆F 是椭圆E 的右焦点,直线AF O 为坐标原点 (I )求E 的方程;(II )设过点A 的动直线l 与E 相交于P,Q 两点。
当OPQ ∆的面积最大时,求l 的直线方程.3.已知椭圆C (0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.(i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii T 的坐标. 4.(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.5.如图,曲线C 由上半椭部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为(1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程. 6.(本小题满分14分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 7.(本小题满分13分)如图,已知双曲线()1,2,,2,2n n N n *⋅⋅⋅∈≥的右焦点1a ,点2a 分别在1b 的两条渐近线上,1b 轴,2112,a a b b ξη=-=-∥3n =(ξ为坐标原点).(1)求双曲线ξ的方程;(2)过η上一点()p c 的直线与直线()p c 相交于点N ,证明点P 在C 上移动时,. 8(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 9.(本小题满分13分)的两条渐近线分别为x y l x y l 2:,2:21-==.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.10的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,,12DF F ∆的面积为 (1)求该椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..11动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.12.(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已1232F F (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切,求直线13.设1F ,2F 分别是椭圆M 是C 上一点且2MF与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MNC 的离心率;(2)若直线MN 在y 轴上的截距为2a,b.14.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图)P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.15.如图,O 为坐标原点,的左右焦点分别为12,F F ,离心率为1e ;双曲左右焦点分别为34,F F ,离心率为2e ,已知(1)求12,C C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.16.在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.17.已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C的交点为Q (1)求C 的方程; (2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 18.已知椭圆C :2224x y +=. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.19.如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点. (1)证明:;//2211B A B A(2)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点.记111C B A ∆与222C B A ∆的面积分别为1S 与2S ,.参考答案1.(1(2【来源】2014年全国普通高等学校招生统一考试数学(江苏卷带解析)【解析】试题分析:(1)求椭圆标准方程,一般要找到关系,,a b c的两个等量关系,本题中椭圆过点,可把点的坐标代入标准方程,得到一个关于,,a b c 的方程,另外(2)要求离心率,就是要列出关于,,a b c 的一个等式,题设条件是1FC AB ⊥,即11F C AB k k ⋅=-,求1F C k ,必须求得C 的坐标,由已知写出2BF 方程,与椭圆方程联立可解得A 点坐标11(,)x y ,则11(,)C x y -,由此1F C k 可得,代入11F C A Bk k⋅=-可得关于,,a b c 的等式,再由可得e 的方程,可求得e . 试题解析:(1)由题意,2(,0)F c ,(0,)B b,,解得1b =.∴椭圆方程为 (2)直线2BF 方程为联立方程组,解得A 点坐标为,则C 点坐标为又,由1F C A B ⊥得,即4223b a c c =+,∴22222()3a c a c c -=+,化简得【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系.2.(I (II 【来源】2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)【解析】试题分析:(I )由直线AF 求得2a =,再利用222b a c =-求b ,进而可确定椭圆E 的方程;(II )依题意直线l 的斜率存在,故可设直线l 方程为2y kx =-,和椭圆方程联立得22(14k )x 16120kx +-+=.利用弦长公式表示利用点到直线l 的距离求OPQ ∆的高从而三角形OPQ ∆的面积可表示为关于变量k 的函数解析式()f k ,再求函数最大值及相应的k 值,故直线l 的方程确定.试题解析:(I )设右焦点(c,0)F ,由条件知,,所以2a =,222b ac =-1=.故椭圆E 的方程为(II )当l x ⊥轴时不合题意,故设直线:l 2y kx =-,1122(x ,y ),Q(x ,y )P .将2y kx =-得22(14k )x 16120kx +-+=.当216(4k 3)0∆=->,即又点O 到直线PQ 的距离d =所以OPQ ∆的面积则0t >,,当且仅当2t =时,0∆>.所以,当OPQ ∆的面积最大时,l 的方程为 【考点定位】1、椭圆的标准方程及简单几何性质;2、弦长公式;3、函数的最值.3.(2)(3,0)T - 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析)【解析】试题分析:(1)因为焦距为4,所以2c =,由此可求出,a b 的值,从而求得椭圆的方程.(2)椭圆方程化为2236x y +=.设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=.(ⅰ)设PQ 的中点为00(,)M x y ,求出,OM OT k k ,只要O M O T k k=,即证得OT 平分线段PQ.(ⅱ)可用m 表示出PQ ,TF 可得:再根据取等号的条件,可得T 的坐标.试题解答:(1)2c =,又(2)椭圆方程化为2236x y +=.(ⅰ)设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=. 设PQ 的中点为00(,)M x y ,则又TF 的方程为0(2)y m x -=-+,则3x =-得y m =,OT 过PQ 的中点,即OT 平分线段PQ.当1m =±时取等号,此时T 的坐标为(3,1)T -±.【考点定位】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.(1)证明见解析;(2(3)证明见解析. 【来源】2014年全国普通高等学校招生统一考试理科数学(上海卷带解析) 【解析】试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出η的值,若0η<,则结论就可得证;(2)直线y kx =是曲线2241x y -=的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组2241x y y kx⎧-=⎨=⎩,方程组应无实解,方程组变形为22(14)10k x --=,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线y kx =的两侧.则可得到所求范围;(3)首先求出轨迹E 的设其方程为y kx =,这个方程有无实数解,直接判断不方便,可转化为判断函数22()(1)44F x k x kx =+-+与的图象有无交点,而这可利用函数图象直接判断.()y F x =是开口方向向上的二次函数,()y G x =是幂函数,其图象一定有交点,因此直线y kx =不是E 的分隔线,过原点的直线还有一条就是0x =,它显然与曲线E 无交点,又曲线E 上两点(1,2),(1,2)-一定在直线0x =两侧,故它是分隔线,结论得证.试题解析:(1)由题得,2(2)0η=⋅-<,∴(1,2),(1,0)A B -被直线10x y +-=分隔. (2)由题得,直线y kx =与曲线2241x y -=无交点即222241(14)10x y k x y kx⎧-=⇒--=⎨=⎩无解 ∴2140k -=或221404(14)0k k ⎧-≠⎨∆=-<⎩,∴ 又对任意点(1,0)和(1,0)-在曲线2221x y -=上,满足20k η=-<,被直线y kx =分隔,所以所求k 的范围是(3)由题得,设(,)M x y ,∴ 化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅= ①当过原点的直线斜率存在时,设方程为y kx =. 联立方程,2222432[(2)]1(1)4410x y x k x kx x y kx⎧+-⋅=⇒+-+-=⎨=⎩.令2432()(1)441F x k x kx x =+-+-,因为2(0)(2)(1)[16(1)15]0F F k =-⋅-+<, 所以方程()0F x =有实解,直线y kx =与曲线E 有交点.直线y kx =不是曲线E 的分隔线. ②当过原点的直线斜率不存在时,其方程为0x =.显然0x =与曲线222[(2)]1x y x +-⋅=没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线0x =是E 分隔线.综上所述,仅存在一条直线0x =是E 的分割线. 【考点】新定义,直线与曲线的公共点问题.5.(1)2a =,1b =;【来源】2014年全国普通高等学校招生统一考试理科数学(陕西卷带解析) 【解析】试题分析:(1)由上半椭圆和部分抛物22:1(0)C y x y =-+≤公共点为,A B ,得1b =,设2C 的半焦距为c ,由2221a c b -==,解得2a =;(2)由(1)知,上半椭圆1C 的方程为,(1,0)B ,易知,直线l 与x 轴不重合也不垂直,故可设其方程为(1)(0)y k x k =-≠,并代入1C 的方程中,整理得:2222(4)240k x k x k +-+-=,,又(1,0)B ,得得点P 的坐标同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ----,最后由0AP AQ ⋅=u u u r u u u r ,故直线l试题解析:(1)在1C 方程中,令0y =,得(,0),(,0)A b B b - 在2C 方程中,令0y =,得(1,0),(1,0)A B - 所以1b =设2C 的半焦距为c ,由及2221a c b -==,解得2a = 所以2a =,1b =(2)由(1)知,上半椭圆1C 的方程为,(1,0)B 易知,直线l 与x 轴不重合也不垂直,设其方程为(1)(0)y k x k =-≠ 代入1C 的方程中,整理得:2222(4)240k x k x k +-+-= (*)设点P 的坐标(,)P P x y又(1,0)B ,得所以点P 的坐标为同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ---- ,(1,2)AQ k k =-+u u u rAP AQ ⊥Q0AP AQ ∴⋅=u u u r u u u r ,0k ≠Q ,4(2)0k k ∴-+=,解得故直线l 的方程为考点:椭圆和抛物线的几何性质;直线与圆锥曲线的综合问题.6.(I )24y x =.(II )(ⅰ)直线AE 过定点(1,0)F .(ⅱ)ABE ∆的面积的最小值为16. 【来源】2014年全国普通高等学校招生统一考试理科数学(山东卷带解析) 【解析】试题分析:(I 解得3t p =+或3t =-(舍去).得2p =.抛物线C 的方程为24y x =. (II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,可得02D x x =+,即0(2,0)D x +,直线AB 根据直线1l和直线AB 平行,可设直线1l 的方程为直线AE 恒过点(1,0)F .注意当204y =时,直线AE 的方程为1x =,过点(1,0)F ,得到结论:直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F , 设直线AE 的方程为+1x my =,根据点00(,)A x y 在直线AE 上, ,再设11(,)B x y ,直线AB应用点B 到直线AE从而得到三角形面积表达式,应用基本不等式得到其最小值. 试题解析:(I设(,0)(0)D t t >,则FD因为||||FA FD =, 解得3t p =+或3t =-(舍去). ,解得2p =. 所以抛物线C 的方程为24y x =. (II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>, 因为||||FA FD =,则0|1|1D x x -=+, 由0D x >得02D x x =+,故0(2,0)D x +, 故直线AB 因为直线1l 和直线AB 平行,设直线1l 的方程为设(,)E E E x y ,则当204y ≠时, 可得直线AE由2004y x =,直线AE 恒过点(1,0)F .当204y =时,直线AE 的方程为1x =,过点(1,0)F ,所以直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F ,设直线AE 的方程为+1x my =, 因为点00(,)A x y 在直线AE 上,设11(,)B x y ,直线AB由于00y≠,所以点B到直线AE的距离为则ABE∆的面积即01x=时等号成立.所以ABE∆的面积的最小值为16.考点:抛物线的定义及其几何性质,直线与抛物线的位置关系,点到直线的距离公式,基本不等式的应用.7.(12【来源】2014年全国普通高等学校招生统一考试理科数学(江西卷带解析)【解析】试题分析:(1)求双曲线ξ的方程就是要确定a的值,用a,c表示条件:1b轴,2112,a a b b ξη=-=-∥3n =,即可得:直线OBOAAB ⊥OB ,解得23a =,故双曲线C2)本题证.分别用坐标表示直线l 与AF及直线l 与直线的交点为),并利用化简.: 试题解析:(1)设(,0)F c ,因为1b =,所以直线OB又直线OA又因为AB ⊥OB ,解得23a =,故双曲线C (2)由(1,则直线l 的方程为因为直线AF 的方程为2x =,所以直线l 与AF直线l 与直线因为是C考点:双曲线方程,直线的交点8.(1(2)220013x y +=.【来源】2014年全国普通高等学校招生统一考试理科数学(广东卷带解析)【解析】 试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. 试题解析:(1解得2b =,因此椭圆C 的标准方程为(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤∆=--⨯+--=⎡⎤⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()22200009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()22200009240x k k x y y --+-=的两根,则化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.【考点定位】本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用,属于难题. 9.存在【来源】2014年全国普通高等学校招生统一考试理科数学(福建卷带解析) 【解析】试题分析:(1) 已知双曲线的两条渐近线分别为x y l x y l 2:,2:21-==,(2)首先分类讨论直线l 的位置..再讨论直线l 不垂直于x 轴,由OAB ∆的面积恒为8,由直线与双曲线方程联立以及韦达定理,即可得到直线l 有且只有一个公共点.试题解析:(1)因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以从而双曲线E (2)由(1)知,双曲线E设直线l 与x 轴相交于点C.当l x ⊥轴时,若直线l 与双曲线E 有且只有一个公共点,又因为OAB ∆的面积为8,此时双曲线E 的方程为 若存在满足条件的双曲线E,则E 以下证明:当直线l 不与x 轴垂直时,双曲线E.设直线l 的方程为y kx m =+,依题意,得k>2或k<-2.记1122(,),(,)Ax y Bx y .由2y x y kx m=⎧⎨=+⎩,得,同理得.由得,由得, 222(4)2160k x kmx m ----=.