数控机床故障诊断及排除方法
- 格式:pdf
- 大小:264.12 KB
- 文档页数:2
数控机床常见的故障及排除方法一、数控机床常见故障分类1、确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。
这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便,确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常。
但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。
正确的使用与精心维护是杜绝或避免故障发生的重要措施。
2、随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障,此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
二、数控机床常见的故障1、主轴部件故障由于使用调速电机,数控机床主轴箱结构比较简单,容易出现故障的部位是主轴内部的刀具自动夹紧机构、自动调速装置等。
为保证在工作中或停电时刀夹不会自行松脱,刀具自动夹紧机构采用弹簧夹紧,并配行程开关发出夹紧或放松信号。
若刀具夹紧后不能松开,则考虑调整松刀液压缸压力和行程开关装置,或调整碟形弹簧上的螺母,减小弹簧压合量。
此外,主轴发热和主轴箱噪声问题也不容忽视,此时主要考虑清洗主轴箱,调整润滑油量,保证主轴箱清洁度和更换主轴轴承,修理或更换主轴箱齿轮等。
2、进给传动链故障在数控机床进给传动系统中,普遍采用滚珠丝杠副、静压丝杠螺母副、滚动导轨、静压导轨和塑料导轨。
所以进给传动链有故障,主要反映是运动质量下降。
如:机械部件未运动到规定位置、运行中断、定位精度下降、反向间隙增大、爬行、轴承噪声变大(撞车后)等。
数控机床常见故障及检测方法分析数控机床具有智能化高,加工精度高、加工质量稳定、生产效率高等特点。
它综合了计算机技术、电气自动化技术等各个领域的多项科学技术成果。
特别适合于加工零件较复杂、精度要求高、产品更新频率高的场合。
它的任何部分出现故障,都可能导致加工精度降低,甚至机床停机、生产停顿,从而带来不必要的损失。
因此,了解机床常见故障并加强数控机床故障检测分析是十分必要的。
1、数控机床常见故障(1)主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。
主机常见的故障主要有:1)因机械部件安装、调试、操作使用不当等原因引起的机械传动故障;2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障;3)因机械零件的损坏、联结不良等原因引起的故障,等等;主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。
润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。
数控机床的定期维护、保养、控制和清除“三漏”现象发生是减少主机部分故障的重要措施。
(2)电气控制系统故障从所使用的元器件类型上,根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类。
“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。
数控机床的弱电部分包括CNC、PLC、MDI/C RT以及伺服驱动单元、输为输出单元等。
“弱电”故障又有硬件故障与软件故障之分,硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。
软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有.加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。
“强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。
数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
