高二物理机械振动单元测试题-人教版
- 格式:doc
- 大小:122.00 KB
- 文档页数:4
机械振动单元质量评估(一)(90分钟 100分)一、选择题(本大题共10小题,每小题4分,共40分。
每小题至少一个答案正确) 1.(2013·泉州高二检测)关于做简谐运动的物体完成一次全振动的意义,有以下几种说法,其中正确的是 ( )A.回复力第一次恢复为原来的大小和方向所经历的过程B.速度第一次恢复为原来的大小和方向所经历的过程C.动能或势能第一次恢复为原来的大小所经历的过程D.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程2.(2013·广元高二检测)一个做简谐运动的质点,其振幅是4cm,频率是2.5Hz,该质点从平衡位置起经过2.5s 后的位移和路程的大小是 ( ) A.4cm,24 cm B.4cm,100 cm C.0,24cm D.0,100cm3.做简谐运动的单摆,在摆动的过程中 ( )A.只有在平衡位置时,回复力才等于重力和细绳拉力的合力B.只有在最高点时,回复力才等于重力和细绳拉力的合力C.摆球在任意位置处,回复力都等于重力和细绳拉力的合力D.摆球在任意位置处,回复力都不等于重力和细绳拉力的合力4.(2013·合肥高二检测)一根弹簧原长为l 0,挂一质量为m 的物体时伸长x 。
当把这根弹簧与该物体套在一光滑水平的杆上组成弹簧振子,且其振幅为A 时,物体振动的最大加速度为 ( ) A.Agl B. C.xgl D.0g Al5.一个摆长约1m的单摆,在下列的四个随时间变化的驱动力作用下振动,要使单摆振动的振幅尽可能增大,应选用的驱动力是( )6.某质点做简谐运动,其位移随时间变化的关系式为x=Asin t,则质点( )A.第1s末与第3s末的位移相同B.第1s末与第3s末的速度相同C.3s末至5s末的位移方向都相同D.3s末至5s末的速度方向都相同7.如图所示为某物体做简谐运动的图像,下列说法中正确的是( )A.物体在0.2s时刻与0.4s时刻的速度相同B.物体在0.6s时刻与0.4s时刻的动能相同C.0.7~0.9s时间内物体的加速度在减小D.0.9~1.1s时间内物体的势能在增加8.(2013·南昌高二检测)如表所示为某受迫振动的振幅随驱动力频率变化的关系,若该振动系统的固有频率为f固,则固有频率可能为( )A.f固=40HzB.70HzC.50Hz<f固<60HzD.以上选项都不对9.(2013·济南高二检测)如图所示为同一实验室中甲、乙两个单摆的振动图像,从图像可知( )A.两摆球质量相等B.两单摆的摆长相等C.两单摆相位相差D.在相同的时间内,两摆球通过的路程总有s甲=2s乙10.(2013·洛阳高二检测)在实验室可以做“声波碎杯”的实验。
第3章《机械波》单元测试卷一、单选题(共15小题)1.一列声波从空气传入水中,已知水中波长较大,则( )A.声波频率不变,波速变小B.声波频率不变,波速变大C.声波频率变小,波速变大D.声波频率变大,波速不变2.如图甲为某简谐机械横波在t=0时刻波的图象,乙图为波的传播方向上某质点的振动图象.下列说法正确的是( )A.该波的波速是15 m/sB.该波一定沿x轴正方向传播C.若乙是质点P的振动图象,则t=0.15 s时刻,质点Q的坐标为(0.5 m,0 cm)D.若乙是质点Q的振动图象,则t=0.15 s时刻,质点P的坐标为(1 m,-4 cm)3.如图所示,实线和虚线表示两个波长和振幅都相同的简谐横波(各只有半个波形),两波在同一根弹性绳上分别向左、向右传播,某一时刻两列波的位置如图所示.P、Q、S表示弹性绳上的三个质点的平衡位置,下列说法中正确的是( )A.该时刻,P的速度向上,Q的速度为零,S的速度向下B.该时刻P的速度向下,Q的速度为零,S的速度向下C.该时刻P、Q、S都处于各自的平衡位置,各点振动速度相同D.该时刻P、Q、S都处于各自的平衡位置,但Q的速度最大4.如图所示,MN是足够长的湖岸,S1和S2是湖面上两个振动情况完全相同的波源,它们激起的水波波长为2 m,S1S2=5 m,且S1与S2的连线与湖岸平行,到岸边的垂直距离为6 m,则岸边始终平静的地方共有( )A. 2处B. 3处C. 4处D.无数处5.如图所示为一列简谐横波t时刻的图象,已知波速为0.2 m/s.以下结论正确的是( )A.经过0.5 s,质点a、b、c通过的路程均为75 cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4 Hz6.某地区地震波中的横波和纵波传播速率分别约为4 km/s和9 km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(如图1所示).在一次地震中,震源在地震仪下方,观察到两振子相差5 s开始振动,则( )图1A.P先开始振动,震源距地震仪约36 kmB.P先开始振动,震源距地震仪约25 kmC.H先开始振动,震源距地震仪约36 kmD.H先开始振动,震源距地震仪约25 km7.有关纵波与横波,下列说法正确的是( )A.振源上下振动形成的波是横波B.振源水平振动形成的波是纵波C.波沿水平方向传播,质点上下振动,这类波是横波D.质点沿水平方向振动,波沿水平方向传播,这类波是纵波8.一列声波由空气传入水中,以下说法正确的是( )A.声波的波长不变B.声波的波长减小C.声波的频率变大D.声波的波速增加9.如图,两列水波波源S1和S2的振幅分别为2A和A,某时刻它们形成的波峰和波谷分别由实线和虚线表示.下列说法正确的是( )A.两列波在相遇区域发生干涉B.波谷和波谷相遇处位移为零C.A点的位移始终为零D.此刻A点和B点的位移大小分别是A和3A10.如图所示,实线和虚线分别表示振幅、频率均相同的两列波的波峰和波谷,此刻,M是波峰与波峰相遇点,下列说法中正确的是( )A.P、N两点始终处于平衡位置B.该时刻质点O正处在平衡位置C.点M到两波源的距离之差一定是波长的整数倍D.质点M的位移始终最大11.一列简谐横波在介质中传播,当波源质点突然停止振动时,介质中其他质点的振动及能量传递的情况是( )A.所有质点都立即停止振动B.已经振动的质点将继续振动,未振动的质点则不会振动C.能量将会继续向远处传递D.能量传递随即停止12.如图所示,图甲为一列简谐波在t=0时的波形图,图乙是这列波中x=200 cm处的P点的振动图线,那么该波的传播速度大小、方向分别是( )A.v=50 cm/s,沿x轴负方向传播B.v=25 cm/s,沿x轴负方向传播C.v=50 cm/s,沿x轴正方向传播D.v=25 cm/s,沿x轴正方向传播13.周期为 2.0 s 的简谐横波沿x轴传播,该波在某时刻的图象如图所示,此时质点P沿y轴负方向运动,则该波( )A.沿x轴正方向传播,波速v= 20 m/sB.沿x轴正方向传播,波速v=10 m/sC.沿x轴负方向传播,波速v= 20 m/sD.沿x轴负方向传播,波速v=10 m/s14.一小石子落入平静的湖面中央,圆形波纹一圈圈向外传播,有一片树叶落在水面上,则树叶( ) A.逐渐漂向湖心B.逐渐漂向湖畔C.在落下的地方上下振动D.沿树叶所在的圆圈做圆周运动15.公路上的雷达测速仪的工作原理是利用( )A.波的反射和多普勒效应B.波的干涉和多普勒效应C.波的干涉和波的反射D.波的反射和共振二、填空题(共3小题)16.如图,沿波的传播方向上有间距均为2 m的五个质点,均静止在各自的平衡位置,一列简谐横波以2 m/s的速度水平向右传播,t=0时刻到达质点a,质点a开始由平衡位置向下运动,t=3 s时质点a第一次到达最高点,下列说法中正确的是________A.质点d开始振动后的振动周期为4 sB.t=4 s时刻波恰好传到质点eC.t=5 s时刻质点b到达最高点D.在3 s<t<4 s这段时间内质点c的速度方向向上E.这列简谐横波的波长为4 m17.某人乘火车由甲地去乙地.途中此人乘坐的列车超过一列货运列车,超车后听到货运列车发出的笛声频率为f1;此人乘坐的列车以后又与迎面驶来的一列客车,听到客车驶近时的笛声频率为f2,已知我们生产的机车发出的笛声相同,则f1与f2的大小关系是f1______f2.18.