分子间力和氢键 ppt课件
- 格式:ppt
- 大小:997.00 KB
- 文档页数:11
分子间的力范德华力和氢键分子间的力:范德华力和氢键分子间的力是指分子之间相互作用的力,其中范德华力和氢键是两种常见的分子间力。
本文将对这两种力进行介绍和解析。
一、范德华力范德华力(van der Waals force)是一种相互吸引的力,起因于分子内部电荷分布的不均匀性。
它可以分为三种类型:弱的分散力(London力)、较强的取向力和最强的诱导力。
1. 分散力(London力)分散力是最弱的一种范德华力,主要存在于非极性分子之间。
分子内由于电子云的运动造成瞬时偶极矩的形成,进而引发相邻分子的极化作用,使它们之间发生吸引。
这种吸引力是瞬时性的,范德华力是由于瞬时偶极矩之间相互作用而形成的。
2. 取向力取向力是存在于极性分子之间的范德华力,是由于分子内的极性键引起的。
它是根据分子极性键的方向而产生的相互作用,类似于磁铁的N极和S极之间的吸引力。
3. 诱导力诱导力是范德华力中最强的一种类型,是由于一种分子的极化而诱发另一种分子的极化。
当一个非极性分子接近一个由极性键组成的分子时,它会被诱导成有临时极性,这样会引发两种分子之间的相互吸引。
总结:范德华力是一种微弱但广泛存在的分子间作用力,它对物质的性质和相互作用具有重要影响。
二、氢键氢键(hydrogen bond)是分子间的一种特殊强力相互作用,主要存在于带有氢原子的分子中。
氢键可以发生在分子中的氢与另一个带有电负性原子(如氮、氧和氟)之间的相互作用。
氢键的形成是通过氢原子与接受者原子形成一个氢和一个共价键,同时将电子密度极大地转移到接受者原子上。
氢键通常是可逆的,并且在分子之间形成临时的化学键,类似于范德华力的诱导力。
氢键的强度通常比较大,可以影响物质的性质和化学反应。
三、范德华力与氢键的区别范德华力和氢键虽然都属于分子间作用力,但是它们有一些明显的区别。
1. 强度不同:范德华力相对较弱,而氢键相对较强。
2. 形成条件不同:范德华力主要由于分子内电荷的不均匀性形成,而氢键则是通过氢原子和电负性原子之间的相互作用形成。
分子间作用力和氢键我们已讨论了三类化学键(离子键、共价键、金属键),它们都是分子内部原子间的作用力。
原子通过这些化学键组合成各种分子和晶体。
除此之外,分子与分子之间还存在着一种较弱的相互作用,大约只有几个到几十个KJ·mol-1,比化学键小一、二个数量级,这种分子间的作用力称为范德华尔力。
它是决定物质熔点、沸点、溶解度等物理化学性质的一个重要因素。
【分子的极性】分子极性的强弱,可以用偶极矩(μ)表示。
分子偶极矩定义为:偶极长(极性分子正负电荷之重心间的距离d与偶极电荷q的乘积,即:μ=q ×d◆分子的偶极矩是个矢量,正偶极子指向负偶极子。
对双原子分子而言,分子偶极矩等于键的偶极矩;对多原子分子而言,分子偶极矩则等于各个键的偶极矩的矢量和。
◆多原子分子的极性不但取决于键的极性,而且取决于分子的几何形状,例如:SO2、CO2中S=O键、C=O都是极性键,但因为CO2是直线型结构,键的极性相互抵消,正负电荷重心重叠,所以,CO2是非极性分子。
相反,SO2为V 型结构,正负电荷重心不能重合,因而SO2是极性分子。
◆具有对称结构(直线型、平面三角形、正四面体)的多原子分子,偶极矩为零,为非极性分子;结构不对称(V型、四面体、三角锥型)的多原子分子,偶极矩不为零,为极性分子◆单质分子的偶极距不一定为0,如O3◆键的偶极长不是核间距,HF、HCl、HBr、HI的偶极长降低(两原子电负性差值越大,键的偶极长越大)◆CO分子中,C原子有一个空的2p z轨道,接受了O原子的一对电子,从而使分子的负电重心移向了C原子因为一个电子所带电量为4.8×10-10静电单位,而偶极长d相当于原子间距离,其数量级为10-8 cm。
通常把10-18厘米·静电单位作为偶极矩μ的单位,称为“德拜”(Debye)用D表示。
偶极矩是一个矢量,可以通过实验测得。
偶极矩越大,分子极性越大,偶极矩μ=0,它是非极性分子。