第九讲 卡方检验
- 格式:ppt
- 大小:569.50 KB
- 文档页数:12
卡方检验及其应用一、卡方检验概述:卡方检验主要应用于计数数据的分析,对于总体的分布不作任何假设,因此它属于非参数检验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观察次数(f o )与理论次数(f e ),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:)(n f f f ee 2202~)(χχ∑-= 这是卡方检验的原始公式,其中当f e 越大,近似效果越好。
显然f o 与f e 相差越大,卡方值就越大;f o 与f e 相差越小,卡方值就越小;因此它能够用来表示f o 与f e 相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
一般用卡方检验方法进行统计检验时,要求样本容量不宜太小,理论次数≥5,否则需要进行校正。
如果个别单元格的理论次数小于5,处理方法有以下四种:1、单元格合并法;2、增加样本数;3、去除样本法;4、使用校正公式。
当某一期望次数小于5时,应该利用校正公式计算卡方值。
公式为:∑--=ee f f f 202)5.0(χ二、卡方检验的统计原理:• 卡方检验所检测的是样本观察次数﹙或百分比﹚与理论或总体次数﹙或百分比﹚的差异性。
• 理论或总体的分布状况,可用统计的期望值(理论值)来体现。
• 卡方的统计原理,是取观察值与期望值相比较。
卡方值越大,代表统计量与理论值的差异越大,一旦卡方值大于某一个临界值,即可获得显著的统计结论。
三、卡方检验的主要应用: 1、独立性检验独立性检验主要用于两个或两个以上因素多项分类的计数资料分析,也就是研究两类变量之间的关联性和依存性问题。
如果两变量无关联即相互独立,说明对于其中一个变量而言,另一变量多项分类次数上的变化是在无差范围之内;如果两变量有关联即不独立,说明二者之间有交互作用存在。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。
统计学中的卡方检验原理卡方检验是统计学中常用的一种假设检验方法,用于判断观察值与期望值之间的差异是否具有统计学意义。
它的原理和步骤如下:一、问题描述与假设建立在进行卡方检验前,首先需要明确研究的问题,并建立相应的假设。
以一个实例来说明,假设我们想研究男女之间是否存在不同的喜欢的颜色偏好。
我们将男女作为两个分类变量,颜色(如红、黄、蓝)作为一个分类变量,我们想知道男女对这些颜色有无统计学上的差异。
这个问题的原假设(H0)是:男女对颜色的喜好没有差异。
对立假设(H1)是:男女对颜色的喜好存在差异。
二、计算卡方值计算卡方值需要先构建列联表,列联表是将观察值按照不同的组合进行汇总,形成一个二维表格。
以男女喜欢的颜色偏好为例,假设我们调查了100位男性和100位女性,得到了以下的统计数据:红色黄色蓝色男性 30 40 30女性 50 30 20由上表可知,我们可以计算出男性对于红色的期望值:男性对红色的期望频数 = (男性总数/总样本数) * 红色总频数 =(100/200) * (30 + 50) = 80/200 = 40同理,我们可以计算出男性对黄色和蓝色的期望频数,以及女性对各个颜色的期望频数。
计算期望频数后,我们可以根据以下公式计算每一个单元格的卡方值:卡方值= (∑(观察频数 - 期望频数)^2 / 期望频数)将计算得到的每个单元格的卡方值相加,即可得到总的卡方值。
三、确定自由度和临界值卡方检验中,自由度的计算公式为:自由度 = (行数 - 1) * (列数 - 1)。
在本例中,自由度为 (2-1) * (3-1) = 2。
在确定自由度后,可以查找卡方分布表,根据所设定的显著性水平(如0.05)确定相应的临界值。
以自由度为2和显著性水平为0.05为例,在卡方分布表中查找,可得临界值为5.99。
四、判断与推断将计算得到的卡方值与临界值进行比较。