因为240k -<,所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以∆=,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E,且E考点:1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.10.(1(2【来源】2014年全国普通高等学校招生统一考试理科数学(重庆卷带解析)【解析】试题分析:(1)由题设知()()12,0,,0F c F c -其中222c ab =- 结合条件12DF F ∆的面积为,可求c 的值,再利用椭圆的定义和勾股定理即可求得,a b 的值,从而确定椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点为()()111222,,,P x y P x y 由圆的对称性可知1212,x x y y =-=,利用()()111222,,,P x y P x y 在圆上及11220PF P F ⋅=u u u u r u u u u r确定交点的坐标,进而得到圆的方程.解:(1)设()()12,0,,0F c F c -,其中222c a b =-,故1c =.,由112DF F F ⊥得(2)如答(21)图,设圆心在y 轴上的圆C 与椭圆相交,()()111222,,,P x y P x y 是两个交点,120,0y y >>,11F P ,22F P 是圆C 的切线,且11F P ⊥22F P 由圆和椭圆的对称性,易知2112,x x y y =-=由(1)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--u u u u r u u u u r ,再由11F P ⊥22F P得()221110x y -++=,即211340x x +=,10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C . 由11F P ,22F P 是圆C 的切线,且11F P ⊥22F P ,知21CP CP ⊥,又12||||CP CP =故圆C 的半考点:1、圆的标准方程;2、椭圆的标准方程;3、直线与圆的位置关系;4、平面向量的数量积的应用.11.(1)点P 的坐标为(2)详见解析. 【来源】2014年全国普通高等学校招生统一考试理科数学(浙江卷带解析) 【解析】试题分析:(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标,由已知椭圆动直线l 与椭圆C 只有一个公共点P ,可设出直线l 的方程为()0y kx m k =+<,结合椭圆方程,得,消去y 得,()22222222220ba kxa kmx a m ab +++-=,令0∆=,得22220b m a k -+=,即2222b a k m +=,代入原式得点P 的坐标为,再由点P 在第一象,可得点P 的坐标为(2)点P 到直线1l 的距离的最大值为b a -,由直线1l 过原点O 且与l 垂直,得直线1l 的方程为0x ky +=,利用点到直线距离公式可得,即,由式子特点,需消去k 即可,注意到即可证明.(1)设直线l 的方程为()0y k x m k =+<,由,消去y 得,()22222222220ba kxa kmx a m ab +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为,由点P 在第一象限,故点P 的坐标为 (2)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l 的距离,整理得,因为时等号成立,所以点P 到直线1l 的距离的最大值为b a -.点评:本题主要考查椭圆的几何性质,点单直线距离,直线与椭圆的位置关系等基础知识,同时考查解析几何得基本思想方法,基本不等式应用等综合解题能力。
高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
2014年全国各省解析几何(李老师整理)山东理科已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为32,则2C 的渐近线方程为学科网 (A )20x y ±=(B )20x y ±=(C )20x y ±=(D )20x y ±= 新课标1理科1,已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A .3B .3C .3mD .3m ,2,已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =( ).A .72 B . 3 C .52D .2新课标1文科10.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,xF A 045=,则=x( )A. 1B. 2C. 4D. 8新课标2理科1,设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 942,设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.新课标2文科设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )303(B )6 (C )12 (D )73全国大纲理科1,已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=,2,已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( )A .14 B .13C .24D .233,直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 大纲卷文科1,双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C的焦距等于( )A .2B .22C .4D .42 江苏1,在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 。
§10.6 圆锥曲线的综合问题考点一定值与最值问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案 A2.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6答案 D3.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案 B4.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2,故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=.又由(1)中的=知=.故=.5.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l 与椭圆C 只有一个公共点P,且点P 在第一象限.(1)已知直线l 的斜率为k,用a,b,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a-b.解析 (1)设直线l 的方程为y=kx+m(k<0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx+a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为.又点P 在第一象限,故点P 的坐标为P.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x+ky=0,所以点P 到直线l 1的距离d=,整理得d=.因为a 2k 2+≥2ab,所以≤=a -b,当且仅当k 2=时等号成立.所以,点P 到直线l 1的距离的最大值为a-b.6.(2014湖南,21,13分)如图,O 为坐标原点,椭圆C 1:+=1(a>b>0)的左、右焦点分别为F 1、F 2,离心率为e 1;双曲线C 2:-=1的左、右焦点分别为F 3、F 4,离心率为e 2,已知e 1e 2=,且|F 2F 4|=-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB,M 为AB 的中点,当直线OM 与C 2交于P,Q 两点时,求四边形APBQ 面积的最小值.解析 (1)因为e1e 2=,所以·=,即a 4-b 4=a 4,因此a 2=2b 2,从而F 2(b,0),F 4(b,0),于是b-b=|F 2F 4|=-1,所以b=1,所以a 2=2.故C 1,C 2的方程分别为+y 2=1,-y 2=1.(2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x=my-1.由得(m 2+2)y 2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.7.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值. 所以当最小时,T点的坐标是(-3,1)或(-3,-1).考点二存在性问题。
2014高考突破 数学学科(二)——圆锥曲线压轴1. 高考命题回顾例1(轨迹问题)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (2009宁夏、海南) (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,λ=||||OM OP ,求点M 的轨迹方程,并说明轨迹是什么曲线例2(轨迹方程问题)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
(2010全国新课标) (1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程例3(圆锥曲线中的切线,距离问题)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA u u u r u u r , MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C 。
(2011全国新课标)(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
例4(距离问题)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
(2012全国新课标) (1)若∠BFD=90°,ABD △的面积为p 的值及圆F 的方程;(2)若F B A ,,三点在同一直线m 上,直线n 与m 平行,且n 与C 之有一个公共点,求坐标原点到m ,n 距离的比值。
例5(弦长问题)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C (2013全国新课标Ⅰ卷) (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.例6(面积最值问题)平面直角坐标系x Oy 中,过椭圆M : x 2—a 2 + y 2—b2=1(a > b > 0)的右焦点的直线x + y- 3 = 0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为 12.(Ι)求M 的方程(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值.2.圆锥曲线方程及性质 ①椭圆与双曲线椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x ya b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
第三章圆锥曲线的方程【压轴题专项训练】一、单选题1.已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x 交于不同的两点A 、B ,若x 轴是∠APB 的角平分线,则直线l 一定过点A .(12,0)B .(1,0)C .(2,0)D .(-2,0)【答案】B 【分析】根据抛物线的对称性,分析得出直线过的顶点应该在x 轴上,再设出直线的方程,与抛物线方程联立,设出两交点的坐标,根据角分线的特征,得到所以AP 、BP 的斜率互为相反数,利用斜率坐标公式,结合韦达定理得到参数所满足的条件,最后求得结果.【详解】根据题意,直线的斜率不等于零,并且直线过的定点应该在x 轴上,设直线的方程为x ty m =+,与抛物线方程联立,消元得2220y ty m --=,设1122(,),(,)A x y B x y ,因为x 轴是∠APB 的角平分线,所以AP 、BP 的斜率互为相反数,所以1212011y yx x +=++,结合根与系数之间的关系,整理得出12122(1)()0ty y m y y +++=,即2(2)220t m tm t -++=,2(1)0t m -=,解得1m =,所以过定点(1,0),故选B.【点睛】该题考查的是有关直线过定点问题,涉及到的知识点有直线与抛物线的位置关系,韦达定理,角平分线的性质,两点斜率坐标公式,思路清晰是正确解题的关键.2.已知1F ,2F 分别为椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上位于第二象限内的点,延长1PF 交椭圆于点Q ,若2PF PQ ⊥,且2PF PQ =,则椭圆的离心率为A-B 1C D .2【答案】A 【分析】由题意可得2PQF 为等腰直角三角形,设|PF 2|=t ,运用椭圆的定义可得|PF 1|=2a ﹣t ,再由等腰直角三角形的性质和勾股定理,计算可得离心率.【详解】解:PF 2⊥PQ 且|PF 2|=|PQ |,可得△PQF 2为等腰直角三角形,设|PF2|=t ,则|QF 2|,由椭圆的定义可得|PF 1|=2a ﹣t,24t a=则t =2(2a ,在直角三角形PF 1F 2中,可得t 2+(2a ﹣t )2=4c 2,4(6﹣)a 2+(12﹣a 2=4c 2,化为c 2=(9﹣a 2,可得e =ca-.故选A.【点睛】本题考查椭圆的定义、方程和性质,主要是离心率的求法,考查等腰直角三角形的性质和勾股定理,以及运算求解能力.3.已知12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 2|>|PF 1|,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为()A .4B .6C.D .8【答案】D 【分析】由题意可得112||||2PF F F c ==,再设椭圆和双曲线得方程,再利用椭圆和双曲线的定义和离心率可得2133e e +的表达式,化简后再用均值不等式即可求解.【详解】由题意得:112||||2PF F F c ==,设椭圆方程为221122111(0)x y a b a b +=>>,双曲线方程为222222221(0,0)x y a b a b -=>>,又∵121212||||2,||||2PF PF a PF PF a +=-=.∴2122||+22,||22PF c a PF c a =-=,∴122a a c -=,则22112122393333e a a a c c e a c ca ++=+=2222229(2)3633c a a c a c ca c a ++==++2236683a cc a =++≥+=,当且仅当2233a c c a =,即23e =时等号成立.则2133e e +的最小值为8.故选:D 【点睛】考查椭圆和双曲的定义,焦半径公式以及离心率,其中将2133e e +化为22911(18)(218)833a c c a ++≥=为解题关键,注意取等号.4.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为()AB .3C .6D【答案】C 【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案.【详解】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==,又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=,()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++.,22222a cc a +≥=,当且仅当2222a c c a =时取等号,21e 2e 2∴+的最小值为6,故选:C .【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.5.已知点A 是抛物线()2:20C x py p =>的对称轴与准线的交点,点F 为抛物线的焦点,过A 作抛物线的一条切线,切点为P,且满足PA =C 的方程为()A .28x y =B .24x y =C .22x y=D .2x y=【答案】C 【分析】本题首先可根据题意得出点0,2p A ⎛⎫- ⎪⎝⎭,然后设切线方程为2p y kx =-、切点为(),P P P x y ,通过联立抛物线与切线方程解得1k =±,最后对1k =、1k =-两种情况分别进行讨论,通过PA =.【详解】由题意可知,抛物线准线方程为2py =-,点0,2p A ⎛⎫- ⎪⎝⎭,切线斜率k 一定存在,设过点A 与抛物线相切的直线方程为2py kx =-,切点(),P P P x y ,联立抛物线与切线方程222p y kx x py⎧=-⎪⎨⎪=⎩,转化得2220x pkx p -+=,222440p k p ∆=-=,解得1k =±,当1k =时,直线方程为2py x =-,2220x px p -+=,解得P x p =,则22P P p p y x =-=,因为PA =2222PP p x y ⎛⎫++= ⎪⎝⎭,解得1p =;当1k =-时,同理得1p =,综上所述,抛物线方程为22x y =,故选:C.【点睛】本题考查抛物线方程的求法,考查直线与抛物线相切的相关问题的求解,考查判别式的灵活应用,考查两点间距离公式,考查转化与化归思想,考查计算能力,是中档题.6.