数控机床各种常见故障及分析排除方法数控机床各种常见故障及分析排除方法数控机床各种故障由于现代数控系统的可靠性越来越高数控系统本身的故障越来越低而大部分故障的发生则是非系统本身原因引起的系统外部的故障主要指由于检测开关液压元件气动元件电气执行元件机械装置等出现问题而引起的数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障软故障是指由于操作调整处理不当引起的这类故障多发生在设备使用前期或设备使用人员调整时期对于数控系统来说另一个易出故障的地方为伺服单元由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的用旋转编码器作速度反馈用光栅尺作位置反馈一般易出故障的地方为旋转编码器与伺服单元的驱动模块也有个别的是由于电源原因而引起的系统混乱特别是对那些带计算机硬盘保存数据的系统例如德国西门子系统840C例1一数控车床刚投入使用的时候在系统断电后重新启动时必须要返回到参考点即当用手动方式将各轴移到非干涉区外后再使各轴返回参考点否则可能发生撞车事故所以每天加工完后最好把机床的轴移到安全位置此时再操作或断电后就不会出现问题外部硬件操作引起的故障是数控修理中的常见故障一般都是由于检测开关液压系统气动系统电气执行元件机械装置出现问题引起的这类故障有些可以通过报警信息查找故障原因对一般的数控系统来讲都有故障诊断功能或信息报警维修人员可利用这些信息手段缩小诊断范围而有些故障虽有报警信息显示但并不能反映故障的真实原因这时需根据报警信息和故障现象来分析解决例2我厂一车削单元采用的是SINUMERIK840C系统机床在工作时突然停机显示主轴温度报警经过对比检查故障出现在温度仪表上调整外围线路后报警消失随即更换新仪表后恢复正常例3同样是这台车削中心工作时CRT显示9160报警9160NOPART WITHGRIPPER1CLOSEDVERIFYV14-5这是指未抓起工件报警但实际上抓工件的机械手已将工件抓起却显示机械手未抓起工件报警查阅PLC 图此故障是测量感应开关发出的经查机械手部位机械手工作行程不到位未完全压下感应开关引起的随后调整机械手的夹紧力此故障排除例4一台立式加工中心采用FANUC-OM 控制系统机床在自动方式下执行到X轴快速移动时就出现414#和410#报警此报警是速度控制OFF 和X 轴伺服驱动异常由于此故障出现后能通过重新启动消除但每执行到X 轴快速移动时就报警经查该伺服电机电源线插头因电弧爬行而引起相间短路经修整后此故障排除例5操作者操作不当也是引起故障的重要原因如我厂另一台采用 840C 系统的数控车床第一天工作时完全正常而第二天上班时却无论如何也开不了机工作方式一转到自动方式下就报警EMPTYING SELECTED MOOE SELECTOR加工完工件后主轴不停机械手就去抓取工件后来仔细检查各部位都无毛病而是自动工作条件下的一个模式开关位置错了所以当有些故障原因不明的报警出现的话一定要检查各工作方式下的开关位置还有些故障不产生故障报警信息只是动作不能完成这时就要根据维修经验机床的工作原理和PLC 运行状况来分析判断了对于数控机床的修理重要的是发现问题特别是数控机床的外部故障有时诊断过程比较复杂但一旦发现问题所在解决起来比较简单对外部故障诊断应遵从以下两条原则首先要熟练掌握机床的工作原理和动作顺序其次要会利用PLC 梯形图NC系统的状态显示维修的基本步骤一故障记录数控机床发生故障时操作人员应首先停止机床保护现场然后对故障进行尽可能详细的记录并及时通知维修人员故障的记录可为维修人员排除故障提供第一手材料应尽可能详细记录内容最好包括下述几个方白⑴故障发生时的情况记录1发生故障的机床型号采用的控制系统型号系统的软件版本号2故障的现象发生故障的部位以及发生故障时机床与控制系统的现象如是否有异常声音烟味等3发生故障时系统所处的操作方式如AUTO自动方式MDI手动数据输入方式EDIT编辑HANDLE手轮方式JOG手动方式等4若故障在自动方式下发生则应记录发生故障时的加工程序号出现故障的程序段号加工时采用的刀其号等5若发生加工精度超差或轮廓误差过大等故障应记录被加工工件号并保留不合格工件工件6在发生故障时若系统有报警显示则记录系统的报警显示情况与报警号通过诊断画面记录机床故障时所处的工作状态如系统是否在执行MST 等功能系统是否进入暂停状态或是急停状态系统坐标轴是否处于互锁状态进给倍率是否为0等等7记录发生故障时各坐标轴的位置跟随误差的值8记录发生故障时.各坐标轴的移动速度移动方向主轴转速转向.等等⑵故障发生的频繁程度记录1故障发生的时例与周期如机床是否一直存在故障若为随机故障.