生物统计卡平方测验
- 格式:pptx
- 大小:459.31 KB
- 文档页数:25
第八章卡平方(χ2)测验知识目标:●理解卡平方(χ2)的概念;●掌握适合性测验的方法;●掌握独立性测验的方法;●了解卡平方(χ2)的可加性和联合分析。
能力目标:●学会适合性测验的方法;●学会独立性测验的方法;前面介绍了数量性状资料的统计分析方法。
在生物和农业科学研究中,还有许多质量性状的资料,这样的资料可以转化为次数资料。
间断性变数的计数资料也可整理为次数资料。
凡是试验结果用次数表示的资料,皆称为次数资料。
次数资料的统计分析方法有二项分布的正态接近法和卡平方(χ2)测验法等。
本章主要介绍卡平方测验。
第一节卡平方(χ2)测验一、卡平方(χ2)概念为了便于理解,现结合一实例说明χ2统计量的意义。
菠菜雌雄株的性比为1:1,今观测200株菠菜,其中有92棵雌株,108棵雄株。
按1:1的性比计算,雌、雄株均应为100株。
以O表示实际观察次数,E表示理论次数,可将上述情况列成表8-1。
表8-1 菠菜雌雄株实际观测株数与理论株数的比较性别观测株数O理论株数EO-E(O-E)2/E雌92(O1)100(E1)-8 0.64雄108(O2)100(E2)8 0.64合计200 200 0 1.28从表8-1看到,实际观察次数与理论次数存在一定的差异,这里雌、雄各相差8株。
这个差异是属于抽样误差,还是菠菜雌雄性比发生了实质性的变化?要回答这个问题,首先需要确定一个统计量用以表示实际观察次数与理论次数偏离的程度,然后判断这一偏离程度是否属于抽样误差,即进行显著性测验。
为了度量实际观察次数与理论次数偏离的程度,最简单的办法是求出实际观察次数与理论次数的差数。
从表8-1看出:O1-E1= 8,O 2-E 2=8,由于这两个差数之和为0, 显然不能用这两个差数之和来表示实际观察次数与理论次数的偏离程度。
为了避免正、负抵消,可将两个差数O 1-E 1、O 2-E 2平方后再相加,即计算∑-2)(E O ,其值越大,实际观察次数与理论次数相差亦越大,反之则越小。
研究生?生物统计学?课程上机内容第四讲:独立性检验与二项分布检验独立性检验〔χ2检验〕与二项分布检验:是针对离散型数据的检验,在生物科学研究中,除了分析计量资料外,还常常需要对质量性状和质量反响的次数资料进展分析,其变异情况只能用分类计数的方法加以表示,属于计数资料。
本次主要练习:⑴卡方检验〔独立性检验〕:[Analyze]=>[Decriptive Statistics]〔描绘性统计〕=>[Crosstabs]〔穿插列联表过程〕⑵二项分布检验:[Analyze]=>[Nonparametric Tests] 〔非参数检验〕=>[Binominal]〔二项分布〕一、独立性检验〔一〕2×2列联表独立性检验案例:下表给出不同给药方式与给药效果,问口服与注射两种给药方式的效果差异是否显著?SPSS操作:(1)建立数据文件:在Variable View中定义三个变量〔方式、效果、计数〕,其中“方式〞、“效果〞的变量类型定义为字符串〔string〕型,“计数〞定义为数值〔Numeric〕型;在Data View中输入数据;(2)用Weight Cases对频数变量“计数〞进展加权: [Data]=>[Weight Cases],弹出对话框,选中“Weight cases by〞,将“计数〞导入“Frequency Variable〞框中,<OK> (3)卡方分析:1) [Analyze]=>[Decriptive Statistics] =>[Crosstabs],弹出对话框,将“方式〞导入[Row(s)]中,将“效果〞导入[Column(s)]中;2)点击[Statistics],弹出对话框,选中[Chi-square]〔卡方检验〕,continue返回;3)点击[Cells],弹出对话框,选中Counts下的[Expected]〔显示理论值〕,continue 返回;4)OK,运行结果输出到output窗口。
SPSS170在生物统计学中的应用实验七卡方检验汇总在生物统计学中,卡方检验(Chi-square test)被广泛应用于分析分类数据,特别是用于比较观察到的频数与期望频数之间的差异。
该检验可以用于研究不同组群的差异、评估变量之间的关系,以及分析遗传数据等。
下面将概述生物统计学中卡方检验的应用,并举例说明其在实验七中的具体应用。
卡方检验的基本假设是观察到的频数与期望频数之间没有显著差异。
在生物统计学中,卡方检验可以用于比较不同组群之间的离散变量,例如比较不同亚型的基因分布、不同药物治疗组的治疗效果等。
此外,卡方检验也可以用于分析遗传数据,例如遗传比例和基因型分布之间的差异。
在实验七中,我们可以运用卡方检验来分析两种不同的遗传特性之间是否存在关联。
例如,我们可以研究在果蝇种群中,翅膀颜色(黄色或灰色)与眼睛颜色(红色或白色)之间的关系。
我们可以观察到不同翅膀颜色和眼睛颜色组合的频数,并与期望频数进行比较。
如果观察到的频数与期望频数之间存在显著差异,则说明翅膀颜色和眼睛颜色之间存在关联。
下面是实验七中对卡方检验的具体步骤和操作:1.设定零假设和备择假设:-零假设(H0):翅膀颜色和眼睛颜色之间不存在关联。
-备择假设(H1):翅膀颜色和眼睛颜色之间存在关联。
2.收集数据:-记录不同翅膀颜色和眼睛颜色组合的频数。
3.计算期望频数:-根据零假设计算期望频数,期望频数等于每个组合的行边际频数乘以列边际频数,然后除以总频数。
4.计算卡方统计量:-计算卡方统计量,它衡量了观察到的频数与期望频数之间的差异程度。
5.计算自由度:-自由度等于(行数-1)乘以(列数-1)。
6.查找卡方分布表:-使用自由度找到相应的临界值,该值可以帮助我们决定是否拒绝零假设。
7.进行假设检验:-比较计算得到的卡方统计量和临界值,如果卡方统计量大于临界值,则拒绝零假设,否则不拒绝零假设。
8.解释结果:-如果拒绝零假设,说明翅膀颜色和眼睛颜色之间存在关联;如果不拒绝零假设,说明翅膀颜色和眼睛颜色之间没有关联。