如图所示,一列沿+x方向传播的简谐横波在t=0时刻刚好传到x=6 m处,已知波速v=10 m/s,则图中P点开始振动的方向沿______(选填“+y”或“-y”)方向,在x=21 m的点在t=______ s第二次出现波峰.三、计算题(共3小题)19.如图所示分别为一列沿水平方向匀速传播的横波在t=0时刻的图象和在x=3 m处的质点A从该时刻开始计时的振动图象.求:(1)波速的大小和方向;(2)在t=0.1 s时,x=1 m处的质点B的位移和该段时间内质点B通过的路程.20.一根弹性绳沿x轴方向放置,左端在原点O,用手握住绳的左端使其沿y轴方向做周期为1 s的简谐运动,于是在绳上形成一列简谐波,如图所示.求:(1)若从波传到平衡位置在x=1 m处的M质点时开始计时,那么经过的时间Δt等于多少时,平衡位置在x=4.5 m处的N质点恰好第一次沿y轴正向通过平衡位置,在图中准确画出当时弹性绳上的波形.(2)从绳的左端点开始做简谐运动起,当它通过的总路程为88 cm时,N质点振动通过的总路程是多少?21.在均匀介质中选取平衡位置在同一直线上的9个质点,相邻两质点间的距离均为0.1 m,如图(a)所示.一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,振幅为0.2 m,经过时间0.3 s第一次出现如图(b)所示的波形.(1)求该列横波传播的速度;(2)画出质点5从t=0到t=0.3 s的振动图象.答案解析1.B声波由空气进入水中,波长变大,频率不变,由波速公式v =λf 得知,声波的波速变大,故B 正确.2.D由甲图可知波长λ=2 m ,由乙图可知周期T =0.2 s ,所以波速为v ==10 m/s ,故A 错误;由题中条件无法判断波的传播方向,故B 错误;若乙是质点P 的振动图象,则波向左传播,质点Q 此时向上振动,在t =0.15 s 时刻质点Q 振动到波谷处,即其坐标为(2 m ,-4 cm),故选项C 错误;若乙是质点Q 的振动图象,则波向右传播,质点P 此时向上振动,在t =0.15 s 时刻质点P 振动到波谷处,即其坐标为(1 m ,-4 cm),故选项D 正确.3.A由图及振动的叠加可知,图示时刻各质点均在平衡位置,此时,左波使质点P 向上振动,右波使质点P 向上振动,叠加后速度向上,Q 质点此时是波峰和波谷相遇,速度为0.左波使质点S 向下振动,右波使质点S 向下振动,叠加后速度向下,故选A.4.C当空间某点到两个波源的路程差为半波长的奇数倍时,振动始终减弱;水波的波长为2 m ,S 1S 2=5 m ,当到两个波源的路程差为1 m 、3 m 、5 m 时,振动减弱;路程差为1 m 是双曲线,与岸边有2个交点;路程差为3 m 是双曲线,与岸边有2个交点;路程差为5 m 是以S 1为起点向左的射线和以S 2为起点向右的射线,与岸边无交点;路程差不可能大于S 1S 2=5 m ;由上分析可知,岸边始终平静的地方共有4处,故A 、B 、D 错误,C 正确.5.C6.A横波的传播速率小于纵波的传播速率,所以P先开始振动.由+5 s =,可得x =36 km ,x 9km /s x 4km /s 则A 正确,B 、C 、D 错误.7.C物理学中把质点的振动方向与波的传播方向垂直的波,称作横波,若波向下传播,振源上下振动,形成的波与振动的方向在同一条直线上,该波是纵波,故A 错误;振源水平振动形成的波不一定是纵波,振源水平振动若与波的传播方向垂直,形成的波是横波,故B 错误;波沿水平方向传播,质点上下振动,质点振动的方向与波传播的方向垂直,这类波是横波,故C 正确;质点沿水平方向振动,波沿水平方向传播,振源水平振动若与波的传播方向垂直,形成的波是横波,故D 错误.8.D波的频率是由波源决定的,故当声波由空气进入水中,频率不变.波速由介质决定,波速变大,由波速公式v=λf知,声波的波长变长,故A、B、C错误,D正确.9.D由图看出,波源S1形成的水波波长大于波源S2形成的水波波长,两列波在同一介质中传播,波速相等,由波速公式v=λf得知,两列波的频率不等,不会形成干涉现象,但能发生叠加现象,故A 错误;因两列水波波源S1和S2的振幅不相等,当波谷和波谷相遇处位移为-3A,并不为零,故B 错误.因两列水波波源S1和S2的振幅分别为2A和A,由图可知,此时A是波峰与波谷相遇,则xA=A,随着时间的推移,位移大小变化,不可能总为零,故C错误;结合图象可知,此时刻A点是波峰和波谷相遇,位移大小为2A-A=A,而B点波峰和波峰相遇,位移大小2A+A=3A,故D 正确.10.A图示时刻P、N两点是波谷和波峰叠加,由于振幅相同,位移始终为零,即处于平衡位置,故A正确;由图知O点是波谷和波谷叠加,是振动加强点,该时刻正处在波谷,故B错误;如果两个波源相同,结合对称性可知点M到两波源的距离之差为零,故C错误;图示时刻点M为波峰与波峰相遇,是振动加强点,是振幅最大,不是位移始终最大,位移是时刻变化的,故D错误.11.C12.A从横波图象中可以得出波长λ=1 m,从振动图象中我们可以得出振动周期为T=2 s,故该波传播速度为v==0.5 m/s=50 cm/s,B、D错误;在x=200 cm处的质点在t=0时振动方向为向上振动,根据上下坡法可得该波的传播方向为沿x轴负方向传播,A正确,C错误.13.B根据机械波的速度公式v=,由图可知波长为 20 m,再结合周期为 2 s,可以得出波速为 10 m/s.应用“同侧法”等方法判断波沿x 轴正方向传播,因此答案为 B.14.C树叶在平衡位置附近上下振动,不随波迁移.15.A公路上的雷达测速仪的工作原理是利用波的反射和多普勒效应,A对.16.ABD17.<此人与货运列车远离,所以f1小于发出声波的频率,而此人与客车靠近,故f2大于发出声波的频率,因此f1<f2.18.+y 2 s由题意知,6 m处的质点开始振动,根据上下坡法可判断6 m处质点开始振动的方向为+y,故介质中所有质点开始振动的方向都是+y,即P点开始振动的方向沿+y;x=1 m处的质点的振动形式是波峰,当其振动形式传播到x=21 m处时,在x=21 m的点第二次出现波峰,用时t==2 s.19.(1)50 m/s 波沿x轴负方向传播 (2)25 cm20.(1)2.25 s (2)16 m(1)由波的传播特性和波动图象知,波长λ=2 m波从x=1 m传至x=4.5 m处的N质点需要的时间t=T此时x=4.5 m处的质点正向y轴负方向运动x=4.5 m处的N质点恰好第一次沿y轴正向通过平衡位置还需,因此Δt=T= 2.25 s此时波形如图:(2)由图知,振幅A= 8 cm质点在一个周期内通过的路程为4A= 32 cmO质点通过88 cm的路程共经过的时间为T从x=0 m传至x=4.5 m处的N质点需要时间t1为T质点N运动的时间为T所以质点N振动通过的总路程为2A= 16 cm.21.(1)4 m/s(2)质点5从t=0到t=0.3 s的振动图象如图所示(1)根据题意,说明t=0.3 s=1.5T,得到周期为T=0.2 s从图中可以看出,波长λ=0.8 m,根据波速公式得到,波速为v==m/s=4 m/s(2)质点5与质点1间的距离为x=0.4 m,波从质点1传到质点5的时间为t==0.1 s,质点5起振方向与质点1起振方向相同,均向下,振幅为0.2 m.画出振动图象如图所示。