已知点E 是抛物线2:2(0)C y px p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在EFP ∆中,若sin sin EFP FEP μ∠=⋅∠,则μ的最大值为()ABCD【答案】C 【分析】利用抛物线的几何性质,求得,E F 的坐标.利用抛物线的定义以及正弦定理,将题目所给等式转化为1cos PEFμ=∠的形式.根据余弦函数的单调性可以求得μ的最大值.【详解】由题意得,准线:2p l x =-,,02p E ⎛⎫- ⎪⎝⎭,,02p F ⎛⎫⎪⎝⎭,过P 作PH l ⊥,垂足为H ,则由抛物线定义可知PH PF =,于是sin sin EFP PEFEP PFμ∠==∠11cos cos PE PH EPH PEF ===∠∠,cos y x =在()0,π上为减函数,∴当PEF ∠取到最大值时(此时直线PE 与抛物线相切),计算可得直线PE 的斜率为1,从而45PEF ∠=︒,max μ∴,故选C.【点睛】本小题主要考查抛物线的几何性质,考查直线和抛物线的位置关系,还考查了正弦定理.属于中档题.7.抛物线22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是A .23B .1C .32D .16【答案】B【详解】设|AF|=a ,|BF|=b ,连接AF 、BF ,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ 中,2|MN|=|AQ|+|BP|=a+b .由余弦定理得,|AB|2=a 2+b 2﹣2abcos60°=a 2+b 2﹣ab ,配方得,|AB|2=(a+b )2﹣3ab ,又∵ab≤2(2a b +∴(a+b )2﹣3ab≥(a+b )2﹣34(a+b )2=14(a+b )2得到|AB|≥12(a+b ).∴||MN AB≤1,即||MN AB的最大值为1.故选B .点睛:本题难点在寻找解题的思路,作为一个最值的问题,这里首先要联想到函数的思想,先求出|MN|,|AB|,再利用基本不等式解答.8.设抛物线22y x =的焦点为F,过点0)M 的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,||2BF =,则BCF △与ACF 的面积之比BCF ACFS S等于A .45B .23C .47D .12【答案】A【详解】如图过B 作准线12l x =-:的垂线,垂足分别为11A B ,,BCF ACFBC S SAC=,又11,B BC A AC ∽11BC BB ACAA =,,由拋物线定义112BB BF AA AFAF ==.由12BF BB ==知32B B x y ,==02AB y x ∴-=-:把22y x =代入上式,求得22A A y x ==,,15 2AF AA ∴==.故24552BCF ACFBF SSAF===.故选A .9.已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率.详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP得,222tan sin cos PAF PAF PAF ∠=∴∠∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,π54sin()3c a c e a c PAF =∴==+-∠,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为AB .105C.3D.5【答案】D【详解】分析:由题意可知:可设A (-c ,2b a),C (x ,y ),由S △ABC =3S △BCF2,可得222=AF F C ,根据向量的坐标运算求得x=2c ,y=22b a-,代入椭圆方程,根据离心率公式即可求得椭圆的离心率.详解:设椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0),由x=-c ,代入椭圆方程可得by x a=±可设A (﹣c ,),C (x ,y ),由,可得222=AF F C ,即有2(2,)2(,)b c x c y a -=-),即2c=2x-2c ,可得:x=2c ,22b y a=-代入椭圆得:,根据离心率公式可知:16e 2+1-e 2=4,解得0<e<1,则D 点睛:本题考查椭圆的标准方程及简单几何性质,考查向量的坐标运算,考查计算能力,属于中档题.二、多选题11.已知椭圆22:143x y C +=的左、右焦点分别为F 、E ,直线x m =()11m -<<与椭圆相交于点A 、B ,则()A .椭圆C 的离心率为2B .存在m ,使FAB 为直角三角形C .存在m ,使FAB 的周长最大D .当0m =时,四边形FBEA 面积最大【答案】BD 【分析】直接求出椭圆的离心率判断A ;利用椭圆的对称性及角AFB 的范围判断B ;利用椭圆定义及数学转化分析FAB ∆的周长判断C ;由四边形面积公式分析D 正确.【详解】解:如图所示:对于A ,由椭圆方程可得,2a =,b =1c =,椭圆C 的离心率为12e =,故A 错误;对于B ,当0m =时,可以得出3AFE π∠=,若取1m =时,得3tan 1tan44AFE π∠=<=,根据椭圆的对称性,存在m 使FAB 为直角三角形,故B 正确;对于C ,由椭圆的定义得,FAB 的周长||||||AB AF BF =++||(2||)(2||)4||||||AB a AE a BE a AB AE BE =+-+-=+--,||||||AE BE AB + ,||||||0AB AE BE ∴-- ,当AB 过点E 时取等号,||||||4||||||4AB AF BF a AB AE BE a ∴++=+-- ,即直线x m =过椭圆的右焦点E 时,FAB 的周长最大,此时直线AB 的方程为1x m c ===,但是11m -<<,∴不存在m ,使FAB 的周长最大,故C 错误;对于D ,||FE 一定,根据椭圆的对称性可知,当0m =时,||AB 最大,四边形FBEA 面积最大,故D 正确.故选:BD .【点睛】本题考查椭圆的几何性质,考查数形结合的解题思想,考查分析问题与求解问题的能力.12.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为1F ,点A 坐标为()0,1,点P 双曲线左支上的动点,且1APF △的周长不小于14,则双曲线C 的离心率可能为()AB .2C D .3【答案】ABC 【分析】1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9,2||||2PA PF a ++的最小值不小于9,分析出当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +,可得a 的范围,从而可得答案.【详解】由右焦点为1F ,点A 的坐标为(0,1),1||5AF ==,1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9又2F 为双曲线的左焦点,可得12||||2PF PF a =+,1||||PA PF +=2||||2PA PF a ++,当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +所以529a +≥,即2a ≥,因为c =可得c e a=.故选:ABC .【点睛】求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围13.已知O 为坐标原点,()1,2M ,P 是抛物线C :22y px =上的一点,F 为其焦点,若F 与双曲线2213x y -=的右焦点重合,则下列说法正确的有()A .若6PF =,则点P 的横坐标为4BC .若POF 外接圆与抛物线C 的准线相切,则该圆面积为9πD .PMF △周长的最小值为3【答案】ACD 【分析】先求出4p =,选项A 求出点P 的横坐标为042PF x p-==,判断选项A 正确;选项B 求出抛物线的准线被双曲线所截得的线段长度为22b a ==B 错误;选项C 先判断POF 外接圆的圆心的横坐标为1,再判断POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,最后求出半径和外接圆面积,判断选项C 正确;选项D 直接求出PMF △的周长为3C ≥+D 正确.【详解】解:因为双曲线的方程为2213x y -=,所以23a =,21b =,则2c ==,因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以=22p ,即4p =,选项A :若6PF =,则点P 的横坐标为042PF x p-==,所以选项A 正确;选项B :因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以抛物线的准线被双曲线所截得的线段长度为223b a =,所以选项B 错误;选项C :因为(0,0)O 、(2,0)F ,所以POF 外接圆的圆心的横坐标为1,又因为POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,所以圆心在抛物线上且到准线的距离为3,所以3r =,所以该外接圆面积为29S r ππ==,所以选项C 正确;选项D :因为PMF △的周长为()2232P P M pC PF PM MF x PM x PM x =++=++=+++=选项D 正确.故选:ACD 【点睛】本题考查抛物线的定义的几何意义,双曲线的通径长,14.已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是()A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ=,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58【答案】BCD 【分析】由抛物线标准方程写出焦点坐标判断A ,根据焦点弦性质判断B ,由向量共线与焦点弦性质判断C ,利用抛物线定义把抛物线上的点到焦点的距离转化为到准线的距离,结合中点坐标公式判断D .【详解】解:易知点F 的坐标为10,8⎛⎫⎪⎝⎭,选项A 错误;根据抛物线的性质知,MN 过焦点F 时,212116x x p =-=-,选项B 正确;若MF NF λ=,则MN 过点F ,则MN 的最小值即抛物线通经的长,为2p ,即12,选项C 正确,抛物线212x y =的焦点为10,8⎛⎫⎪⎝⎭,准线方程为18y =-,过点M ,N ,P 分别做准线的垂直线MM ',NN ',PP ',垂足分别为M ',N ',P ',所以MM MF '=,NN NF '=.所以32MM NN MF NF ''+=+=,所以线段34MM NN PP ''+'==所以线段MN 的中点P 到x 轴的距离为13158488PP '-=-=,选项D 正确.故选:BCD .【点睛】本题考查抛物线的定义与标准方程,考查抛物线的焦点弦性质,对抛物线22y px =,AB 是抛物线的过焦点的弦,1122(,),(,)A x y B x y ,则212y y p =-,2124p x x =,12AB x x p =++,AB最小时,AB 是抛物线的通径.三、填空题15.过抛物线C :y 2=4x 的焦点F 的动直线交C 于A ,B 两点,线段AB 的中点为N ,点P (12,4).当|NA |+|NP |的值最小时,点N 的横坐标为____.【答案】9【分析】根据椭圆定义问题可转化为|MN |+|NP |的最小值问题,数形结合可得M ,N ,P 三点共线时有最小值.【详解】分别过点A ,B ,N 作准线的垂线,垂足为A 1,B 1,M ,如图所示,由抛物线的定义知,|AA 1|=|AF |,|BB 1|=|BF |,∴|AB |=|AF |+|BF |=|AA 1|+|BB 1|=2|MN |,∴|NA |+|NP |=12|AB |+|NP |=|MN |+|NP |,故原问题可转化为|MN |+|NP |的最小值问题,当M ,N ,P 三点共线时,|MN |+|NP |取得最小值,此时y N =y P =4,设A (x 1,y 1),B (x 2,y 2),则21122244y x y x ⎧=⎨=⎩,两式相减得,1212y y x x --=124y y +=42N y =41242=⨯,即直线AB 的斜率为12,又直线AB 经过点F (1,0),∴直线AB 的方程为y =12(x ﹣1),把4N y =代入,得14(1)2N x =-解得N x =9,∴当|NA |+|NP |的值最小时,点N 的横坐标为9.故答案为:916.已知抛物线C :()220y px p =>的焦点为F ,过点Fl 交C 于A ,B两点,以线段AB 为直径的圆交y 轴于M ,N 两点,设线段AB 的中点为Q ,若点F 到C 的准线的距离为3,则sin QMN ∠的值为______.【答案】58【分析】由题意得3p =,可得抛物线的方程和直线AB 的方程,联立直线AB 方程和抛物线方程,运用韦达定理和中点坐标公式可得AB 的中点Q 的坐标和弦长AB ,可得圆Q 的半径,在QMN 中,由锐角三角函数的定义可得所求值【详解】解:抛物线C :()220y px p =>的焦点为(,0)2p F ,准线方程为2p x =-,由题意得3p =,则抛物线方程为236,(,0)2y x F =,则直线AB的方程为3)2y x =-,由23)26y x y x⎧=-⎪⎨⎪=⎩,得22731504x x -+=,设,A B 的横坐标分别为12,x x ,则125x x +=,所以AB 的中点Q 的坐标为5(2,12538AB x x p =++=+=,则圆Q 的半径为4,在QMN 中,552sin 48QMN ∠==,故答案为:58【点睛】关键点点睛:此题考查抛物线的定义、方程和性质,以及直线与抛物线的位置关系,解题的关键是联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式进行转化,考查方程思想和计算能力,属于中档题17.已知双曲线E :22221(0,0)x y a b a b-=>>的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M ,N 两点(点F 1位于点M 与点N 之间),且13MN F N =,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e 为__.【分析】由对称性得ON ⊥MN ,由点到直线距离公式得1F N ,然后由勾股定理求得,,a b c 的关系得出离心率.【详解】解:双曲线E :22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,∵|ON |=OP |,且F 1P ⊥OM ,可得△PF 1O ≌△NF 1O ,ON ⊥MN ,双曲线的一条渐近线方程为bx ﹣ay =0,则|F 1N |=|F 1P |b .∵13MN F N =,∴|MN |=3b ,|MF 1|=2b ,由勾股定理可得,|ON |=|OP |a =,|PM |,又|MN |2+|ON |2=|OM |2,∴(3b )2+a 2=(a )2,整理可得a ,即3c 2=4a 2,∴3c e a ==.18.已知椭圆C :2222x y a b+=1(a >b >0)的焦距为4,直线l :y =2x 与椭圆C 相交于点A 、B ,点P 是椭圆C 上异于点A 、B 的动点,直线PA 、PB 的斜率分别为k 1、k 2,且k 1•k 2=59-,则椭圆C 的标准方程是__.【答案】2295x y +=1【分析】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),代入作差法表示出k 1•k 2=59-,与224a b -=联立,即可求出椭圆的标准方程.【详解】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),则2200221x y a b+=,2211221x y a b +=,两式作差得22220101220x x y y a b --+=.因为直线PA ,PB 的斜率都存在,所以2201x x -≠0.所以22b a=﹣22012201y y x x --=﹣01010101y y y y x x x x --⨯+-=﹣k 1•k 2=59,则22590a b -=,又因为焦距为4,则224a b -=,联立两式可得229,5a b ==所以该椭圆的方程为:2295x y +=1故答案为:2295x y +=1四、解答题19.已知椭圆2222:1(0)x y C a b a b+->>的左、右焦点分别是F 1、F 2,上、右顶点分别是A 、B ,满足∠F 1AF 2=120°,||AB =.(1)求椭圆C 的标准方程;(2)与圆x 2+y 2=1相切的直线l 交椭圆C 于P 、Q 两点,求|PQ |的最大值及此时直线l 的斜率.【答案】(1)22:14x C y +=;(2)|PQ |max =2;直线l的斜率为2k =±.【分析】(1)由焦点12AF F △得出,,a b c 的关系,解得,,a b c 得椭圆标准方程;(2)设直线方程为x =ty +m ,由直线与圆相切得,t m 关系,直线方程代入椭圆方程,计算出0∆>,设设P (x 1,y 1),Q (x 2,y 2),由韦达定理得1212,y y y y +,求得12y y -,得弦长PQ ,=n换元后用基本不等式得最值及直线斜率.【详解】解:(1)因为2tan ∠=cOAF b,||AB =,得tan 60cb︒==,又a 2=b 2+c 2,所以=c ,a 2=4b 2,5b 2=5,解得b =1,a =2,椭圆的标准方程为22:14x C y +=;(2)由题意知直线l 不能平行于x 轴,所以设为x =ty +m ,由已知得(0,0)到x ﹣ty ﹣m =0的距离为11=,所以m 2=t 2+1,联立直线和椭圆得(ty +m )2+4y 2=4,即(t 2+4)y 2+2tmy +m 2﹣4=0,得△=(2tm )2﹣4(t 2+4)(m 2﹣4)=﹣4(4m 2﹣4t 2﹣16)=16(t 2﹣m 2+4)=16×3,设P (x 1,y 1),Q (x 2,y 2),则|y 2﹣y 1|==,||PQ =y 2﹣y 1|=n ,则n ≥1,2||233PQ n n n==≤++,当3=n n,即n =|PQ |max =2,此时t =l 的斜率为1=t 20.