则一天发生几次是否频繁发生2故障发生时的环境情况如是否总是在用电高峰期发生故障发生时数控机未旁边的其他机械设备下作是否正常3若为加工零件时发生的故障则应记录加工同类工件时发生故障的概率情况4检查故障是否与进给速度换刀方式或是螺纹切削等特殊动作有关⑶故障的规律性记录1在不危及人身安全和设备安全的情况下是否可以重演故障现象2检查故障是否与机床的外界因素有关3如果故障是在执行某固定程序段时出现可利用 MDI 方式单独执行该程序段检查是否还存在同样故障4若机床故障与机床动作有关在可能的情况下应检查在手动情况下执行该动作.是否也有同样的故障5机床是否发生过同样的故障周围的数控机床是否也发生同一故障等等⑷故障时的外界条件记录1发生故障时的周围环境温度是否超过允许温度是否有局部的高温存在2故障发生时周围是否有强烈的振动源存在3故障发生时系统是否受到阳光的直射4检查故障发生时电气柜内是否有切削液润滑油水的进入5故障发生时输入电压是否超过了系统允许的波动范围6故障发生时车间内或线路上是否有使用大电流的装置正在进行起制动7故障发生时机床附近是否存在吊车高频机械焊接机或电加工机床等强电磁干扰源8故障发生时附近是否正在安装成修理调试机床是否正在修理调试电气和数控装置二维修前的检查维修人员故障维修前应根据故障现象与故障记录认真对照系统机床使用说明书进行各顶检查以便确认故障的原因这些检查包括⑴机沫的工作状况检查1机床的调整状况如柯机沐工作条件是否符合要求2加工时所使用的刀具是否符合要求切削参数选择是否合理正确3自动换刀时坐标轴是否到达了换刀位置程序中是否设置了刀具偏移量4系统的刀具补偿量等参数设定是否正确5系统的坐标轴的间隙补偿量是否正确6系统的设定参数包括坐标旋转比例缩放因子镜像轴编程尺寸单位选择等是否正确7的工件坐标系位置零点偏置值的设置是否正确8安装是否合理侧量手段方法是否正确合理9零件是否存在因温度加工而产生变形的现象等等⑵机床运转清况检查1在机床自动运转过程中是否改变或调整过操作方式是否插入了手动操作2机床侧是否处于正常加工状态工作台夹具等装置是否处于正常工作位置3机床操作面板上的按扭开关位置是否正确机床是否处于钱住状态倍率开关是否设定为O4机床各操作面板上数控系统上的急停按扭是否处十急停状态5电气柜内的熔断器是否有熔断自动开关断路器是否有跳闸6机床操作面板上的方式选择开关位置是否正确进给保持按钮是否被按下⑵机床和系统之间连接清况的检查1检查电缆是否有破损电缆拐弯处是否有破裂损伤现象2电源线与信号线布置是否合理电缆连接是否正确可靠3机床电源进线是否可靠接地接地线的规格是否符合要求4信号屏蔽线的接地是否正确端子板上接线是否牢固可靠系统接地线是否连接可靠5继电器电磁铁以及电动机等电磁部件是否装有噪声抑制器等等⑷CNC 装置的外观检查1是否在电气柜门打开的状态下运行数控系统有无切削液或切削粉末进入柜内空气过沈器清洁状况是否良好2电气柜内部的风扇热交换器等部件的工作是否正常3电气柜内部系统驱动器的模块印制电路板是否有灰尘金属粉末等污染4在使用纸带阅读机的场合检查纸带阅读机是否有污物阅读机上的制动电磁铁动作是否正常5电源单元的熔断器是否熔断6电缆连接器插头是否完全插入拧紧7系统模块线路板的数量是否齐全模块线路板安装是否牢固可靠8机床操作画板 MDlCRT 单元上的按钮有无破损位置是否正确9系统的总线设置模块的设定端的位置是否正确⑸有关穿孔纸带的检查旱期的系统加工程序一般是用纸带读入的如果发现是由于穿孔纸带读入的信息不对而引起故障时需要检查并记录下述内容1纸带阅读机开关是否止常2有关纸带操作的设定是否正确操作是否有误3纸带是否有折皱现象4纸带上的孔是否有破损5纸带上的接头处连接是否平整6纸带以前是否用过7使用的是黑色纸带还是其他颜色的纸带总之.维修时应记录检查的原始数据状态较多记录越详细维修就越方便用户最好根据本厂的实际清况编制一份故障维修记录表在系统出现故障时操作者可以根据表的要求及时填入各种原始材料供维修时参考三故障诊断的基本方法数控机床发生故障时为了进行故障诊断找出产生故障的根本原因维修人员应遵循以下两条原则1充分调查故障现场这是维修人员取得维修第一千材料的一个重要手段调查故障现场首先要查看故障记录单同时应向操作者调查询问出现故障的全过程充分了解发生的故障现象以及采取过的措施等此外维修人员还应对现场作细致的检查观察系统的外观内部各部分是否有异常之处在确认数控系统通电无危险的清况卜方可通电通电后再观察系统有何异常 CRT 显示的报警内容是什么等2认真分析故障的原因数控系统虽有各种报警指示灯或自诊断程序但不可能诊断出发生故障的确切部位而且同一故障同一报警可以有多种起因在分析故障的起因时一定要开阔思路尽可能考虑各种因素.