《机械振动》的单元测试题c:\iknow\docshare\data\cur_work\.....\第11章«机械振动»单元测试题一、选择题1.质点做简谐运动时( )A.加速度的大小与位移成正比,方向与位移的方向相反B.加速度的大小与位移成正比,方向与位移的方向相同C.速度的大小与位移成反比,方向与位移的方向相反D.速度的大小与位移成反比,方向与位移的方向相同2.关于弹簧振子的简谐运动,以下说法中正确的选项是( ) A.位移的方向总是由平稳位置指向振子所在的位置B .加速度的方向总是由振子所在的位置指向平稳位置C .振子由位移最大的位置向平稳位置运动时,做的是匀加速运动D .振子的加速度最大时速度为零,速度最大时加速度为零 3.关于简谐运动的有关物理量,以下说法中正确的选项是 ( )A .回复力方向总是指向平稳位置B .向平稳位置运动时,加速度越来越小,速度也越来越小C .加速度和速度方向总是跟位移方向相反D .速度方向有时跟位移方向相同,有时相反4.如下图,弹簧振子由平稳位置O 向位移最大处B 运动的过程中, ( ) A .回复力减小B .位移变小C .速度增大D .加速度增大5.如图,弹簧振子在A 、B 之间做简谐运动,O 为平稳位置,那么( ) A .当振子从O 向A 运动时,位移变小 B .当振子从A 向O 运动时,速度变大 C .当振子从O 向B 运动时,加速度变小 D .当振子从B 向O 运动时,回复力变大6.弹簧振子在振动过程中,每一次通过同一位置时,都具有相同的 ( )A .位移、速度B .速度、加速度C .动能、速度D .回复力、势能 7.单摆在振动过程中,当摆球的重力势能增大时,摆球的 ( )A .位移一定减小B .回复力一定减小C .速度一定减小D .加速度一定减小8.一弹簧振子的振动周期为0.25S ,从振子由平稳位置向右运动时开始计时,那么通过0.17S ,振子的振动情形是 ( )A .正在向右做减速运动B .正在向右做加速运动C .正在向左做加速运动D .正在向左做减速运动 9.图示是做简谐运动的质点的位移-时刻图象,在t = 4s 时,质点的 ( ) A .加速度为零,速度为正方向的最大值B.加速度为零,速度为负方向的最大值C.速度为零,加速度为正方向的最大值D.速度为零,加速度为负方向的最大值10.某一单摆的位移-时刻如下图,那么该单摆的( )B.周期为1.25sC.频率为1HzD.摆长为1m11.关于单摆,以下说法中正确的选项是( )A.摆球运动中的回复力是摆线拉力和重力的合力B.摆球在运动过程中,通过轨迹上的同一点时,加速度是相同的C.摆球在运动过程中,加速度的方向始终指向平稳位置D.摆球通过平稳位置时,加速度为零12.将秒摆〔周期为2s〕改装成频率为1Hz的单摆,应采取的措施是( )A.摆长减为原先的B.振幅增为原先的2倍C.摆长增为原先的4倍D.摆球质量减为原先的一半13.在北京走时准确的摆钟,搬到海南岛后走时将( )A.变慢,调准时应增加摆长B.变快,调准时应增加摆长C.变慢,调准时应减小摆长D.变快,调准时应减小摆长14.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B点后,再通过1s,第二次通过B点,在这2s内,质点的总路程是12cm,那么质点振动的周期和振幅分别为( )A.2s,6cm B.4s,6cmC.4s,9cm D.2s,8cm15.卡车在水平路面上行驶,物资随车厢底板上下振动而不脱离底板,设物资做简谐运动,那么物资对车厢底板压力最小的时刻是( )A.物资通过平稳位置向上运动时B.物资通过平稳位置向下运动时C.物资向上达到最大位移时D.物资向下达到最大位移时16.如图,在一根张紧的绳上挂几个单摆,其中C、E两个摆的摆长相等,先使C摆振动,其余几个摆在C摆的带动下也发生了振动,那么( )A .只有E 摆的振动周期与C 摆相同B .B 摆的频率比A 、D 、E 摆的频率小C .E 摆的振幅比A 、B 、D 摆的振幅大 D .B 摆的振幅比A 、D 、E 摆的振幅大17.单摆在振动过程中,摆动幅度越来越小这是因为( )A .能量正在逐步消灭B .动能正在转化为势能C .机械能守恒D .总能量守恒,减少的动能转化为内能 二、填空题18.弹簧振子在振动过程中的两个极端位置(即弹簧压缩得最短和拉得最长)间的距离是5cm ,振动的频率是 2.5Hz ,那么它的振幅是___________cm ,2s 内振子通过的路程是___________cm 。
【2019统编版】人教版高中物理选择性必修第一册全册章节单元测试卷及答案2019人教统编版高中物理必修第一册第一章《动量守恒定律》章节测试卷一、选择题(每小题4分,共48分).1.一炮艇在湖面上匀速行驶,突然从船头和船尾同时向前和向后各发射一发炮弹,设两炮弹的质量相同,相对于地的速率相同,牵引力、阻力均不变,则船(不包含炮弹)的动量及船的速度在发射前后的变化情况是()A.动量不变,速度增大B.动量不变,速度不变C.动量增大,速度增大D.动量减小,速度增大2.如图所示,光滑水平面上有大小相同的A、B 两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B 两球的动量均为6kg•m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为4kg•m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:103.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是()A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙4.质量相等的三个物体在一光滑水平面上排成一直线,且彼此隔开一定距离,如图,具有初动能E0的第一号物块向右运动,一次与其余两个静止物块发生碰撞,最后这三个物体粘成一个整体,这个整体的动能等于()A.E0B.E0C.E0D.E05.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大6.我国古代力学的发展较为完善.例如,《淮南子》中记载“物之功,动而有益,则损随之”.这里的“功”已初步具备现代物理学中功的含义.下列单位分别是四位同学用来表示功的单位,其中正确的是()A.N•m•s﹣1B.kg•m2•s﹣2C.C•V•s D.V•Ω•s7.一炮艇总质量为M,以速度v0匀速行驶,从船上以相对海岸的水平速度v沿前进方向射出一质量为m的炮弹,发射炮弹后艇的速度为v′,若不计水的阻力,则下列各关系式中正确的是()A.Mv0=(M﹣m)v′+mv B.Mv0=(M﹣m)v′+m(v+v0)C.Mv0=(M﹣m)v′+m(v+v′)D.Mv0=Mv′+mv8.A、B两球沿同一条直线运动,图示的x﹣t图象记录了它们碰撞前后的运动情况,其中a、b分别为A、B碰撞前的x﹣t图线,c为碰撞后它们的x﹣t 图线.若A球质量为1kg,则B球质量是()A.0.17kg B.0.34kg C.0.67kg D.1.00kg9.在同一匀强磁场中,α粒子(He)和质子(H)做匀速圆周运动,若它们的动量大小相等,则α粒子和质子()A.运动半径之比是2:1B.运动周期之比是2:1C.运动速度大小之比是4:1D.受到的洛伦兹力之比是2:110.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下.将蹦极过程简化为人沿竖直方向的运动.从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力11.K﹣介子衰变的方程为K﹣→π0﹣π﹣,其中K﹣介子和π﹣介子带负的基本电荷,π0介子不带电.一个K﹣介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP,衰变后产生的π﹣介子的轨迹为圆弧PB,两轨迹在P点相切,它们的半径R K﹣与Rπ﹣之比为2:1,π0介子的轨迹未画出.由此可知π﹣的动量大小与π0的动量大小之比为()A.1:1B.1:2C.1:3D.1:612.一炮弹质量为m,以一定的倾角斜向上发射,达到最高点时速度大小为v,方向水平.炮弹在最高点爆炸成两块,其中一块恰好做自由落体运动,质量为,则爆炸后另一块瞬时速度大小为()A.v B.C.D.0二、非选择题(共52分)13.如图所示,在光滑的水平面上放着一个质量为M=0.39kg的木块(可视为质点),在木块正上方有一个固定悬点O,在悬点O和木块之间连接一根长度为0.4m 的轻绳(轻绳不可伸长且刚好被拉直).有一颗质量为m=0.01kg的子弹以水平速度V0射入木块并留在其中(作用时间极短),g取10m/s2,要使木块能绕O点在竖直平面内做圆周运动,求:子弹射入的最小速度.14.如图所示,光滑的斜面体质量为M,倾角为θ,长为L,质量为m小物块从斜面体顶端由静止开始下滑,斜面位于光滑的水平地面上.从地面上看,在小物块沿斜面下滑的过程中,斜面体运动的位移?15.如图所示,一砂袋用无弹性轻细绳悬于O点.开始时砂袋处于静止状态,此后用弹丸以水平速度击中砂袋后均未穿出.第一次弹丸的速度为v0,打入砂袋后二者共同摆动的最大摆角为θ(θ<90°),当其第一次返回图示位置时,第二粒弹丸以另一水平速度v又击中砂袋,使砂袋向右摆动且最大摆角仍为θ.