已知双曲线E :2222x y a b -=1(a >0,b >0)的右焦点为F ,离心率e =2,直线l :x =2a c与E 的一条渐近线交于Q ,与x 轴交于P ,且|FQ |(1)求E 的方程;(2)过F 的直线交E 的右支于A ,B 两点,求证:PF 平分∠APB .【答案】(1)2213y x -=;(2)证明见解析.【分析】(1)先将直线l 的方程与渐近线方程联立求出点Q 的坐标,求出PF 的长,从而可求出|FQ |,再由|FQ |b 的值,再结合离心率可求出a 的值,从而可求出E 的方程;(2)设过点F 得直线方程为:x =my +2,设A (x 1,y 1),B (x 2,y 2),直线方程与双曲线方程联立方程组,消去x ,再利用根与系数的关系,然后表示出k P A ,k PB ,相加化简,若等于零,可得PF 平分∠APB 【详解】解:(1)不妨设直线l :x =2a c与E 的一条渐近线b y x a =交于Q ,则由2a x cb y xa ⎧=⎪⎪⎨⎪=⎪⎩得y Q =ab c ,又PF =c ﹣2a c =2b c,∴|FQ |2=(ab c )2+(2b c)2=b 2=3,∴b ,又离心率e =2,∴2224a b a +=,∴a =1.∴E 的方程为:2213y x -=.(2)设过点F 得直线方程为:x =my +2,A (x 1,y 1),B (x 2,y 2).联立22233x my x y =+⎧⎨-=⎩,可得(3m 2﹣1)y 2+12my +9=0,则1221231my y m -+=-,122931y y m =-,∵过F 的直线交E 的右支于A ,B 两点,∴y 1y 2<0,可得﹣3<m<3,又P (12,0),∴k P A +k PB =12121122y y x x +--=12211233()()2211()()22y my y my x x +++--,∴122133(()22y my y my +++=2my 1y 2+123()2y y +=2293122031231mm m m -⋅+⨯=--∴k P A +k PB =0,∴PF 平分∠APB .21.已知0a b >>,曲线Γ由曲线()22122:10x y C y a b +=≥和曲线22222:1(0)x y C y a b-=<组成,其中曲线1C 的右焦点为()12,0F ,曲线2C 的左焦点()26,0F -.(1)求,a b 的值;(2)若直线l 过点2F 交曲线1C 于点,A B ,求1ABF 面积的最大值.【答案】(1)4a b ⎧=⎪⎨=⎪⎩(2【分析】(1)根据椭圆和双曲线的焦点即可列出式子求解;(2)设出直线l 的方程,与椭圆联立,利用韦达定理可表示出三角形的面积,即可求出最值.【详解】解:(1)由题意:12(2,0),(6,0)F F -,2222364a b a b ⎧+=∴⎨-=⎩,解得222016a b ⎧=⎨=⎩即4a b ⎧=⎪⎨=⎪⎩(2)由(1)知,曲线221:1(0)2016x y C y +=≥,点2(6,0)F -,设直线l 的方程为:6(0)x my m =->,联立22612016x my x y =-⎧⎪⎨+=⎪⎩得:()225448640m y my +-+=,22(48)464(54)0m m ∴∆=-⨯⨯+>,又0m >,1m ∴>,设()()1122,,,A x y B x y ,1224854m y y m ∴+=+,1226454y y m =+,12y y ∴=-,1ABF ∴面积21222111165118225454S F F y y m m =-=⨯⨯=++,令0t =>,221m t ∴=+,94S t t∴=+,当且仅当32t =,即2m =时等号成立,所以1ABF【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.22.已知抛物线()220C y px p =>:的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若,A B 是C 上的两个动点,且,A B 两点的横坐标之和为8.(ⅰ)设线段AB 的中垂线为l ,证明:l 恒过定点.(ⅱ)设(ⅰ)中定点为D ,当AB 取最大值时,且P ,D 位于直线AB 两侧时,求四边形PADB 的面积.【答案】(1)24y x =;(2)(ⅰ)证明见解析;(ⅱ).【分析】(1)根据题意得0t >,22242pp t pt⎧+=⨯⎪⎨⎪=⎩,进而解方程即可得答案;(2)(ⅰ)设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,进而分12x x =和12x x ≠两种情况求解直线l 方程,以证明直线过定点;(ⅱ)直线AB 与抛物线24y x =联立方程消去x ,根据韦达定理与弦长公式求得||10AB ≤当且仅当26n =时等号成立,进而得直线:220AB x ±-=,再讨论P ,D 位于直线AB 两侧时得:220AB x -=,进而根据点到直线的距离求解点,P D 到直线AB 的距离以求解四边形的面积.【详解】解:(1)由抛物线的性质得0t >,所以根据抛物线的定义得:22242pp t pt⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,且128x x +=.(ⅰ)证明:设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,当12x x =时,0l y =:;当12x x ≠时,2121222121214()42AB y y y y k x x y y y y n--====--+,则2l nk =-,:(4)2n l y n x -=--,令0y =,得6x =,故直线过定点()6,0综上,l 恒过定点()6,0.(ⅱ)由(ⅰ)知直线2:(4)AB y n x n-=-,即()42n x y n =-+,所以直线AB 与抛物线24y x =联立方程消去x ,整理得2222160y ny n -+-=,由0∆>,得21216,2n y y n +<=,212216y y n =-,2212416|||102n n AB y y ++-=-≤=,当且仅当26n =时等号成立,所以AB 的最大值为10,此时直线AB 的方程为:220AB x -=.对于直线220x -=,(2602)21(2)20⎡⎤⨯⨯-⨯⨯-->⎣⎦,所以点,P D 在同侧,不合题意,对于直线220x +-=,满足P ,D 位于直线AB 两侧,所以直线:220AB x +-=,点P 到直线AB 的距离1d =点D 到直线AB 的距离2d =所以()1212PADB S AB d d =⋅+=。
圆锥曲线理科一、 选择题1.(2014 大纲理 6)已知椭圆C :22221x y a b +=()0a b >>的左、右焦点为1F ,2F过2F 的直线l 交C 于A ,B 两点,若1AF B △的周长为C 的方程为( ). A .22132x y += B .2213x y += C .221128x y += D .221124x y += 2.(2014 大纲理 9)已知双曲线C 的离心率为2,焦点为1F ,2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( ).A .14 B .13 C .4 D .33.(2014 福建理 9)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ).A.25B.246+C.27+D.264.(2014 广东理 4)若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的( ). A.焦距相等 B.实半轴长相等 C. 虚半轴长相等 D.离心率相等5.(2014 湖北理 9)已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π3F PF ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ).C.3D.2 6.(2014 辽宁理 10)已知点()2,3A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ).A .12 B .23 C .34 D .437.(2014 山东理 10)已知0,0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 2C 的渐近线方程为( ).A.0x = 0y ±= C.20x y ±= D.20x y ±=8.(2014 四川理 10)已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( ).A .2B .3C .8D 9.(2014 天津理 5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A.221520x y -= B.221205x y -= C.2233125100x y -= D.2233110025x y -= 10.(2014 新课标1理4)已知F 是双曲线C :()2230x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A.B.3C.D. 3m11.(2014 新课标1理10)已知抛物线C : 28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( ).A.72 B. 3 C. 52D. 2 12.(2014 新课标2理10)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,O 为坐标原点,则OAB △的面积为( ).A.4 B. 8C.6332D.9413.(2014 重庆理 8)设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得121293,4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( ). A.43 B. 53 C. 94D. 3 二、填空题1.(2014 安徽理 14)设21,F F 分别是椭圆E : 2221y x b+=()01b <<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若113AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .2.(2014 北京理 11)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.3.(2014 湖南理 15)如图所示,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线22y px =()0p >经过C ,F 两点,则ba=________. 4.(2014 江西理 15)过点()1,1M 作斜率为12-的直线与椭圆C :()222210x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .5.(2014 辽宁理 15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN BN += .6.(2014 浙江理 14)设直线()300x y m m -+=≠与双曲线()222210x y a b a b-=>>两条渐近线分别交于点,A B ,若点(),0P m 满足PA PB =,则该双曲线的离心率是__________.三、解答题1.(2014 安徽理 19)(本小题满分13分)如图所示,已知两条抛物线1E :212y p x =()10p >和2E :222y p x =()20p >,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C △与222A B C △的面积分别为1S 与2S ,求12S S 的值.2.(2014 北京理 19)(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点.若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.3.(2014 大纲理 21)(本小题满分12分)已知抛物线C :()220y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于,A B 两点,若AB 的垂直平分线l '与C 相交于,M N 两点,且,,,A M B N 四点在同一圆上,求l 的方程.4.(2014 福建理 19)(本小题满分13分)已知双曲线()2222:10,0x y E a b a b -=>>的两条渐近线分别为1:2l y x =,2:2l y x =-.(1)求双曲线E 的离心率;(2)如图所示,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB △的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.5.(2014 广东理 20) (14分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率为3(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 6.(2014 湖北理 21)(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1P -.求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.7.(2014 湖南理 21)如图所示,O 为坐标原点,椭圆1:C ()222210x y a b a b+=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b -=的左右焦点分别为34,F F ,离心率为2e ,已知12e e =,且241F F =. (1)求12,C C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值. 8.(2014 江苏理 17)如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221x y a b+=()0a b >>的左、右焦点,顶点B 的坐标为()0,B b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为41,33⎛⎫⎪⎝⎭,且2BF =(2)若1FC AB ⊥,求椭圆离心率e 的值. 9.(2014 江西理 20)(本小题满分13分)如图,已知双曲线C :2221x y a-=()0a >的右焦点F ,点,A B 分别在C 的两条渐近线上,AF x ⊥轴,AB OB ⊥,//BF OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点()00,P x y ()00y ≠的直线l :021xx y y a -=与直线AF 相交于点M ,与直线23=x 相交于点N .证明:点P 在C 上移动时,NFMF恒为定值,并求此定值.10.(2014 辽宁理 20) (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.11.(2014 山东理 21)(本小题满分14分)已知抛物线()2:20C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF △为正三角形. (1)求C 的方程;(2)若直线l l //1,且1l 和C 有且只有一个公共点E , (i )证明直线AE 过定点,并求出定点坐标;(ii )ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.12.(2014 陕西理 20)(本小题满分13分)如图所示,曲线C 由上半椭圆()22122:10,0y x C a b y a b+=>>…和部分抛物线()22:10C y x y =-+…连接而成,12,C C 的公共点为,A B ,其中1C. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.13.(2014 四川理 20)已知椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点,P Q . (i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii )当TF PQ最小时,求点T 的坐标.14.(2014 天津理 18)(本小题满分13分)设椭圆22221x y a b +=()0a b >>的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切. 求直线l 的斜率.15.(2014 新课标1理20) (本小题满分12分)已知点()0,2A -,椭圆E :22221x y a b +=()0a b >>F 是椭圆E 的右焦点,直线AF的斜率为3,O 为坐标原点. (1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ △的面积最大时,求l 的方程. 16.(2014 新课标2理20)(本小题满分12分)设12,F F 分别是椭圆2222:1x y C a b+=()0a b >>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b . 17.(2014 浙江理 21)(本题满分15分)如图,设椭圆()2222:10x y C a b a b+=>>动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.18.(2014 重庆理 21)如图,设椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,点D在椭圆上,112DF F F ⊥,121F F DF =,12DF F △. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..。
