比较, 比较,
则否定H 接受H 如果 ,则否定H0接受HA,即试验总体 不符合理论假设.反之则相反.(P147,例题) 不符合理论假设.反之则相反. P147,例题) 例题
2 X 2 ≥ X α ,( df )
当属性类别数大于2 当属性类别数大于2时,可利用下面的简化 2 公式计算。 公式计算。
Oi 1 χ = ∑ −T T pi
2 0.025
f (χ 2 )
0.6 0.5
不同自由度的分布曲线
0.4
ν =1
0.3
0.2
ν =3
ν =5
0.1
0.0 0 2 4 6 8 10 12
χ2
(二).X2分布的特点
1.X2分布是连续性分布,取值区间为[0, +∞),平 分布是连续性分布,取值区间为[0, ),平 连续性分布 方差为2df 均数µ x2 = df 方差为2df 分布的形状决定于自由度df, df=1时 形状决定于自由度df 2.X2分布的形状决定于自由度df,当df=1时,曲线极 度左偏,呈反J 随着df增大, df增大 度左偏,呈反J形;随着df增大,曲线逐渐趋向对称而 接近于正态分布. df→∞时为正态分布 时为正态分布. 接近于正态分布.当df→∞时为正态分布. 分布是一组动态变化曲线. 一组动态变化曲线 3.X2分布是一组动态变化曲线. 2分布具有可加性,若 x ~ χ 2 , x ~ χ 2 可加性, 4.X 分布具有可加性 1 (n) 2 (m) 则
第三节 独立性测验
什么是独立性测验? 一.什么是独立性测验? 对次数资料探求两个变量间是否彼此独立 的假设检验. 的假设检验.
二.独立性测验的步骤
1.提出假设H 两个变量相互独立; 1.提出假设H0:两个变量相互独立; HA两个 提出假设 变量彼此相关. 变量彼此相关. 2.确定显著水平 2.确定显著水平 3.根据2个变量相互独立的假设, 3.根据2个变量相互独立的假设,计算每一 根据 组的理论数,再计算X 组的理论数,再计算X2值. 4.推断:当算得的X ,则接受 则接受H 4.推断:当算得的X2值< X α2,( df ) ,则接受H0,即 推断 两个变量独立.反之则相反. 两个变量独立.反之则相反.