若弹丸质量均为m,砂袋质量为5m,弹丸和砂袋形状大小忽略不计,求两粒弹丸的水平速度之比为多少?16.如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连;质量为m的小滑块(可视为质点)以水平速度v0滑到木板左端,滑到木板右端时速度恰好为零;现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,以原速率弹回,刚好能够滑到木板左端而不从木板上落下,求的值.17.在光滑水平面上静止着A、B两个小球(可视为质点),质量均为m,A球带电荷量为q的正电荷,B球不带电,两球相距为L.从t=0时刻开始,在两小球所在的水平空间内加一范围足够大的匀强电场,电场强度为E,方向与A、B两球的连线平行向右,如图所示.A球在电场力作用下由静止开始沿直线运动,并与B球发生完全弹性碰撞.设两球间碰撞力远大于电场力且作用时间极短,每次碰撞过程中A、B之间没有电荷量转移,且不考虑空气阻力及两球间的万有引力.求:(1)小球A经多长时间与小球B发生第一次碰撞?(2)小球A与小球B发生第一次碰撞后瞬间A、B两球的速度大小分别是多少?(3)第二次碰撞后,又经多长时间发生第三次碰撞?18.如图所示,在高1.25m的水平桌面上放一个质量为0.5kg的木块,质量为0.1kg 的橡皮泥以30m/s的水平速度粘到木块上(粘合过程时间极短).木块在桌面上滑行1.5m后离开桌子落到离桌边2m 的地方.求木块与桌面间的动摩擦因数.(g 取10m/s2)参考答案与试题解析一、选择题(每小题4分,共48分).1.【考点】动量守恒定律.【分析】以炮弹和炮艇为系统进行分析,由动量守恒可知船的动量及速度的变化.【解答】解:因船受到的牵引力及阻力不变,且开始时船匀速运动,故整个系统所受的合外力为零,动量守恒.设炮弹质量为m,船(不包括两炮弹)的质量为M,炮艇原来的速度为v0,发射炮弹的瞬间船的速度为v.设v0为正方向,则由动量守恒可得:(M+2m)v0=Mv+mv1﹣mv1可得,v>v0可得发射炮弹后瞬间船的动量不变,速度增大;故选:A2.A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:10【考点】动量守恒定律.【分析】光滑水平面上有大小相同的A、B 两球在发生碰撞,在碰撞过程中动量守恒.因此可根据两球质量关系,碰前的动量大小及碰后A的动量增量可得出A 球在哪边,及碰后两球的速度大小之比.【解答】解:光滑水平面上大小相同A、B 两球在发生碰撞,规定向右为正方向,由动量守恒定律可得:△P A=﹣△P B由于碰后A球的动量增量为负值,所以右边不可能是A球的,若是A球则动量的增量应该是正值,因此碰后A球的动量为2kg•m/s所以碰后B球的动量是增加的,为10kg•m/s.由于两球质量关系为m B=2m A那么碰撞后A、B两球速度大小之比2:5故选:A3.【考点】动量定理.【分析】根据动量定理守恒进行分析即可【解答】解析:因系统动量守恒,故最终甲、乙动量大小必相等.谁最后接球谁的质量中包含了球的质量,即质量大,根据动量守恒:m1v1=m2v2,因此最终谁接球谁的速度小.答案:B4.【考点】动量守恒定律.【分析】碰撞过程遵守动量守恒定律,由动量守恒定律求出三个物体粘成一个整体后共同体的速度,即可得到整体的动能.【解答】解:取向右为正方向,设每个物体的质量为m.第一号物体的初动量大小为P0,最终三个物体的共同速度为v.以三个物体组成的系统为研究对象,对于整个过程,根据动量守恒定律得:P0=3mv又P0=mv0,E0=联立得:=3mv则得:v=整体的动能为E k===故选:C5.【考点】动量守恒定律.【分析】AB两人及小车组成的系统受合外力为零,系统动量守恒,根据动量守恒定律分析即可求解.【解答】解:AB两人及小车组成的系统受合外力为零,系统动量守恒,根据动量守恒定律得:m A v A+m B v B+m车v车=0,A、若小车不动,则m A v A+m B v B=0,由于不知道AB质量的关系,所以两人速率不一定相等,故A错误;B、若小车向左运动,则AB的动量和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;D、若小车向右运动,则AB的动量和必须向左,而A向右运动,B向左运动,所以A的动量一定比B的小,故D错误.故选C6.【考点】功的计算.【分析】功的单位是焦耳,可以根据功的定义来解答.【解答】解:A、功的单位是焦耳,根据功的定义W=FL可知:1J=1N•m==kg•m2•s﹣2.故A错误,B正确;C、根据电功的公式:W=Pt=UIt,电压的单位是V,电流的单位是A,时间的单位是s,所以:1J=1V•A•s=1V•C.故C错误;D、根据电热的公式:Q=所以:1J=.故D错误.故选:B7.【考点】动量守恒定律.【分析】发射炮弹过程中动量守恒,注意根据动量守恒列方程时,要选择同一参照物,注意方程的矢量性、【解答】解:以地面为参照物,发射炮弹过程中动量守恒,所以有:,故BCD错误,A正确.故选A.8.【考点】动量守恒定律.【分析】根据x﹣t图象得到A、B两球碰撞前后的速度,然后运用动量守恒定律列式求解,注意矢量性.【解答】解:x﹣t图象的斜率表示速度,碰撞前A球速度为:v1===﹣3m/s,B球速度为:v2=2m/s,碰撞后的共同速度为:v==﹣1m/s;规定B球初速度方向为正,AB碰撞过程,根据动量守恒定律,有:﹣m1v1+m2v2=(m1+m2)v解得:m2==0.67kg;故选:C.9.【考点】带电粒子在匀强磁场中的运动.【分析】质子H和α粒子以相同的动量在同一匀强磁场中作匀速圆周运动,均由洛仑兹力提供向心力,由牛顿第二定律和圆周运动的规律,可求得比较r、速度v及T的表达式,根据表达式可以得到半径以及周期之比.【解答】解:C、两个粒子的动量大小相等,质量之比是4:1,所以:.故C错误;A、质子H和α粒子在匀强磁场中作匀速圆周运动,均由洛仑兹力提供向心力,由牛顿第二定律得:qvB=m,得轨道半径:R==,根据质子质子(H)和α(He)粒子的电荷量之比是1:2,质量之比是1:4,则得:R He:R H=,故A错误;B、粒子运动的周期:,所以:.故B正确;D、根据粒子受到的洛伦兹力:f=qvB,得:.故D错误.故选:B10.【考点】动量定理;功能关系.【分析】从绳子绷紧到人下降到最低点的过程中,开始时人的重力大于弹力,人向下加速;然后再减速,直至速度为零;再反向弹回;根据动量及功的知识可明确动量、动能和弹性势能的变化.【解答】解:A、由于绳对人的作用力一直向上,故绳对人的冲量始终向上,由于人在下降中速度先增大后减小;故动量先增大后减小;故A正确;B、在该过程中,拉力与运动方向始终相反,绳子的力一直做负功;但由分析可知,人的动能先增大后减小;故B错误;C、绳子恰好伸直时,绳子的形变量为零,弹性势能为零;但此时人的动能不是最大,故C错误;D、人在最低点时,绳子对人的拉力一定大于人受到的重力;故D错误.故选:A.11.【考点】动量定理;洛仑兹力.【分析】曲线运动中,粒子的速度方向沿着轨迹上该点的切线方向,又由于Kˉ介子衰变过程中,系统内力远大于外力,系统动量守恒,故可知衰变后,π﹣介子反向飞出,π0介子沿原方向飞出,再根据介子做圆周运动的向心力由洛伦兹力提供,可以列式求出Kˉ介子与π﹣介子的动量之比,再结合动量守恒定律列式分析.【解答】解:Kˉ介子与π﹣介子均做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:eBv=m,粒子动量为:P=mv=eBR,则有:P Kˉ:Pπ﹣=2:1,以K﹣的初速度方向为正方向,由动量守恒定律得:P Kˉ=Pπ0﹣Pπ﹣解得:Pπ0=3Pπ﹣,则π﹣的动量大小与π0的动量大小之比为1:3;故选:C.12.【考点】动量守恒定律.【分析】炮弹在最高点水平,爆炸时动量守恒,由动量守恒定律可求出爆炸后另一块弹片的速度大小.【解答】解:爆炸过程系统动量守恒,爆炸前动量为mv,设爆炸后另一块瞬时速度大小为v′,取炮弹到最高点未爆炸前的速度方向为正方向,爆炸过程动量守恒,则有:mv= m•v′,解得:v′=v;故选:C.二、非选择题(共52分)13.【考点】动量守恒定律;功能关系.