2014圆锥曲线高考压轴题汇编一.填空题(共3小题)1.已知椭圆C:+=1(a>b>0)的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q(1,0)的直线l与椭圆C 相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.2.如图,在△ABC中,已知A(﹣3,0),B(3,0),CD⊥AB于D,△ABC的垂心为H且.(Ⅰ)求点H的轨迹方程;(Ⅱ)设P(﹣1,0),Q(1,0),那么能否成等差数列?请说明理由;(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.3.如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.二.解答题(共27小题)4.用总长44.8m的钢条制做一个底面是等腰三角形的直三棱柱容器的框架,如果所制做容器的底面的腰长比底边长的一半长1m,那么底面的底边,腰及容器的高为多少时容器的容积最大?(参考数据2.662=7.0756,3.342=11.1556)5.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(I)求椭圆C的离心率:(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.6.(2014•深圳一模)如图,直线l:y=x+b(b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.(1)求直线l及抛物线C的方程;(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A、B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.7.(2014•上饶一模)如图,椭圆C1:(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.(1)求椭圆C1的方程;(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.①求证:直线MP经过一定点;②试问:是否存在以(m,0)为圆心,为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.8.(2014•德州一模)已知点A、B分别是椭圆=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个(Ⅰ)求椭圆的方程;(Ⅱ)若椭圆上存在点P,满足(O为坐标原点),求λ的取值范围;(Ⅲ)在(Ⅱ)的条件下,当λ取何值时,△MNO的面积最大,并求出这个最大值.9.(2014•崇明县一模)已知圆C1的圆心在坐标原点O,且恰好与直线l1:相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:,(其中m为非零常数),试求动点Q的轨迹方程C2;(3)在(2)的结论下,当时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.10.(2013•烟台二模)已知椭圆M::+=1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l的倾斜角为45°时,求线段CD的长;(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1﹣S2|的最大值.11.(2013•徐州三模)如图,在平面直角坐标系xOy中,已知椭圆E:的离心率,A1,A2分别是椭圆E的左、右两个顶点,圆A2的半径为a,过点A1作圆A2的切线,切点为P,在x轴的上方交椭圆E于点Q.(1)求直线OP的方程;(2)求的值;(3)设a为常数,过点O作两条互相垂直的直线,分别交椭圆于点B、C,分别交圆A点M、N,记三角形OBC 和三角形OMN的面积分别为S1,S2.求S1S2的最大值.12.(2013•温州二模)如图.直线l:y=kx+1与椭圆C1:交于A,C两点,A.C在x轴两侧,B,D是圆C2:x2+y2=16上的两点.且A与B.C与D的横坐标相同.纵坐标同号.(I)求证:点B纵坐标是点A纵坐标的2倍,并计算||AB|﹣|CD||的取值范围;(II)试问直线BD是否经过一个定点?若是,求出定点的坐标:若不是,说明理由.13.(2013•松江区一模)对于双曲线C:,定义C1:,为其伴随曲线,记双曲线C的左、右顶点为A、B.(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;(2)若双曲线C的方程为x2﹣y2=1,过点且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)(3)若双曲线C的方程为,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.14.(2012•咸阳三模)已知抛物线x2=4y,过点A(0,a)(其中a为正常数)任意作一条直线l交抛物线C于M,N两点,O为坐标原点.(1)求的值;(2)过M,N分别作抛物线C的切线l1,l2,试探求l1与l2的交点是否在定直线上,证明你的结论.15.(2012•武昌区模拟)已知椭圆的离心率为,点M(2,3),N(2,﹣3)为C上两点,斜率为的直线l与椭圆C交于点A,B(A,B在直线MN两侧).(I)求四边形MANB面积的最大值;(II)设直线AM,BM的斜率为k1,k2,试判断k1+k2是否为定值.若是,求出这个定值;若不是,说明理由.16.(2012•泰州二模)已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.17.(2012•台州一模)已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.(Ⅰ)求抛物线C1的方程;(Ⅱ)过点P(0,﹣2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,(ⅰ)求点M的轨迹C2的方程;(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率k AQ,k BQ,k PQ均存在时,试判断是否为常数?若是,求出这个常数;若不是,请说明理由.18.(2012•韶关二模)在直角坐标系xOy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是,设动点P的轨迹为C1,Q是动圆(1<r<2)上一点.(1)求动点P的轨迹C1的方程,并说明轨迹是什么图形;(2)设曲线C1上的三点与点F的距离成等差数列,若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k;(3)若直线PQ与C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.19.(2012•泉州模拟)已知椭圆C的方程为:,其焦点在x轴上,离心率e=.(1)求该椭圆的标准方程;(2)设动点P(x0,y0)满足,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣,求证:x02+2y02为定值.(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.20.(2012•南京二模)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.21.(2012•闵行区三模)已知椭圆T:+=1(a>b>0)的左、右焦点依次为F1,F2,点M(0,2)是椭圆的一个顶点,•=0.(1)求椭圆T的方程;(2)设G是点F1关于点F2的对称点,在椭圆T上是否存在两点P、Q,使=+,若存在,求出这两点,若不存在,请说明理由;(3)设经过点F2的直线交椭圆T于R、S两点,线段RS的垂直平分线与y轴相交于一点T(0,y0),求y0的取值范围.22.(2012•洛阳一模)如图,已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(2,1),直线AB平行于OM,且交椭圆于A,B两点.(1)求椭圆的方程;(2)求直线AB在y轴上截距的取值范围;(3)记直线MA,MB斜率分别为k1,k2.试问k1+k2是否为定值?若是,求出k1+k2的值,否则,说明理由.23.(2012•泸州一模)已知椭圆的长轴长是焦距的2倍,右准线方程为x=4.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点D坐标为(4,0),椭圆C上动点Q关于x轴的对称点为点P,直线PD交椭圆C于点R(异于点P),求证:直线QR过定点.24.(2012•泸州二模)已知双曲线方程,椭圆方程,A、D分别是双曲线和椭圆的右准线与x轴的交点,B、C分别为双曲线和椭圆的右顶点,O为坐标原点,且|OA|,|OB|,|OC|,|OD|成等比数列.(Ⅰ)求椭圆的方程;(Ⅱ)若E是椭圆长轴的左端点,动点M满足MC⊥CE,连接EM,交椭圆于点P,在x轴上有异于点E的定点Q,使得以MP为直径的圆恒过直线CP、MQ的交点,求点Q的坐标.25.(2012•黄浦区一模)已知两点A(﹣1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到倍后得到点Q(x,)满足.(1)求动点P所在曲线C的轨迹方程;(2)过点B作斜率为的直线l交曲线C于M、N两点,且满足,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.26.(2012•葫芦岛模拟)如图,椭圆C:+=1(a>b>0)的左右顶点为A1,A2,左右焦点为F1,F2,其中F1,F2是A1A2的三等分点,A是椭圆上任意一点,且|AF1|+|AF2|=6.(1)求椭圆C的方程;(2)设直线AF1与椭圆交于另一点B,与y轴交于一点C,记m=,n=,若点A在第一象限,求m+n的取值范围.27.(2012•贵州模拟)椭圆C:的左、右焦点分别为F1(﹣1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明为定值,并求这个定值.28.(2012•崇明县二模)已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1:x=的距离之比为常数.(1)求曲线C的轨迹方程;(2)若过点Q(1,)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程;(3)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求的最小值,并求此时圆T的方程.29.(2012•成都模拟)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(I)当直线l过右焦点F2时,求直线l的方程;(II)当直线l与椭圆C相离、相交时,求m的取值范围;30.(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.(1)求抛物线C的方程;(2)设m>0,过点M(m,0)作方向向量为的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)2014年3月杜老师的高中数学组卷参考答案与试题解析一.填空题(共3小题)1.已知椭圆C:+=1(a>b>0)的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q(1,0)的直线l与椭圆C 相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.;直线+方程为:+=1且,的方程为;•=;,.•==+==,++=12.如图,在△ABC中,已知A(﹣3,0),B(3,0),CD⊥AB于D,△ABC的垂心为H且.(Ⅰ)求点H的轨迹方程;(Ⅱ)设P(﹣1,0),Q(1,0),那么能否成等差数列?请说明理由;(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.,y,则,又的轨迹方程为的轨迹方程为.,,由此能得到三点共线得,又,y,时(,则得到点的轨迹方程为.(Ⅱ)设,,不能构成等差数列.;,又(舍)或3.如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.,半径为=,,代入直线方程得:,∴;,焦点,)的方程为),),代入得|NF||x|=二.解答题(共27小题)4.用总长44.8m的钢条制做一个底面是等腰三角形的直三棱柱容器的框架,如果所制做容器的底面的腰长比底边长的一半长1m,那么底面的底边,腰及容器的高为多少时容器的容积最大?(参考数据2.662=7.0756,3.342=11.1556)5.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(I)求椭圆C的离心率:(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.的坐标表示出:(=2a===的方程为,设点,中,得(>=,代入><(﹣,[)且﹣((﹣)6.(2014•深圳一模)如图,直线l:y=x+b(b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.(1)求直线l及抛物线C的方程;(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A、B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.得,则直线.,得,=7.(2014•上饶一模)如图,椭圆C1:(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.(1)求椭圆C1的方程;(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.①求证:直线MP经过一定点;②试问:是否存在以(m,0)为圆心,为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.右焦点到右准线的距离为,可得))右焦点到右准线的距离为.得,得,即经过定点得或:,,直线,半径为对)得,时,不合题意;当,得,半径为8.(2014•德州一模)已知点A、B分别是椭圆=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=,S△ABC=.动直线,l:y=kx+m与椭圆于M、N两点.(Ⅰ)求椭圆的方程;(Ⅱ)若椭圆上存在点P,满足(O为坐标原点),求λ的取值范围;(Ⅲ)在(Ⅱ)的条件下,当λ取何值时,△MNO的面积最大,并求出这个最大值.(Ⅰ)由题意,,∴;,|MN|==,代入上式并化简可得=,即的面积最大,最大值为9.(2014•崇明县一模)已知圆C1的圆心在坐标原点O,且恰好与直线l1:相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:,(其中m为非零常数),试求动点Q的轨迹方程C2;(3)在(2)的结论下,当时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.,则.由此能求出圆的方程.,所以方程为,设直线与椭圆,得,,将,得方程为,设直线与椭圆交点联立方程,且的距离,.=时取到最大值)面积的最大值为10.(2013•烟台二模)已知椭圆M::+=1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l的倾斜角为45°时,求线段CD的长;(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1﹣S2|的最大值.,所以椭圆方程为,,×=,)和椭圆方程联立得到,==k=的最大值为11.(2013•徐州三模)如图,在平面直角坐标系xOy中,已知椭圆E:的离心率,A1,A2分别是椭圆E的左、右两个顶点,圆A2的半径为a,过点A1作圆A2的切线,切点为P,在x轴的上方交椭圆E于点Q.(1)求直线OP的方程;(2)求的值;(3)设a为常数,过点O作两条互相垂直的直线,分别交椭圆于点B、C,分别交圆A点M、N,记三角形OBC 和三角形OMN的面积分别为S1,S2.求S1S2的最大值.点横坐标,而,用的方程为的方程为的方程为解得,即,,的方程为解得=联立方程组解得;.同理可得,,.12.(2013•温州二模)如图.直线l:y=kx+1与椭圆C1:交于A,C两点,A.C在x轴两侧,B,D是圆C2:x2+y2=16上的两点.且A与B.C与D的横坐标相同.纵坐标同号.(I)求证:点B纵坐标是点A纵坐标的2倍,并计算||AB|﹣|CD||的取值范围;(II)试问直线BD是否经过一个定点?若是,求出定点的坐标:若不是,说明理由.,分别代入椭圆、圆的方程可得,消掉⇒+1=+2|=)的斜率13.(2013•松江区一模)对于双曲线C:,定义C1:,为其伴随曲线,记双曲线C的左、右顶点为A、B.(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;(2)若双曲线C的方程为x2﹣y2=1,过点且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)(3)若双曲线C的方程为,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.)