如果计算得到的卡方值大于临界值,则可以拒绝原假设,即说明观察值与期望值之间的差异是具有统计学意义的,反之,则接受原假设。
卡方检验的原理卡方检验是一种用于检验两个分类变量之间是否存在相关性的统计方法。
它的原理是通过比较实际观察值和期望理论值之间的差异来判断两个变量之间的相关性程度。
在进行卡方检验时,我们首先需要构建一个列联表,然后根据列联表中的数据计算出卡方值,最后根据卡方值来判断两个变量之间的相关性程度。
首先,我们来看一下列联表的构建。
列联表是由两个分类变量的交叉分类频数构成的二维表格。
表格的行表示一个分类变量的各个分类,表格的列表示另一个分类变量的各个分类,交叉点上的数字表示对应分类组合的频数。
构建列联表的目的是为了清晰地展现两个变量之间的关系,为后续的卡方检验提供数据基础。
接下来,我们需要计算卡方值。
卡方值的计算公式为,χ²=Σ((O-E)²/E),其中,Σ表示求和,O表示观察频数,E表示期望频数。
在计算卡方值时,我们需要先计算出期望频数,然后将观察频数和期望频数的差异进行平方,并除以期望频数,最后将所有分类组合的差异平方和除以期望频数的总和就得到了卡方值。
最后,我们根据卡方值来判断两个变量之间的相关性程度。
在进行判断时,我们需要参考自由度和显著性水平。
自由度的计算公式为,df=(r-1)(c-1),其中,r表示行数,c表示列数。
在一般情况下,我们可以查找卡方分布表来确定显著性水平下的临界值,然后比较计算出的卡方值和临界值的大小关系,从而判断两个变量之间的相关性程度。
总的来说,卡方检验是一种用于检验两个分类变量之间相关性的统计方法,它通过比较实际观察值和期望理论值之间的差异来判断两个变量之间的相关性程度。
在进行卡方检验时,我们需要构建列联表,计算卡方值,并根据卡方值来判断两个变量之间的相关性程度。
通过卡方检验,我们可以更加清晰地了解两个变量之间的关系,为进一步的分析和决策提供依据。
统计学中的卡方检验卡方检验是一种常用的统计学方法,用于判断两个或多个变量之间是否存在显著性差异。
本文将介绍卡方检验的原理、应用场景以及实际操作步骤。
一、卡方检验原理卡方检验基于观察数据与理论数据之间的差异来判断变量之间的相关性。
它通过计算卡方值来衡量观察值与理论值之间的偏离程度,进而判断差异是否具有统计学意义。
二、卡方检验的应用场景卡方检验广泛应用于以下几个方面:1. 样本观察与理论值比较:用于比较观察数据与理论数据之间的差异,例如检验一个硬币是否是公平的。
2. 不同群体之间的差异性:用于比较不同群体之间某一属性的差异,例如男性和女性在某一疾病患病率上是否存在显著性差异。
3. 假设检验:用于判断两个或多个变量之间是否存在显著性关联,例如是否存在两个变量之间的相关性。
三、卡方检验的基本思路卡方检验的基本思路是建立原假设和备择假设,通过计算卡方值和查表得到结果。
具体步骤如下:1. 建立假设:设立原假设H0和备择假设H1。
原假设通常假定两个变量之间不存在显著性关联,备择假设则相反。
2. 构建列联表:将观察数据按照行和列分别分类计数,得到列联表。
3. 计算期望频数:根据原假设计算每个单元格的期望频数,即在假设成立的条件下,各个单元格的理论频数。
4. 计算卡方值:根据观察频数和期望频数计算卡方值,计算公式为Χ²=∑[(O-E)^2/E],其中O为观察频数,E为期望频数。
5. 查找临界值:根据自由度和显著性水平,在卡方分布表中找到对应的临界值。
6. 判断结果:比较计算得到的卡方值与临界值,若卡方值大于临界值,则拒绝原假设,认为差异具有统计学意义。
四、卡方检验的实例分析假设我们想要研究吸烟和肺癌之间的关系,我们收集了300人的数据,包括是否吸烟和是否患有肺癌的情况。
观察数据如下:吸烟非吸烟总计患有肺癌 80 40 120未患肺癌 100 80 180总计 180 120 300根据这些数据,我们想要判断吸烟与肺癌之间是否存在显著性关联。
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。