【分析】要使木块能绕O点在竖直平面内做圆周运动,应用牛顿第二定律求出木块在最高点的临界速度,在木块从水平面到达最高点的过程中,机械能守恒,由机械能守恒定律可以求出木块在最低点的速度,根据动量守恒求出最小速度.【解答】解:当木块恰好能绕O点在竖直平面内做圆周运动时,在最高点重力提供向心力,由牛顿第二定律得:(M+m)g=(M+m)代入数据解得:v1=2m/s,从最低点到最高点过程系统机械能守恒,由机械能守恒得:(M+m)v2=(M+m)v12+(M+m)g•2L代入数据解得:v=2m/s子弹射入木块过程系统动量守恒,以向右为正方向,由动量守恒定律得:mv0=(M+m)v代入数据解得:v0=80m/s;答:子弹射入的最小速度为80m/s.14.【考点】动量守恒定律.【分析】以小物块、斜面体组成的系统为研究对象,系统在水平方向不受外力,系统水平动量守恒.根据水平方向动量守恒列式求解斜面体运动的位移.【解答】解:以小物块、斜面体组成的系统为研究对象,系统在水平方向不受外力,因而水平动量守恒,到达最低点时,取水平向右为正方向,由水平动量守恒有:Mv﹣mv′=0且在任意时刻或位置v与v′均满足这一关系,加之时间相同,公式中的v和v′可分别用其水平位移替代,则上式可写为:M=m又由于l+l′=Lcosθ可得:斜面体运动的位移为l=Lcosθ.答:斜面体运动的位移为Lcosθ.15.【考点】动量守恒定律;机械能守恒定律.【分析】子弹射入沙袋过程,系统水平方向不受外力,系统的动量守恒.子弹打入沙袋后二者共同摆动的过程机械能守恒,当他们第1次返回图示位置时,速度大小等于子弹射入沙袋后瞬间的速度,根据动量守恒定律机械能守恒结合求解.【解答】解:弹丸击中砂袋瞬间,系统水平方向不受外力,动量守恒,设碰后弹丸和砂袋的共同速度为v1,细绳长为L,根据动量守恒定律有mv0=(m+5m)v1,砂袋摆动过程中只有重力做功,机械能守恒,所以=6mgL(1﹣cosθ)设第二粒弹丸击中砂袋后弹丸和砂袋的共同速度为v2,同理有:mv﹣(m+5m)v1=(m+6m)v2=7mgL(1﹣cosθ),联解上述方程得=答:两粒弹丸的水平速度之比为.16.【考点】动量守恒定律;动能定理的应用;功能关系.【分析】小滑块在木板上滑动过程,根据动能定理列方程,即可求解小滑块与木板间的摩擦力大小;先研究滑块在木块上向右滑动的过程,运用动能定理得到滑块与墙壁碰撞前瞬间的速度,滑块与墙壁碰撞后,原速率反弹,之后,向左运动,在摩擦力的作用下,木板也向左运动,两者组成的系统动量守恒,再对这个过程,运用动量守恒和能量守恒列方程,联立即可求解的值.【解答】解:小滑块以水平速度v0右滑时,由动能定理有:﹣fL=0﹣小滑块以速度v滑上木板到运动至碰墙时速度为v1,则由动能定理有:﹣fL=﹣滑块与墙碰后至向左运动到木板左端,滑块与木板组成的系统在水平方向的动量守恒,选取向左为正方向、木板的共同速度为v2,则有mv1=(m+4m)v2由总能量守恒可得:fL=﹣(m+4m)上述四式联立,解得=答:物块刚好能够滑到木板左端而不从木板上落下应满足为.17.【考点】动量守恒定律;匀变速直线运动的公式;机械能守恒定律.【分析】(1)根据牛顿第二定律求出小球运动的加速度大小,再根据匀变速直线运动的位移时间公式求出小球A与B碰撞的时间.(2)两球间碰撞力远大于电场力且作用时间极短,知碰撞的过程中动量守恒,根据动量守恒定律和机械能守恒定律求出小球A与小球B发生第一次碰撞后瞬间A、B两球的速度大小.(3)第一次碰撞后,小球A做初速度为0的匀加速直线运动,小球B以v B1'的速度做匀速直线运动,两小球发生第二次碰撞的条件是:两小球位移相等.根据动量守恒定律和机械能守恒定律,结合运动学公式两球第二次碰撞后的速度,再结合运动学公式求出发生第三次碰撞的时间.【解答】解:(1)小球A在电场力的作用下做匀加速直线运动,L=a=解得:.(2)小球A与小球B发生完全弹性碰撞,设A球碰前速度为v A1,碰后速度为v A1',B球碰前速度为0,碰后速度为v B1',m v A1=m v A1'+m v B1'联立得:v A1'=0v B1'=v A1v A1=at1=所以:v A1'=0,v B1'=(3)第一次碰撞后,小球A做初速度为0的匀加速直线运动,小球B以v B1'的速度做匀速直线运动,两小球发生第二次碰撞的条件是:两小球位移相等.设第二次碰撞A球碰前速度为v A2,碰后速度为v A2',B球碰前速度为v B2,碰后速度为v B2',v A2=at2=v B2=v B1'=.解得:v A2=at2=.m v A2+m v B2=m v A2'+m v B2'联立得:v A2'=v B2v B2'=v A2所以:v A2'=v B2'=第二次碰撞后,小球A做初速度为的匀加速直线运动,小球B以v B2'的速度做匀速直线运动,两小球发生第三次碰撞的条件是:两小球位移相等.设第三次碰撞A球碰前速度为v A3,碰后速度为v A3',B球碰前速度为v B3,碰后速度为v B3',v B3=v B2'=2解得:即完成第二次碰撞后,又经的时间发生第三次碰撞,该时间不再发生变化.答:(1)小球A与小球B发生第一次碰撞所需的时间为.(2)小球A与小球B发生第一次碰撞后瞬间A、B两球的速度大小分别是0,.(3)第二次碰撞后,又经发生第三次碰撞.18.【考点】动量守恒定律;平抛运动.【分析】木块离开桌面后做平抛运动,应用平抛运动规律可以求出木块离开桌面时的速度;橡皮泥击中木块过程系统动量守恒,应用动量守恒定律可以求出木块的速度;木块与橡皮泥一起在桌面上做匀减速直线运动,应用动能定理可以求出动摩擦因数.【解答】解:木块离开桌面后做平抛运动,在水平方向:s=v′t,在竖直方向:h=gt2,代入数据解得:v′=4m/s,橡皮泥击中木块过程系统动量守恒,以向右为正方向,由动量守恒定律得:mv0=(M+m)v,代入数据解得:v=5m/s,木块在桌面上运动过程由动能定理得:﹣μ(M+m)gx=(M+m)v′2﹣(M+m)v2,代入数据解得:μ=0.3;答:木块与桌面间的动摩擦因数为0.3.2019人教统编版高中物理选择性必修第一册第二章《机械振动》测试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共计100分。
第十一章 机械振动 单元测试卷(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I 卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II 卷时,将答案直接写在试卷上。
第I 卷(选择题 共48分)一、选择题(共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1、(2020·枣庄市第三中学高二月考)弹簧振子做简谐振动,若某一过程中振子的加速度在增加,则此过程中,振子的( )A .位移一定在减小B .速度一定在减小C .速度与位移方向相反D .加速度与速度方向相同2、(2020江苏宿豫中学高二月考)一个弹簧振子沿x 轴做简谐运动,取平衡位置O 为x 轴坐标原点,从某时刻开始计时,经过四分之一周期,振子具有沿x 轴正方向的最大加速度,能正确反映振子位移x 与时间t 关系的图像是( )3、(2020·北京市陈经纶中学高二期中)如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动,取向右为正方向,振子的位移x 随时间t 的变化如图乙所示,下列说法正确的是( )A .0.2t s =时,振子在O 点右侧6cm 处B .0.8t s =时,振子的速度方向向左C .0.4t s =和 1.2t s = 时,振子的加速度完全相同D .0.4t s =到 0.8t s = 的时间内,振子的速度逐渐减小4、弹簧振子的质量为M,弹簧劲度系数为k,在振子上放一质量为m的木块,使两者一起振动,如图所示.木块的回复力F′是振子对木块的摩擦力,F′也满足F′=-k′x,x是弹簧的伸长(或压缩)量,那么k k '为()A.mMB.mm M+C.Mm M+D.Mm5、(2019八一学校期中5)如图所示为一个单摆在地面上做受迫振动的共振曲线(振幅A与驱动力频率f的关系),则( )A.此单摆的固有周期约为1sB.此单摆的摆长约为lmC.若摆长增大,单摆的固有频率增大D.若摆长增大,共振曲线的峰将右移6、(2020·河北承德第一中学高二月考)如图所示,一质点做简谐运动,先后以相同的速度依次通过M、N两点,历时1 s,质点通过N点后再经过1 s又第2次通过N点,在这2 s内质点通过的总路程为12 cm。