∵,,得的渐近线方程为的方程为与圆相切知,即,=时,也有.的方程为…①的方程为…②)在双曲线上,,∴.轴上的椭圆,其方程为.14.(2012•咸阳三模)已知抛物线x2=4y,过点A(0,a)(其中a为正常数)任意作一条直线l交抛物线C于M,N两点,O为坐标原点.(1)求的值;(2)过M,N分别作抛物线C的切线l1,l2,试探求l1与l2的交点是否在定直线上,证明你的结论.)求导数,可得方程为,整理得方程为联立方程)得,∴15.(2012•武昌区模拟)已知椭圆的离心率为,点M(2,3),N(2,﹣3)为C上两点,斜率为的直线l与椭圆C交于点A,B(A,B在直线MN两侧).(I)求四边形MANB面积的最大值;(II)设直线AM,BM的斜率为k1,k2,试判断k1+k2是否为定值.若是,求出这个定值;若不是,说明理由.的斜率,根据斜率为整理可得,设椭圆的方程为的方程为∴16.(2012•泰州二模)已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.)利用离心率的计算公式)由,b=故所求椭圆方程为,故,,∴点,则得到.,代入上式整理,得..化简,得,17.(2012•台州一模)已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.(Ⅰ)求抛物线C1的方程;(Ⅱ)过点P(0,﹣2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,(ⅰ)求点M的轨迹C2的方程;(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率k AQ,k BQ,k PQ均存在时,试判断是否为常数?若是,求出这个常数;若不是,请说明理由.,利用韦达定理,化简可得结论.(Ⅰ)由题意得,得处的切线方程分别为,,得的方程为,==18.(2012•韶关二模)在直角坐标系xOy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是,设动点P的轨迹为C1,Q是动圆(1<r<2)上一点.(1)求动点P的轨迹C1的方程,并说明轨迹是什么图形;(2)设曲线C1上的三点与点F的距离成等差数列,若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k;(3)若直线PQ与C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.)由已知,得)由已知可得,因为的中点为)由已知,得,的方程是,)由已知可得,,所以=的中点为其垂直平分线方程为,,③,化简得,的坐标为,,时取等号,的最大值19.(2012•泉州模拟)已知椭圆C的方程为:,其焦点在x轴上,离心率e=.(1)求该椭圆的标准方程;(2)设动点P(x0,y0)满足,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣,求证:x02+2y02为定值.(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.轴上,离心率在椭圆上,即可证是椭圆上的点,)解:由,故椭圆的标准方程为.,则由在椭圆上,的斜率,由题意知,是椭圆∴该椭圆的左右焦点20.(2012•南京二模)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.==,所以=a=2的方程为.x+1 y=,.,所以()(),即.21.(2012•闵行区三模)已知椭圆T:+=1(a>b>0)的左、右焦点依次为F1,F2,点M(0,2)是椭圆的一个顶点,•=0.(1)求椭圆T的方程;(2)设G是点F1关于点F2的对称点,在椭圆T上是否存在两点P、Q,使=+,若存在,求出这两点,若不存在,请说明理由;(3)设经过点F2的直线交椭圆T于R、S两点,线段RS的垂直平分线与y轴相交于一点T(0,y0),求y0的取值范围.•=,则四边形=.,使=,则四边形得:,,﹣,使=.===y+(﹣=.时,+2k2,所以﹣时,0,22.(2012•洛阳一模)如图,已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(2,1),直线AB平行于OM,且交椭圆于A,B两点.(1)求椭圆的方程;(2)求直线AB在y轴上截距的取值范围;(3)记直线MA,MB斜率分别为k1,k2.试问k1+k2是否为定值?若是,求出k1+k2的值,否则,说明理由.)设出椭圆方程,利用椭圆的离心率为)设椭圆方程为∵椭圆的离心率为;,∴可设直线的方程为,则,,=023.(2012•泸州一模)已知椭圆的长轴长是焦距的2倍,右准线方程为x=4.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点D坐标为(4,0),椭圆C上动点Q关于x轴的对称点为点P,直线PD交椭圆C于点R(异于点P),求证:直线QR过定点.的长轴长是焦距的(Ⅰ)解:∵椭圆,∴b=;)的方程为,即(,﹣的方程为的方程为:的方程为可得,解得+,∴==24.(2012•泸州二模)已知双曲线方程,椭圆方程,A、D分别是双曲线和椭圆的右准线与x轴的交点,B、C分别为双曲线和椭圆的右顶点,O为坐标原点,且|OA|,|OB|,|OC|,|OD|成等比数列.(Ⅰ)求椭圆的方程;(Ⅱ)若E是椭圆长轴的左端点,动点M满足MC⊥CE,连接EM,交椭圆于点P,在x轴上有异于点E的定点Q,使得以MP为直径的圆恒过直线CP、MQ的交点,求点Q的坐标.(Ⅰ)由双曲线方程,可求数列,可得)代入整理得(为双曲线的右顶点,双曲线方程,∴所求椭圆的方程为;)代入整理得(),25.(2012•黄浦区一模)已知两点A(﹣1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到倍后得到点Q(x,)满足.(1)求动点P所在曲线C的轨迹方程;(2)过点B作斜率为的直线l交曲线C于M、N两点,且满足,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.)依据题意,有,的轨迹方程是﹣联立方程组.,﹣=﹣:,﹣)==(,﹣,半径为.26.(2012•葫芦岛模拟)如图,椭圆C:+=1(a>b>0)的左右顶点为A1,A2,左右焦点为F1,F2,其中F1,F2是A1A2的三等分点,A是椭圆上任意一点,且|AF1|+|AF2|=6.(1)求椭圆C的方程;(2)设直线AF1与椭圆交于另一点B,与y轴交于一点C,记m=,n=,若点A在第一象限,求m+n的取值范围.=的方程为:=1﹣,=+=2+<2>27.(2012•贵州模拟)椭圆C:的左、右焦点分别为F1(﹣1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明为定值,并求这个定值.的面积为及三角形的相似比(Ⅰ)解:依题意得的方程为.,则由三角形的相似比得为定值28.(2012•崇明县二模)已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1:x=的距离之比为常数.(1)求曲线C的轨迹方程;(2)若过点Q(1,)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程;(3)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求的最小值,并求此时圆T的方程.的距离之比为常数,建立方程,化)引曲线,用坐标表示出,可得的距离之比为常数.;.)引曲线平分,所以﹣=上,所以,=时,取得最小值为﹣,)的方程为:29.(2012•成都模拟)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(I)当直线l过右焦点F2时,求直线l的方程;(II)当直线l与椭圆C相离、相交时,求m的取值范围;(III)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.,根据,)(,﹣(=0,y)由消去+my+﹣(,或222,或;当直线与椭圆相交时﹣,,(),4[<,即。
专题9 圆锥曲线1. 【2014高考安徽卷文第3题】抛物线241x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x2. 【2014高考北京卷文第10题】设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点式()1,0,则C的方程为 .3. 【2014高考大纲卷文第9题】已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.22132x y += B. 2213x y += C. 221128x y += D. 221124x y +=4. 【2014高考大纲卷文第11题】双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A. 2B. 22C.4D.425. 【2014高考广东卷文第8题】若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等6. 【2014高考湖北卷文第8题】设a 、b 是关于t 的方程0sin cos 2=+θθt t 的两个不等实根,则过),(2a a A ,),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A. 0 B. 1 C. 2 D. 3 【答案】A【解析】试题分析:依题意,θθθtan cos sin -=-=+b a ,过),(2a a A ,),(2b b B 两点的直线斜率为7. 【2014高考湖南卷文第14题】平面上以机器人在行进中始终保持与点()01,F 的距离和到直线1-=x 的距离相等.若机器人接触不到过点()01,-P 且斜率为k 的直线,则k 的取值范围是___________.8. 【2014高考江西卷文第9题】过双曲线12222=-by a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A ,则双曲线C 的方程为( )A.112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x 【答案】A 【解析】试题分析:因为12222=-by a x C :的渐近线为b y x a =±,所以(,)A a b 或(,).A a b -因此OA=c=4,从而三角形OAC为正三角形,即tan60,2,23,ba b a ===双曲线C 的方程为112422=-y x . 考点:双曲线的渐近线9. 【2014高考江西卷文第14题】设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.10. 【2014高考辽宁卷文第8题】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12-11. 【2014高考辽宁卷文第15题】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 【答案】12 【解析】试题分析:如图所示,由已知条件得,点12,F F 分布是椭圆22194x y +=的左、右焦点,且12,F F ,K 分别是线段,,MB MA MN 的中点,则在NBM ∆和NAM ∆中,12NB KF =,22NA KF =,又由椭圆定义得,1226KF KF a +==,故||||AN BN +=12(KF +2)12KF =.12. 【2014高考全国1卷文第4题】已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A. 2 B.26 C. 25D. 114. 【2014高考全国2卷文第10题】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )303(B )6 (C )12 (D )7316. 【2014高考陕西卷文第11题】抛物线24y x =的准线方程为________.17. 【2014高考四川卷文第10题】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3C .1728D .1018. 【2014高考四川卷文第11题】双曲线2214x y -=的离心率等于____________. 【答案】52. 【解析】 试题分析:41522c e a +===. 【考点定位】双曲线及其离心率.19. 【2014高考天津卷卷文第6题】已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x20. 【2014高考浙江卷文第17题】设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于A 、B ,若)0,(m P 满足||||PB PA =,则双曲线的离心率是 .21. 【2014高考重庆卷文第8题】设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得 2212(||||)3,PF PF b ab -=-则该双曲线的离心率为( ) A.2 B.15 C.4 D.17【答案】D22. 【2014高考上海卷文第4题】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.23. 【2014高考安徽卷文第21题】设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率. 【答案】(1)5;(2)22. 【解析】试题分析:(1)由题意11||3||,||4AF F B AB ==可以求得11||3,||1AF F B ==,而2ABF ∆的周长为16,再由椭圆定义可得12416,||||28a AF AF a =+==.故21||2||835AF a AF =-=-=.(2)设出1||F B k =,则0k >且1||3,||4AF k AB k ==.根据椭圆定义以及余弦定理可以表示出,a k 的关系()(3)0a k a k +-=,从而3a k =,212||3||,||5AF k AF BF k ===,则22222||||||BF F A AB =+,24. 【2014高考北京卷文第19题】已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.25. 【2014高考大纲卷文第22题】已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.26. 【2014高考福建卷文第21题】已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y=分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.由弦长,半径及圆心到直线的距离之关系,确定||6AB =. 试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点, 依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下:解法二:(1)设(,)S x y 为曲线Γ上任意一点, 则22|(3)|(0)(1)2y x y --=-+-=,依题意,点(,)S x y 只能在直线3y =-的上方,所以3y >-,所以22(0)(1)1x y y -+-=+,化简得,曲线Γ的方程为24x y =. (2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.27. 【2014高考广东卷文第20题】已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为53. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点定位】本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用,属于难题. 28. 【2014高考湖北卷文第22题】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围. 【答案】(1)⎩⎨⎧<≥=)0(,)0(42x o x x y ;(2)当),21()1,(+∞--∞∈ k 时直线l 与轨迹C 恰有一个公共点; 当)0,21[}21,1{--∈ k 时,故此时直线l 与轨迹C 恰有两个公共点;当)21,0()211( -∈k 时,故此时直线l与轨迹C 恰有三个公共点.所以此时直线l 与轨迹C 恰有一个公共点)1,41(.当0≠k 时,方程①的判别式为)12(162-+-=∆k k ②设直线l 与x 轴的交点为)0,(0x ,则由)2(1+=-x k y ,令0=y ,得kk x 120+=③ (i )若⎩⎨⎧<<∆000x ,由②③解得1-<k 或21>k .即当),21()1,(+∞--∞∈ k 时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰有一个公共点.(ii )若⎩⎨⎧<=∆000x 或⎩⎨⎧≥>∆000x ,由②③解得}21,1{-∈k 或021<≤-k ,29. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.【考点定位】椭圆 双曲线 向量 向量内积30. 【2014高考江苏第17题】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1FC . (1)若点C 的坐标为41(,)33,且22BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.由1FC AB ⊥得323()13b b a c c c⋅-=-+,即42243b ac c =+,∴222224()3a c ac c -=+,化简得55c e a ==. 【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系. 31. 【2014高考江西文第20题】,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.32. 【2014高考辽宁文第20题】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.xyOP【答案】(Ⅰ)(2,2);(Ⅱ)22163x y += 【解析】试题分析:(Ⅰ)首先设切点P 00(x ,y )00(x 0,,y 0)>>,由圆的切线的性质,根据半径OP 的斜率可求切线斜率,进而可表示切线方程为004x x y y +=,建立目标函数000014482S x y x y =⋅⋅=.故要求面积最小值,26a =.从而所求C 的方程为22163x y +=.【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.33. 【2014高考全国2文第20题】设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b . 【答案】(Ⅰ)12;(Ⅱ)7,27a b == 【解析】34. 【2014高考山东文第21题】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b +=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求CMN ∆面积的最大值.由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x mkx m +++-=. 所以122814mkx x k+=-+, 因此121222()214my y k x x m k +=++=+,由题意知,12x x ≠ 所以1211121144y y y k x x k x +==-=+,35. 【2014高考陕西文第20题】已知椭圆22221(0)x y a b a b+=>>经过点(0,3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程; (2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程.试题解析:(1)由题意可得312222b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得2,3,1a b c ===∴直线l 的方程为1323y x =-+或1323y x =-- 考点:椭圆的标准方程;直线与圆锥曲线的综合问题.36. 【2014高考上海文第22题】在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线. ⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.37. 【2014高考四川文第20题】已知椭圆C :22221x y a b +=(0a b >>)的左焦点为(2,0)F -,离心率为63.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式. 将2x my =-代入椭圆方程得:22(3)420m y my +--=. 其判别式22168(3)0m m ∆=++>. 设1122(,),(,)P x y Q x y , 则121212122224212,,()4333m y y y y x x m y y m m m --+==+=+-=+++. 因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.所以122122123343x x m m y y mm -⎧+==-⎪⎪+⎨⎪+==⎪+⎩,解得1m =±.此时四边形OPTQ 的面积2122214222||||2()423233OPTQ OPQ m S S OF y y m m -==⨯⋅-=-=++.【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积. 38. 【2014高考天津文第18题】设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.39. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =; (1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.【答案】(1))32,322( M 或)32,322(M ;(2)1355256. 【解析】PBA M Fyx40. 【2014高考重庆文第21题】如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.由(Ⅰ)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--,再由11FP ⊥22F P 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y。
2014圆锥曲线高考压轴题汇编一.填空题(共3小题)1.已知椭圆C:+=1(a>b>0)的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q(1,0)的直线l与椭圆C 相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.2.如图,在△ABC中,已知A(﹣3,0),B(3,0),CD⊥AB于D,△ABC的垂心为H且.(Ⅰ)求点H的轨迹方程;(Ⅱ)设P(﹣1,0),Q(1,0),那么能否成等差数列?请说明理由;(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.3.如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.二.解答题(共27小题)4.用总长44.8m的钢条制做一个底面是等腰三角形的直三棱柱容器的框架,如果所制做容器的底面的腰长比底边长的一半长1m,那么底面的底边,腰及容器的高为多少时容器的容积最大?(参考数据2.662=7.0756,3.342=11.1556)5.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(I)求椭圆C的离心率:(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.6.(2014•深圳一模)如图,直线l:y=x+b(b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.(1)求直线l及抛物线C的方程;(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A、B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.7.(2014•上饶一模)如图,椭圆C1:(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.(1)求椭圆C1的方程;(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.①求证:直线MP经过一定点;②试问:是否存在以(m,0)为圆心,为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.8.(2014•德州一模)已知点A、B分别是椭圆=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=,S△ABC=.动直线,l:y=kx+m与椭圆于M、N两点.(Ⅰ)求椭圆的方程;(Ⅱ)若椭圆上存在点P,满足(O为坐标原点),求λ的取值范围;(Ⅲ)在(Ⅱ)的条件下,当λ取何值时,△MNO的面积最大,并求出这个最大值.9.(2014•崇明县一模)已知圆C1的圆心在坐标原点O,且恰好与直线l1:相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:,(其中m为非零常数),试求动点Q的轨迹方程C2;(3)在(2)的结论下,当时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.10.(2013•烟台二模)已知椭圆M::+=1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l的倾斜角为45°时,求线段CD的长;(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1﹣S2|的最大值.11.(2013•徐州三模)如图,在平面直角坐标系xOy中,已知椭圆E:的离心率,A1,A2分别是椭圆E的左、右两个顶点,圆A2的半径为a,过点A1作圆A2的切线,切点为P,在x轴的上方交椭圆E于点Q.(1)求直线OP的方程;(2)求的值;(3)设a为常数,过点O作两条互相垂直的直线,分别交椭圆于点B、C,分别交圆A点M、N,记三角形OBC 和三角形OMN的面积分别为S1,S2.求S1S2的最大值.12.(2013•温州二模)如图.直线l:y=kx+1与椭圆C1:交于A,C两点,A.C在x轴两侧,B,D是圆C2:x2+y2=16上的两点.且A与B.C与D的横坐标相同.纵坐标同号.(I)求证:点B纵坐标是点A纵坐标的2倍,并计算||AB|﹣|CD||的取值范围;(II)试问直线BD是否经过一个定点?若是,求出定点的坐标:若不是,说明理由.13.(2013•松江区一模)对于双曲线C:,定义C1:,为其伴随曲线,记双曲线C的左、右顶点为A、B.(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;(2)若双曲线C的方程为x2﹣y2=1,过点且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)(3)若双曲线C的方程为,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.14.(2012•咸阳三模)已知抛物线x2=4y,过点A(0,a)(其中a为正常数)任意作一条直线l交抛物线C于M,N两点,O为坐标原点.(1)求的值;(2)过M,N分别作抛物线C的切线l1,l2,试探求l1与l2的交点是否在定直线上,证明你的结论.15.(2012•武昌区模拟)已知椭圆的离心率为,点M(2,3),N(2,﹣3)为C上两点,斜率为的直线l与椭圆C交于点A,B(A,B在直线MN两侧).(I)求四边形MANB面积的最大值;(II)设直线AM,BM的斜率为k1,k2,试判断k1+k2是否为定值.若是,求出这个定值;若不是,说明理由.16.(2012•泰州二模)已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.17.(2012•台州一模)已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.(Ⅰ)求抛物线C1的方程;(Ⅱ)过点P(0,﹣2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,(ⅰ)求点M的轨迹C2的方程;(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率k AQ,k BQ,k PQ均存在时,试判断是否为常数?若是,求出这个常数;若不是,请说明理由.18.(2012•韶关二模)在直角坐标系xOy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是,设动点P的轨迹为C1,Q是动圆(1<r<2)上一点.(1)求动点P的轨迹C1的方程,并说明轨迹是什么图形;(2)设曲线C1上的三点与点F的距离成等差数列,若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k;(3)若直线PQ与C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.19.(2012•泉州模拟)已知椭圆C的方程为:,其焦点在x轴上,离心率e=.(1)求该椭圆的标准方程;(2)设动点P(x0,y0)满足,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣,求证:x02+2y02为定值.(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.20.(2012•南京二模)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.21.(2012•闵行区三模)已知椭圆T:+=1(a>b>0)的左、右焦点依次为F1,F2,点M(0,2)是椭圆的一个顶点,•=0.(1)求椭圆T的方程;(2)设G是点F1关于点F2的对称点,在椭圆T上是否存在两点P、Q,使=+,若存在,求出这两点,若不存在,请说明理由;(3)设经过点F2的直线交椭圆T于R、S两点,线段RS的垂直平分线与y轴相交于一点T(0,y0),求y0的取值范围.22.(2012•洛阳一模)如图,已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(2,1),直线AB平行于OM,且交椭圆于A,B两点.(1)求椭圆的方程;(2)求直线AB在y轴上截距的取值范围;(3)记直线MA,MB斜率分别为k1,k2.试问k1+k2是否为定值?若是,求出k1+k2的值,否则,说明理由.23.(2012•泸州一模)已知椭圆的长轴长是焦距的2倍,右准线方程为x=4.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点D坐标为(4,0),椭圆C上动点Q关于x轴的对称点为点P,直线PD交椭圆C于点R(异于点P),求证:直线QR过定点.24.(2012•泸州二模)已知双曲线方程,椭圆方程,A、D分别是双曲线和椭圆的右准线与x轴的交点,B、C分别为双曲线和椭圆的右顶点,O为坐标原点,且|OA|,|OB|,|OC|,|OD|成等比数列.(Ⅰ)求椭圆的方程;(Ⅱ)若E是椭圆长轴的左端点,动点M满足MC⊥CE,连接EM,交椭圆于点P,在x轴上有异于点E的定点Q,使得以MP为直径的圆恒过直线CP、MQ的交点,求点Q的坐标.25.(2012•黄浦区一模)已知两点A(﹣1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到倍后得到点Q(x,)满足.(1)求动点P所在曲线C的轨迹方程;(2)过点B作斜率为的直线l交曲线C于M、N两点,且满足,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.26.(2012•葫芦岛模拟)如图,椭圆C:+=1(a>b>0)的左右顶点为A1,A2,左右焦点为F1,F2,其中F1,F2是A1A2的三等分点,A是椭圆上任意一点,且|AF1|+|AF2|=6.(1)求椭圆C的方程;(2)设直线AF1与椭圆交于另一点B,与y轴交于一点C,记m=,n=,若点A在第一象限,求m+n的取值范围.27.(2012•贵州模拟)椭圆C:的左、右焦点分别为F1(﹣1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明为定值,并求这个定值.28.(2012•崇明县二模)已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1:x=的距离之比为常数.(1)求曲线C的轨迹方程;(2)若过点Q(1,)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程;(3)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求的最小值,并求此时圆T的方程.29.(2012•成都模拟)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(I)当直线l过右焦点F2时,求直线l的方程;(II)当直线l与椭圆C相离、相交时,求m的取值范围;(III)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.30.(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.(1)求抛物线C的方程;(2)设m>0,过点M(m,0)作方向向量为的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)2014年3月杜老师的高中数学组卷参考答案与试题解析一.填空题(共3小题)1.已知椭圆C:+=1(a>b>0)的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q(1,0)的直线l与椭圆C 相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.考点:椭圆的标准方程;直线与圆锥曲线的关系.专题:计算题;圆锥曲线的定义、性质与方程.分析:(I)根据题意,结合正方形的性质可得b=c且=2,由此算出a=2,即可得到椭圆C的方程;(II)当直线l的斜率等于0时,结合椭圆的方程算出k1•k2=;直线l的斜率不等于0时,设A(x1,y1),B(x2,y2),直线l方程为x=my+1,由直线l方程与椭圆方程消去x得到关于y的一元二次方程,利用根与系数的关系得到y1+y2=,y1y2=.由此利用直线的斜率公式和直线l方程化简k1•k2的式子,再根据基本不等式加以计算,可得k1•k2=+≤1,当且仅当m=1时,等号成立.因此当m=1时k1•k2的最大值为1,可得此时的直线l的方程.解答:解:(I)∵椭圆C方程为:+=1(a>b>0),∴由左、右焦点和短轴的两个端点构成边长为2的正方形,可得b=c且=2,解得b=c=,a==2.