人教版选择性必修第一册《第2章机械振动》单元测试卷(3)一、选择题(本题共12个小题每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一个选项正确,第9~12题不止一个选项正确。
全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1. 下列运动中不属于机械运动的有()A.人体心脏的跳动B.地球绕太阳公转C.小提琴琴弦的颤动D.电视信号的发送2. 如图所示,一弹性小球被水平抛出,在两个互相竖直平行的平面间运动,小球落在地面之前的运动()A.是机械振动,但不是简谐运动B.是简谐运动,但不是机械振动C.是简谐运动,同时也是机械振动D.不是简谐运动,也不是机械振动3. 一简谐运动的图象如图所示,在0.1∼0.15s这段时间内()A.加速度增大,速度变小,加速度和速度的方向相同B.加速度增大,速度变小,加速度和速度方向相反C.加速度减小,速度变大,加速度和速度方向相同D.加速度减小,速度变大,加速度和速度方向相反4. 某同学看到一只鸟落在树枝上的P处,树枝在10s内上下振动了6次.鸟飞走后,他把50g的砝码挂在P处,发现树枝在10s内上下振动了12次.将50g的砝码换成500g的砝码后,他发现树枝在15s内上下震动了6次,你估计鸟的质量最接近()A.50gB.200gC.500gD.550g5. 弹簧振子的振动周期为0.4s时,当振子从平衡位置开始向右运动,经1.26s时振子做的是()A.振子正向右做加速运动B.振子正向右做减速运动C.振子正向左做加速运动D.振子正向左做减速运动6. 如图所示,弹簧上端固定一质量为m的小球,小球在竖直方向做振幅为A的简谐运动,当小球振动到最高点时弹簧正好为原长,则小球在振动过程中()A.小球的最大动能应等于mgAB.弹簧的弹性势能和小球动能的总和保持不变C.弹簧的最大弹性势能等于2mgAD.小球在最低点时的弹力大于2mg7. 如图所示,一轻弹簧上端固定,下端系在甲物体上,甲、乙间用一不可伸长的轻杆连接,已知甲、乙两物体质量均为m,且一起在竖直方向上做简谐振动的振幅为A(A> mg).若在振动到达最高点时剪断轻杆,甲单独振动的振幅为A1,若在振动到达最低点k时间断轻杆,甲单独振动的振幅为A2.则()A.A2>A>A1B.A1>A>A2C.A>A2>A1D.A2>A1>A8. 如图所示,一质量为M的箱子B底部固定一根竖直放置劲度系数为k的弹簧,弹簧上端连接一质量为m的物体C,先将C物体下压一段距离释放,刚释放时弹簧形变量为Δx,释放后的运动过程中B物体未离开地面,以下说法正确的是()A.M质量一定大于mB.C将做振幅为Δx的简谐振动C.C运动过程中机械能守恒D.若C振动周期为T,从释放开始,以竖直向下为正方向,箱子对地面的压力(M+m)g+k(Δx−mgk )cos2πTt9. 一物体做受迫振动,驱动力的频率小于该物体的固有频率。
高二物理单元测验题 第11章 《机械振动》班级 学号 姓名 成绩(总分100分 完成时间40分钟)一、不定项选择题(每题5分,共50分。
选不全得3分,错选不得分) 1、弹簧振子做简谐运动时,以下说法正确的是( ) A .振子通过平衡位置时,回复力一定为零 B .振子做减速运动时,加速度却在增大C .振子向平衡位置运动时,加速度方向与速度方向相反D .振子远离平衡位置运动时,加速度方向与速度方向相反 2、单摆的振动周期在发生下述哪些情况中增大( )A .摆球质量增大B .摆长减小C .单摆由赤道移到北极D .单摆由海平面移到高山顶上3、一洗衣机在正常工作时非常平稳,当切断电源后发现先是振动越来越剧烈,然后振动逐渐减弱,对这一现象下列说法正确的是( )A .正常工作时,洗衣机波轮的运转频率大于洗衣机的固有频率B .正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率小C .当洗衣机振动最剧烈时,波轮的运动频率恰好等于洗衣机的固有频率D .当洗衣机振动最剧烈时,固有频率最大4、如图1所示的实线和虚线分别表示同一个单摆在A 、B两个大小相同的星球表面上的振动图象。
其中实线是A 星球上的,虚线是B 星球上的,那么两个星球的平均密度之比B A ρρ: 为( )A . 1 : 1B . 1 : 2C . 61 : 1D . 1 :4 5、一个单摆在山脚下经t 0的时间内振动了N 次,将此单摆移至山顶后发现在t 0的时间内振动了N -1次,若山脚距地心的距离为R 0,则此山的高度为( ) A . R 0 / N B . R 0 /(N -1)C . R 0 /(N +1)D . (N -1)R 0 /(N +1)6、劲度系数为k的轻质弹簧,下端挂质量为m的小球,小球静止时离地面高为h,用力向下拉球,使之与地面接触,而后从静止放开小球(弹簧未超过弹性限度)则( ) A 球在运动过程中,距地面的最大高度为2h B 球在上升过程中弹性势能不断减少 C 球距地面高度为h 时,速度最大 D 球的最大加速度为 kh /m7、如图2所示,一弹簧振子A 沿光滑水平面做简谐运动,在振幅相同的条件下,第一次当振子A 通过平衡位置时,将一块橡皮泥B 轻粘在A 上共同振动,第二次当振子A 刚好位移最大时将同一块橡皮泥B 轻粘在A 上共同振动,前后两次B 粘在A 上之后的振动-2图2过程中,具有不同的物理量是( )A .振动的周期B .振幅C .最大速度D .振动的频率8、一弹簧振子做简谐振动,从振子经过某一位置开始计时,下列说法正确的是( ) A 若Δt =T /2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等B 当振子的速度再次与零时刻的速度相同时,经过的时间为一个周期C 当振子经过的路程为振幅的4倍时,经过的时间为一个周期D 当振子再次经过此位置时,经过的时间是一个周期9、一个质点做简谐运动的图象如图3所示,下述正确的是( )A 质点振动频率为4赫兹B 在10 s 内质点经过的路程是20 cmC 在5 s 末,速度为零,加速度最大D t = 1.5 s 和t = 4.5 s 两时刻质点的速度相同,加速度相同10、卡车在水平道路上行驶,货物随车厢底板上下振动而不脱离底板,设货物的振动为简谐运动,以向上的位移为正,其振动图象如图4所示。
选修3-4单元试卷 机械振动与机械波一、本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1、简谐振动属于( )A 、匀变速直线运动B 、匀速直线运动C 、曲线运动D 、变速运动 2、下列几种情况中,能发生明显衍射现象的是:( ) A .障碍物或孔的尺寸与波长相等 B .障碍物或孔的尺寸比波长小 C .障碍物或孔的尺寸跟波长差不多D .波长比障碍物或孔的尺寸小得多3、如图1所示是一弹簧振子在水平面内作简谐运动的x-t 图象,则振动系统在( ) A .t l 和t 3时刻具有相同的动能和速度 B .t 3和t 4时刻具有相同的势能和速度 C .t l 和t 5时刻具有相同的加速度D .t 3和t 5时刻,振子所受回复力相等4、图中所示为一简谐横波在某一时刻的波形图,已知此时质点A 正向上运动,如图中箭头所示,由此可断定此横波:( ) A 向右传播,且此时质点B 正向上运动 B 向右传播,且此时质点C 正向下运动 C 向左传播,且此时质点D 正向上运动 D 向左传播,且此时质点E 正向下运动5、如图3所示,在一根弹性木条上挂几个摆长不等的单摆,其中A 、E 的摆长相等,A 摆球的质量远大于其他各摆。
当A 摆振动起来后,带动其余各摆也随之振动,达到稳定后,以下关于各摆的振动的说法,正确的是:( ) A .各摆振动的周期都相等 B .C 摆振动的振幅最大C .B 、C 、D 、E 四摆中,E 摆的振幅最大 D .C 摆振动的周期最大 6、如图4所示,一列简谐横波沿x 轴正方向传播,从波传到x=5m 的M点时开始计时,已知P 点相继出现两个波峰的时间间隔为0.4s ,下面说法中正确的是 ( ) A .这列波的波长是4mB .这列波的传播速度是10m/s图 1 图 3C .质点Q (x=9m )经过0.5s 才第一次到达波峰D .M 点以后各质点开始振动时的方向都是向下7、如图5所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧,则 ( )A.最大振幅A 是k mg,在这个振幅下弹簧对小球的最大弹力F m 是2mgB.最大振幅A 是k mg,在这个振幅下弹簧对小球的最大弹力F m 是mgC.最大振幅A 是k mg2,在这个振幅下弹簧对小球的最大弹力F m 是mgD.最大振幅A 是kmg 2,在这个振幅下弹簧对小球的最大弹力F m 是2mg 8、如图6所示,一根张紧的水平弹性长绳上的a ,b 两点,相距14.0m ,b 点在a 点的右方,当一列简谐横波沿此长绳向右传播时,若a 点的位移达到正最大时,b 点的位移恰为零且向下运动。
《机械振动》单元测试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会()A.偏大B.偏小C.一样D.都有可能3.下列说法中不正确的是( )A.将单摆从地球赤道移到南(北)极,振动频率将变大B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变4.甲、乙两单摆的振动图像如图所示,由图像可知A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等5.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A.弹簧的弹性势能和物体动能总和不变B.物体在最低点时的加速度大小应为2gC.物体在最低点时所受弹簧的弹力大小应为mgD.弹簧的最大弹性势能等于2mgA6.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为l,则重力加速度g为( )A.224ltπB.22ltπC.2249ltπD.224ltπ7.如图所示的弹簧振子在A、B之间做简谐运动,O为平衡位置,则下列说法不正确的是()A.振子的位移增大的过程中,弹力做负功B.振子的速度增大的过程中,弹力做正功C.振子的加速度增大的过程中,弹力做正功D.振子从O点出发到再次回到O点的过程中,弹力做的总功为零8.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是A.甲乙两个单摆的振幅之比是1:3B.甲乙两个单摆的周期之比是1:2C.甲乙两个单摆的摆长之比是4:1D.甲乙两个单摆的振动的最大加速度之比是1 :49.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A.摆动的周期为5 6 TB.摆动的周期为6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h10.如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为()A.B.C.D.11.如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m.t=0时刻,一小球从距物块h高处自由落下;t=0.6s时,小球恰好与物块处于同一高度.取重力加速度的大小为g=10m/s2.以下判断正确的是______(双选,填正确答案标号)A.h=1.7mB.简谐运动的周期是0.8sC.0.6s内物块运动的路程是0.2mD.t=0.4s时,物块与小球运动方向相反12.甲、乙两弹簧振子,振动图象如图所示,则可知()A.甲的速度为零时,乙的速度最大B.甲的加速度最小时,乙的速度最小C.任一时刻两个振子受到的回复力都不相同D.两个振子的振动频率之比f甲:f乙=1:2E.两个振子的振幅之比为A甲:A乙=2:113.某弹簧振子在水平方向上做简谐运动,其位移x=A sin ωt,振动图象如图所示,则()A.弹簧在第1 s末与第5 s末的长度相同B.简谐运动的频率为18 HzC.第3 s末,弹簧振子的位移大小为2 2AD.第3 s末与第5 s末弹簧振子的速度方向相同E.第5 s末,振子的加速度与速度方向相同14.如图所示是单摆做阻尼振动的振动图象,下列说法正确的是()A.摆球A时刻的动能等于B时刻的动能B.摆球A时刻的势能等于B时刻的势能C.摆球A时刻的机械能等于B时刻的机械能D.摆球A时刻的机械能大于B时刻的机械能15.一质点做简谐运动的位移x与时间t的关系如图所示,由图可知( )A .频率是2HzB .振幅是5cmC .t =1.7s 时的加速度为正,速度为负D .t =0.5s 时,质点所受合外力为零 E.t =0.5s 时回复力的功率为零 16.下列说法中正确的有( ) A .简谐运动的回复力是按效果命名的力 B .振动图像描述的是振动质点的轨迹C .当驱动力的频率等于受迫振动系统的固有频率时,受迫振动的振幅最大D .两个简谐运动:x 1=4sin (100πt +3π) cm 和x 2=5sin (100πt +6π) cm ,它们的相位差恒定17.一水平弹簧振子做简谐运动,周期为T ,则( )A .若t T =,则t 时刻和()t t +时刻振子运动的加速度一定大小相等B .若2Tt =,则t 时刻和()t t +时刻弹簧的形变量一定相等 C .若t 时刻和()t t +时刻振子运动位移的大小相等,方向相反,则t 一定等于2T的奇数倍D .若t 时刻和()t t +时刻振子运动速度的大小相等,方向相同,则t 一定等于2T的整数倍18.如图所示,虚线和实线分别为甲、乙两个弹簧振子做简谐运动的图象.已知甲、乙两个振子质量相等,则( )A .甲、乙两振子的振幅分别为2cm 、1cmB .甲、乙两个振子的相位差总为πC .前2秒内甲、乙两振子的加速度均为正值D .第2秒末甲的速度最大,乙的加速度最大19.如图所示,两根完全相同的轻质弹簧和一根绷紧的轻质细线将甲、乙两物块束缚在光滑水平面上.已知物块甲的质量是物块乙质量的4倍,弹簧振子做简谐运动的周期2mT kπ=,式中m 为振子的质量,k 为弹簧的劲度系数.当细线突然断开后,两物块都开始做简谐运动,在运动过程中,下列说法正确的是________.A .物块甲的振幅是物块乙振幅的4倍B .物块甲的振幅等于物块乙的振幅C .物块甲的最大速度是物块乙最大速度的12D .物块甲的振动周期是物块乙振动周期的2倍 E.物块甲的振动频率是物块乙振动频率的2倍20.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大二、机械振动 实验题21.在“利用单摆测重力加速度”的实验中:(1)测得摆线长l 0,小球直径D ,小球完成n 次全振动的时间为t ,则实验测得的重力加速度的表达式g =___(2)实验中如果重力加速度的测量值偏大,其可能的原因是(_____) A .把摆线的长度l 0当成了摆长B .摆线上端未牢固地固定于O 点,振动中出现松动,使摆线变长C .测量周期时,误将摆球(n -l )次全振动的时间t 记成了n 次全振动的时间D .摆球的质量过大(3)如图所示,停表读数为___s .(4)同学因为粗心忘记测量摆球直径,实验中将悬点到小球下端的距离作为摆长l ,测得多组周期T 和l 的数据,作出2l T 图象,如图所示.则该小球的直径是___cm (保留一位小数);实验测得当地重力加速度大小是___m/s 2 (取三位有效数字).22.物理实验小组的同学做“用单摆测重力加速度”的实验. (1)实验室有如下器材可供选用: A .长约1 m 的细线 B .长约1 m 的橡皮绳 C .直径约为2 cm 的均匀铁球 D .直径约为5 cm 的均匀木球 E .秒表 F .时钟G .最小刻度为毫米的刻度尺实验小组的同学需要从上述器材中选择________(填写器材前面的字母).(2)下列振动图象真实地描述了对摆长约为1 m 的单摆进行周期测量的四种操作过程,图中横坐标原点O 为计时起点,A 、B 、C 、D 均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号).A .B .C .D .(3)某同学利用单摆测重力加速度,测得的g 值与真实值相比偏大,可能的原因是________.A .测摆长时记录的是摆线的长度B .开始计时时,秒表过早按下C .摆线上端未牢固地系于悬点,摆动中出现松动,使摆线长度增加了D .实验中误将29次全振动数记为30次23.某实验小组的同学做“用单摆测定重力加速度”的实验。