∴椭圆C的方程为;(II)①直线l的斜率等于0时,A、B分别为左右顶点,∴k1•k2=•=;②直线l的斜率不等于0时,设直线l的方程为x=my+1,A(x1,y1),B(x2,y2).由消去x,整理得(m2+2)y2+2my﹣3=0.∴y1+y2=,y1y2=.∵x1=my1+1,x2=my2+1,∴k1•k2=•=====+.令t=4m+1,则==≤=,∴k1•k2=+≤+=1,当且仅当t=5即m=1时,等号成立.综合①②,可得k1•k2的最大值为1,此时的直线l方程为x=y+1,即x﹣y﹣1=0.点评:本题给出椭圆满足的条件,求椭圆的方程并研究直线斜率之积的最大值问题.着重考查了椭圆的标准方程与简单几何性质、直线的基本量与基本形式、用基本不等式求最值和直线与圆锥曲线的位置关系等知识,属于中档题.2.如图,在△ABC中,已知A(﹣3,0),B(3,0),CD⊥AB于D,△ABC的垂心为H且.(Ⅰ)求点H的轨迹方程;(Ⅱ)设P(﹣1,0),Q(1,0),那么能否成等差数列?请说明理由;(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.考点:直线与圆锥曲线的综合问题;轨迹方程.专题:综合题.分析:(Ⅰ)设点C(x,y),由题意得H(x,y),则,由于AC⊥BH,于是,又y=0时共线,不合题意.故点C的轨迹方程为(y≠0).由此能得到得到点H的轨迹方程为.(Ⅱ)设,则,,由此能得到不能构成等差数列.(Ⅲ)设M(9,m),N(9,n),则A(﹣3,0),B(3,0),于是,由A,H,M三点共线得.由B,H,N三点共线得,又,以MN为直径的圆的方程为,由此能得以MN为直径的圆必过椭圆外定点(17,0).解答:解:(Ⅰ)设点C(x,y),由题意得H(x,y),则,由于AC⊥BH,于是,又y=0时共线,不合题意.故点C的轨迹方程为(y≠0).设点H(x,y),C(x0,y0),则(y0≠0),由得到点H的轨迹方程为.(4分)(Ⅱ)设,则,,故=,所以不能构成等差数列.(9分)(Ⅲ)设M(9,m),N(9,n),则A(﹣3,0),B(3,0),于是由A,H,M三点共线得,∴;由B,H,N三点共线得,又,以MN为直径的圆的方程为解得(舍)或.故以MN为直径的圆必过椭圆外定点(17,0).(15分)点评:本题考查直线与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.3.如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(1)利用圆心到直线的距离等于半径求出m,再利用导函数与切线的关系求出a的值即可;(2)先求出以A为切点的切线l的方程以及点A,B的表达式,再利用以FA,FB为邻边作平行四边形FAMB,结合向量运算即可求出点M所在的定直线;(3)设直线MF的方程代入抛物线方程,结合根与系数的关系及三角形面积公式得出面积的表达式,从而可求△NPQ的面积S的取值范围.解答:(1)解:由已知,圆C2:x2+(y+1)2=5的圆心为C2(0,﹣1),半径为由题设圆心到直线l1:y=2x+m的距离d==,解得m=﹣6(m=4舍去).设l1与抛物线的相切点为A0(x0,y0),又y′=2ax,∴2ax0=2∴x0=,y0=,代入直线方程得:,∴∴m=﹣6,;(2)证明:由(1)知抛物线C1方程为y=,焦点F(0,)设A(x1,),由(1)知以A为切点的切线l的方程为令x=0,得切线l交y轴的B点坐标为(0,﹣)∴=(),=(0,﹣)∵以FA,FB为邻边作平行四边形FAMB,∴=(x1,﹣3)∵F是定点,∴点M在定直线上;(3)解:直线MF:y=kx+,代入y=得∴x1+x2=6k,x1x2=﹣9.∴S△NPQ=|NF||x1﹣x2|==9∵k≠0,∴S△NPQ>9,∴NPQ的面积S的取值范围(9,+∞).点评:本题综合考查圆与椭圆知识,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形面积的计算,属于中档题.二.解答题(共27小题)4.用总长44.8m的钢条制做一个底面是等腰三角形的直三棱柱容器的框架,如果所制做容器的底面的腰长比底边长的一半长1m,那么底面的底边,腰及容器的高为多少时容器的容积最大?(参考数据2.662=7.0756,3.342=11.1556)考点:导数在最大值、最小值问题中的应用;函数模型的选择与应用.专题:计算题.分析:设出底面边长为2x,用x表示出三棱柱的底面的腰长,三棱柱的高,从而得到三棱柱的体积与x的函数关系是解决本题的关键,可以利用导数为工具确定出最大容积时候的x的值,实现该问题的解答.解答:解:设容器底面等腰三角形的底边长为2xm,则腰长为(x+1)m,高为,设容器的容积为Vm3,底面等腰三角形底边上的高为=,,令V′=0,得x2﹣2.66x﹣1.02=0,(x﹣3)(x+0.34)=0,由x>0,解得x=3当0<x<3时V′>0;3<x<5.1时,V′<0,因此,当x=3时,V有最大值.答:容器的底面等腰三角形的底边长为6m,腰长为4m,容器的高为5.6m时容器的体积最大.点评:本题考查函数的模型思想和意识,考查设未知数表示函数关系的思想,注意实际问题函数的定义域,依据给出的函数表达式利用导数为工具确定所给函数的最值,考查学生的导数工具意识.5.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(I)求椭圆C的离心率:(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.考点:曲线与方程;轨迹方程;椭圆的简单性质.专题:压轴题;方程思想;转化思想;圆锥曲线的定义、性质与方程.分析:(I)由题设条件结合椭圆的性质直接求出a,c的值,即可得到椭圆的离心率;(II)由题设过点A(0,2)的直线l与椭圆C交于M,N两点,可设出直线的方程与椭圆的方程联立,由于两曲线交于两点,故判断式大于0且可利用根与系数的关系建立M,N两点的坐标与直线的斜率k的等量关系,然后再设出点Q的坐标,用两点M,N的坐标表示出,再综合计算即可求得点Q的轨迹方程.解答:解:(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.∴c=1,2a=PF1+PF2==2,即a=∴椭圆的离心率e===…4分(II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q的坐标为(0,2﹣)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则,,又|AQ|2=(1+k2)x2,∴,即=…①将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2﹣24(2k2+1)>0,得k2>由②知x1+x2=﹣,x1x2=,代入①中化简得x2=…③因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18由③及k2>可知0<x2<,即x∈(﹣,0)∪(0,)由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1,又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈[,)且﹣1≤y≤1,则y∈(,2﹣)所以,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)…13分点评:本题主要考查直线、椭圆、曲线与方程等基础知识,考查推理论证能力,运算求解能力,考查数形结合、转化化归、分类与整合等数学思想,并考查思维的严谨性.本题是圆锥曲线中的常见题型,所考查的解题方式较为典型,本题运算量较大易因为运算失误造成丢分.6.(2014•深圳一模)如图,直线l:y=x+b(b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.(1)求直线l及抛物线C的方程;(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A、B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的关系;直线的一般式方程;抛物线的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)利用点P(2,2)在抛物线C上,可求抛物线方程,求出与直线l平行且与抛物线C相切的直线l′方程,利用两直线l、l′间的距离即为抛物线C上的点到直线l的最短距离,可得直线l的方程;(2)直线AB的方程为y﹣1=k(x﹣2),与抛物线联立,消去x,利用韦达定理、斜率公式,求出k1+k2,再由得,y M=,求出k3,即可得出结论.解答:解:(1)∵点P(2,2)在抛物线C上,∴p=1,∴y2=2x.…(2分)设与直线l平行且与抛物线C相切的直线l′方程为y=x+m,代入抛物线方程可得x2+(2m﹣2)x+m2=0,∴△=(2m﹣2)2﹣4m2=4﹣8m=0,得m=,则直线l′方程为y=x+.∵两直线l、l′间的距离即为抛物线C上的点到直线l的最短距离,∴有,解得b=2或b=﹣1(舍去).∴直线l的方程为y=x+2,抛物线C的方程为y2=2x.…(6分)(2)由题意可设AB的斜率为k,则直线AB的方程为y﹣1=k(x﹣2),与抛物线联立,消去x得ky2﹣2y﹣4k+2=0,设点A、B的坐标分别为A(x1,y1),B(x2,y2),则y1+y2=,y1y2=,∵k1=,k2=,…(9分)∴.…(10分)由得,y M=,∴k3==,…(13分)∴k1+k2=2k3.因此,存在实数λ,使得k1+k2=λk3成立,且λ=2.…(14分)点评:本题主要考查抛物线的方程与性质、直线方程、直线与抛物线的位置关系,切线方程,点到直线距离,最值问题等基础知识,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.7.(2014•上饶一模)如图,椭圆C1:(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.(1)求椭圆C1的方程;(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.①求证:直线MP经过一定点;②试问:是否存在以(m,0)为圆心,为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由圆C2将椭圆C1的长轴三等分,可得;又椭圆C1右焦点到右准线的距离为,可得,及a2=b2+c2即可得出;(2)①由题意知直线PE,ME的斜率存在且不为0,设直线PE的斜率为k,则PE:y=kx﹣1,与椭圆的方程联立可得点P的坐标,同理可得点M的坐标,进而得到直线PM的方程,可得直线PM过定点.②由直线PE的方程与圆的方程联立可得点A的坐标,进而得到直线AB的方程.假设存在圆心为(m,0),半径为的圆G,使得直线PM和直线AB都与圆G相交,则圆心到二直线的距离都小于半径.即(i),(ii).得出m的取值范围存在即可.解答:解:(1)由圆C2将椭圆C1的长轴三等分,∴,则a=3b.∴,又椭圆C1右焦点到右准线的距离为,∴,∴b=1,则a=3,∴椭圆方程为.(2)①由题意知直线PE,ME的斜率存在且不为0,设直线PE的斜率为k,则PE:y=kx﹣1,由得或∴,用去代k,得,,∴PM:,即,∴直线PM经过定点.②由得或∴,则直线AB:,设,则t∈R,直线PM:,直线AB:y=5tx,假设存在圆心为(m,0),半径为的圆G,使得直线PM和直线AB都与圆G相交,则(i),(ii).由(i)得对t∈R恒成立,则,由(ii)得,对t∈R恒成立,当时,不合题意;当时,,得,即,∴存在圆心为(m,0),半径为的圆G,使得直线PM和直线AB都与圆G相交,所有m的取值集合为.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到交点的坐标、直线与圆相交问题转化为圆心到直线距离小于半径、点到直线的距离公式、恒成立问题的等价转化等基础知识与搅拌机能力、考查了推理能力、计算能力,属于难题.8.(2014•德州一模)已知点A、B分别是椭圆=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=,S△ABC=.动直线,l:y=kx+m与椭圆于M、N两点.(Ⅰ)求椭圆的方程;(Ⅱ)若椭圆上存在点P,满足(O为坐标原点),求λ的取值范围;(Ⅲ)在(Ⅱ)的条件下,当λ取何值时,△MNO的面积最大,并求出这个最大值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:向量与圆锥曲线.分析:(Ⅰ)由离心率及三角形的面积联立方程组,求出几何量,即可求椭圆的方程;(Ⅱ)直线方程代入椭圆方程,分类讨论,确定P的坐标,利用P在椭圆上,即可求λ的取值范围;(Ⅲ)求出|MN|,点O到直线MN的距离,利用面积公式,结合基本不等式,即可求△MNO面积.解答:解:(Ⅰ)由题意,,∴∴椭圆的方程为;(Ⅱ)y=kx+m代入椭圆方程整理可得(1+2k2)x2+4kmx+2m2﹣2=0.设点M、N的坐标分别为M(x1,y1)、N(x2,y2)、P(x0,y0),则x1+x2=﹣,x1x2=∴y1+y2=k(x1+x2)+2m=(1)当m=0时,点M、N关于原点对称,则λ=0.(2)当m≠0时,点M、N不关于原点对称,则λ≠0,∵,∴(x1,y1)+(x2,y2)=λ(x0,y0),∴x1+x2=λx0,y1+y2=λy0,∴x0=﹣,y0=∵P在椭圆上,∴化简,得4m2(1+2k2)=λ2(1+2k2)2.∵1+2k2≠0,∴有4m2=λ2(1+2k2).…①又∵△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(1+2k2﹣m2),∴由△>0,得1+2k2>m2.…②将①、②两式,∵m≠0,∴λ2<4,∴﹣2<λ<2且λ≠0.综合(1)、(2)两种情况,得实数λ的取值范围是﹣2<λ<2;(Ⅲ)由题意,|MN|=,点O到直线MN的距离d=∴S△MNO===由①得,代入上式并化简可得S△MNO=∵=2∴S△MNO≤当且仅当λ2=4﹣λ2,即时,等号成立∴当时,△MNO的面积最大,最大值为.点评:本题主要考查待定系数法求圆锥曲线的方程,要注意椭圆的三个参数的关系为:a2=b2+c2;求解直线与椭圆的位置关系问题,通常是联立方程组,利用韦达定理求解.9.(2014•崇明县一模)已知圆C1的圆心在坐标原点O,且恰好与直线l1:相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:,(其中m为非零常数),试求动点Q的轨迹方程C2;(3)在(2)的结论下,当时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.考点:直线与圆锥曲线的综合问题;向量在几何中的应用;直线与圆的位置关系.专题:综合题;压轴题.分析:(1)设圆的半径为r,圆心到直线l1距离为d,则.由此能求出圆的方程.(2)设动点Q(x,y),A(x0,y0),AN⊥x轴于N,N(x0,0)由题意,(x,y)=m(x0,y0)+(1﹣m)(x0,0),所以,由此能求出动点Q的轨迹方程.(3)时,曲线C方程为,设直线l的方程为y=﹣x+b.设直线l与椭圆交点B (x1,y1),D(x2,y2),联立方程,得7x2﹣8bx+4b2﹣12=0.由此能求出△OBD面积的最大值.解答:解:(1)设圆的半径为r,圆心到直线l1距离为d,则,2分圆C1的方程为x2+y2=4,2分(2)设动点Q(x,y),A(x0,y0),AN⊥x轴于N,N(x0,0)由题意,(x,y)=m(x0,y0)+(1﹣m)(x0,0),所以,2分即:,将代入x2+y2=4,得,3分(3)时,曲线C方程为,设直线l的方程为y=﹣x+b设直线l与椭圆交点B(x1,y1),D(x2,y2)联立方程得7x2﹣8bx+4b2﹣12=0,1分因为△=48(7﹣b2)>0,解得b2<7,且,2分∵点O到直线l的距离,.∴=,2分(当且仅当b2=7﹣b2即时取到最大值),1分∴△OBD面积的最大值为.1分.点评:本题考查圆的方程和椭圆方程的求法,考查三角形面积的最大值的求法,具体涉及到圆的简单性质、椭圆的性质和应用、直线和圆锥曲线的位置关系的应用.解题时要认真审题,仔细解答,注意合理地进行等价转化.10.(2013•烟台二模)已知椭圆M::+=1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l的倾斜角为45°时,求线段CD的长;(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1﹣S2|的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由焦点F坐标可求c值,根据a,b,c的平方关系可求得a值;(Ⅱ)写出直线方程,与椭圆方程联立消掉y得关于x的一元二次方程,利用韦达定理及弦长公式即可求得|CD|;(Ⅲ)当直线l不存在斜率时可得,|S1﹣S2|=0;当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x+1)(k≠0),与椭圆方程联立消y可得x的方程,根据韦达定理可用k表示x1+x2,x1x2,|S1﹣S2|可转化为关于x1,x2的式子,进而变为关于k的表达式,再用基本不等式即可求得其最大值;解答:解:(I)因为F(﹣1,0)为椭圆的焦点,所以c=1,又b2=3,所以a2=4,所以椭圆方程为=1;(Ⅱ)因为直线的倾斜角为45°,所以直线的斜率为1,所以直线方程为y=x+1,和椭圆方程联立得到,消掉y,得到7x2+8x﹣8=0,所以△=288,x1+x2=,x1x2=﹣,所以|CD|=|x1﹣x2|=×=;(Ⅲ)当直线l无斜率时,直线方程为x=﹣1,此时D(﹣1,),C(﹣1,﹣),△ABD,△ABC面积相等,|S1﹣S2|=0,当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x+1)(k≠0),设C(x1,y1),D(x2,y2),和椭圆方程联立得到,消掉y得(3+4k2)x2+8k2x+4k2﹣12=0,显然△>0,方程有根,且x1+x2=﹣,x1x2=,。