高二物理机械振动单元测试题
时间:90分钟 总分:100分
一、选择题(每小题3分,共30分)
1.弹簧振子作简谐运动,t 1时刻速度为v ,t 2时刻也为v ,且方向相同。
已知(t 2-t 1)小于周期T ,则(t 2-t 1)
A .可能大于四分之一周期
B .可能小于四分之一周期
C .一定小于二分之一周期
D .可能等于二分之一周期
2.一弹簧振子的振幅为A ,下列说法正确的是
A .在T /4时间内,振子发生的位移一定是A ,路程也是A
B .在T/4时间内,振子发生的位移不可能是零,路程不可能为A
C .在T /2时间内,振子发生的位移一定是2A ,路程一定是2A
D .在T 时间内,振子发生的位移一定为零,路程一定是4A 3.某单摆的振动图象如右图所示,这个单摆的最大偏角最接近
A .2°
B .3°
C .4°
D .5°
4.如图所示,置于地面上的一单摆在小振幅条件下摆动的周期为T 0
A .单摆摆动的过程,绳子的拉力始终大于摆球的重力
B .单摆摆动的过程,绳子的拉力始终小于摆球的重力
C .将该单摆悬挂在匀减速下降的升降机中,其摆动周期T < T 0
D .将该单摆置于高空中相对于地球静止的气球中,其摆动周期T > T 0
5.一物体在某行星表明所受万有引力是在地球表面时的16,在地球上走得很准的摆钟搬到该行星上,分针走一圈所用时间实际是
A .1/4h
B .1/2h
C .3h
D .4h
6.如图所示,固定曲面AC 是一段半径为4.0米的光滑圆弧形成的,
圆弧与水平方向相切于A 点,AB =10cm ,现将一小物体先后从斜面顶端C 和斜面圆弧部分中点D 处由静止释放,到达斜曲面低端时速度分别为v 1和
v 2,所需时间为t 1和t 2,以下说法正确的是:
A .v 1 > v 2 , t 1 = t 2
B .v 1 > v 2 , t 1 > t 2
C .v 1 < v 2 , t 1 = t 2
D .v 1 < v 2 , t 1 > t 2 7.如图所示,一轻弹簧与质量为m 的物体组成的弹簧振子,物体在同一条竖直线上的A 、B 间作简谐运动,O 为平衡位置,C 为AO 的中点,已知OC =h ,振子的周期为T ,某时刻物体恰好经过C ,则从该时
刻开始的半个周期内,下列说法错误..
的是 A .重力做功2mgh
B .重力的冲量大小为mgT /2
C .回复力做功为零
D .回复力的冲量为零
8.在张紧的绳子上挂了a 、b 、c 、d 四个单摆,摆长关系为L c > L b = L d > L a ,如图所示,先让d 摆动起来(摆角不超过10°)则下列说法正确的是
A .b 摆发生振动其余摆均不动
B .所有的摆均以g L d 2的周期振动
C .所有的摆均以相同摆角振动
D .a 、b 、c 中b 摆振动幅度最大 9.原长为30cm 的轻弹簧竖立于地面,下端与地面固定,质量为m =0.lkg 的物体放到弹簧顶部,物体静止平衡时弹簧长为26cm .如果物体从距地面l30cm 处自由下落到弹簧上,当物体压缩弹簧到距地面22cm 时,
不计空气阻力,取g =10m/s 2,重物在地面时重力势能为零,则
A .物块的动能为1J
B .物块的重力势能为1.08J
C .弹簧的弹性势能为0.08J
D .物块的动能与重力势能之和为2.16J
10.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如右图所示,(悬点和小钉未被摄入),P 为摆动中的最低点。
已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为 A .L /4 B .L /2 C .3L /4 D .无法确定 二、填空题(第15题5分,第16题7分,其余每小题4分,共28分)
11. 两个摆长相同的单摆,摆球质量之比是4:1,在不同地域振动,当甲摆振动4次的同时,乙摆恰振动5次,则甲、乙二摆所在地区重力加速度之比为 。
12、做简谐运动的弹簧振子的振幅是A ,最大加速度的值为a 0,那么在位移x =12
A 处,振子的加速度值a =__________a 0。
13.将一个摆长为l 的单摆放在一个光滑的、倾角为α的斜面上,如下图所示,则此单摆做简谐振动的周期为 。
14.如图所示,两木块A 和B 叠放在光滑水平面上,质量分别为m 和M ,A 与B 之间的最大静摩擦力为f ,B 与劲度系数为k 的轻质弹簧连接构成弹簧振子。
为使A 和B 在振动过程中不发生相对滑动,则它们的振幅不能大于 ,它们的最大加速度不能大于 。
15.如图给出两个弹簧振子A 、B 做简谐运动的图象,则在8s-10s 内,A 的速度方向沿 ,大小在逐渐 ;而B 在这段时间内,其加速度方向沿 ,大小在逐渐 。
在t =10s 时,
A 、
B 振子都通过平衡位置,并且它们的速度大小相等、方向相反,从此时起,再经过 的时间,它们再同时通过平衡位置且速度相同.
16.用单摆测重力加速度时
(1) 摆球应采用直径较小,密度尽可能_____的球,摆线长度要在1米以上,用细而不易______的尼龙
线.
(2) 摆线偏离竖直方向的角度θ应_______
(3) 要在摆球通过________位置时开始计时,摆线每经过此位置______次才完成一次全振动
(4) 摆球应在________面内摆动,每次计时时间内,摆球完成全振动次数一般选为___ ____次。
三、计算题(共42分)
17.(10分)观察振动原理的应用:心电图仪是用来记录心脏生物电的变化规律的装置,人的心脏跳动时会产生一股股强弱不同的生物电,生物电的变化可以通过周围组织传到身体的表面.医生用引导电极放置于肢体或躯体的一定部位就可通过心电图仪记录出心电变化的波动曲线,这就是心电图.请去医院进行调查研究.下面是甲、乙两人在同一台心电图机上作出的心电图分别如图甲、乙所示,医生通过测量后记下甲的心率是60次/分.试分析:
(1)该心电图机图纸移动的速度;
(2)乙的心动周期和心率.
N P
M α θ 第13题图 B A 第14题图 第15题图 1 0.8 0 -1 10 20 t/s x/cm -0.8 A B
18.(10分)如图所示,单摆摆长为 L ,做简谐运动,C 点在悬点O 的正下方,D 点与C 相距为S ,C 、D 之间是光滑水平面,当摆球A 到左侧最大位移处时,小球B 从D 点以某一速度匀速地向C 点运动,A 、B 二球在C 点迎面相遇,求小球B 的速度大小.
19.(10分)水平轨道AB 在B 点处与半径R =300m 的光滑弧形轨道BC 相切,一个质量为0.99kg 的木块静止在B 处,现有一颗质量为10g 的子弹以500m/s 的水平速度从左边射入木块未穿出,如下图所示,已知木块与该水平轨道AB 的动摩擦因数μ=0.5,g 取10m/s 2.试求子弹射人木块后,木块需经过多长时间停止?(cos5°=0.996)
20.(12分)如图所示,质量为m 的木块放在竖直的弹簧上,m 在竖直方向做简谐运动,当振幅为A 时,物体对弹簧的压力最小值为物体自重的0.5倍,求:①物体对弹簧压力的最大值,②欲使物体在振动中不离开弹簧,其振幅不能超过多少。
[参考答案]
一、选择题
1、AB
2、D
3、B
4、CD
5、A
6、A
7、D
8、BD 9、AC 10、C
二、填空题
11、16∶25 12、0.5 13、α
πsin 2g l 14、km f m M )(+ m f 15、-x 方向 增大 +x 方向 减小 20s(提示:当同时经过平衡位置且速度同向时,其中一摆将多振动半次,故应有:2A B A T nT nT =-或2
B A B T nT nT =+,两式中谁解出的n 是整数谁就成立。
) 16、(1)大 形变或伸长 (2)小于10° (3)平衡位置 2 (4)同一竖直平 30~50
17、(1)25mm/s (2)0.8s 75次/分
18、443
v n =+m/s ,(n = 0、1、2、……) 19、18.2s(注意:要通过计算说明木块在BC 段的运动是单摆模型)
20、①1.5mg ②2A。