分析故漳时维修人员也不应局限于 CNC 部分而是要对机床强电机械液压气动等方面都作详细的检查并进行综合判断达到确珍和最终排除故障的日的对于数控机床发生的大多数故障总体上说可采用卜述几种方法来进行故障诊断⑴直观法这是一种最基本最简单的方法维修人员通过对故障发生时产生的各种光声味等异常现象的观察检查可将故障缩小到某个模块甚至一块印制电路板但是.它要求维修人员具有丰富的实践经验.以及综合判断能力⑵系统自诊断法充分利用数控系统的自诊断功能根据 CRT 上显示的报警信息及各模块上的发光二极管等器件的指示可判断出故瘴的大致起因进一步利用系统的自诊断功能.还能显示系统与各部分之间的接口信号状态找出故障的大致部位.它是故障诊断过程巾最常用有效的方法之一⑶参数检查法数控系统的机床参数是保证机沐正常运行的前提条件它们直接影响着数控机未的性能参数通常存放在系统存储器中一旦电池不足或受到外界的干扰可能导致部分参数的丢夫或变化使机床无法正常工作通过核对调整参数有时可以迅速排除故障特别是对于机床长期不用的清况参数丢失的现象经常发生因此检查和恢复机床参数是维修中行之有效的方法之一另外数控机床经过长期运行之后由于机械运动部件磨损电气元括件性能变化等原因也需对有关参数进宁 J 重新调橄⑷功能测试法所谓功能钡 l 试法是通过功能测试程序检查机床的实际动作判别故障的一种方法功能测试可以将系统的功能如直线定位圆弧插补螺纹切靓固定循环用户宏程序等用手工编程方法编制一个功能铡试程序并通过运行测试程序来检查机床执行这些功能的准确性和可靠性进而判断出故障发生的原因对于长期不用的数控机床或是机床第一次开机不论动作是否正常都应使用木方法进行一次检查以判断机床的上作状况⑸部件交换法所谓部件交换法就是在故障范围大致确认并在确认外部条件完全正确的情况下.利用同样的印制电路板模块集成电路芯片或兀器件替换有疑点的部分的方法部件交换法是一种简单易行可靠的方法也是维修过程中最常用的故障判别方法之一交换的部件可以是系统的备件也可以用机床上现有的同类型部件替换通过部件交换就可以逐一排除故障可能的原因把故障范围缩小到相应的部件上必须注意的是在备州交换之前厚仔细检查确认部件的外部工作刹长在线路中存在短路过电压等情况时切不可以轻易更换备件此外.备件或交换板应完好且与原板的各种设定状态一致在交换CNC 装置的存储器板或CPU 板时通常还要对系统进行某些特定的操作如存储器的初始化操作等并重新设定各种参数否则系统不能正常工作这些操作步骤应严格按照系统的操作说明书维修说明书进行⑹测量比较法数控系统的印制电路板制造时为了调整_维修的便利通常都设置有检测用的测量端子维修人员利用这些检测端子可以侧量比较正常的印制电路板和有故障的印制电路板之间的电压或波形的差异进而分析判断故障原因及故障所在位置通过测量比较法有时还可以纠正他人在印制电路板上的调整设定不当而造成的故障测量比较法使用的前提是维修人员应了解或实际测量正确的印制电路板关键部位易出故障部位的正常电压值正确的波形才能进行比较分析而且这些数据应随时做好记录并作为资料积累⑺原理分析法这是根据数控系统的组成及工作原理从原理上分析各点的电平和参数并利用万用表示波器或逻辑分析仪等仪器对其进行侧量分析和比较进而对故障进行系统检查的一种方法运用这种方法要求维修人员有较高的水平对整个系统或各部分电路有清楚深入的了解才能进行对于其体的故障也可以通过测绘部分控制线路的方法.通过绘制原理图进行维修在本书中提供了部分测绘的原理图可以供维修参考除了以上介绍的故障检测方法外.还有插拔法电压拉偏法敲击法局部升温法等等这些检查方法各有特点维修人员可以根据不同的故障现象加以灵活应用以便对故障进行综合分析逐步缩小故障范围排除故障四干扰及其预防干扰是造成数控系统软故障.且容易被忽视的一个重要的方面消除系统的干扰可以从下述几个方面着手⑴正确连接机床系统的地线数控机床必须采用点接地法参见图 13 所示切不可为了省事在机床的各部位就近接地造成多点接地环流接地线的规格定要按系统的规定导线线径必须足够大在需要屏蔽的场合必须采用屏蔽线屏蔽地必须按系统要求连接以避免千扰数控机床对接她的要求通常较高车间厂房的进线必须有符合数控机床安装要求的完整接地网络它是保证数控机床安全可靠运行的前提条件必须引起足够的重视⑵防止强电干扰数控机床强电柜内的接触器继电器等电磁部件都是干扰源交流接触器的频繁通断交流电动机的频繁起动停止主问路与控制回路的布线不合理.都可能使CNC的控制电路产生尖峰脉冲浪涌电压等干扰影响系统的正常工作因此对电磁干扰必须采取以下捕施予以消除1在交流接触器线圈的两端交流电动机的三相输出端上并联RC 吸收器2在直流接触器或直流电磁阀的线圈两端加入续流二极管3CNC 的输入电源线间加入浪涌吸收器与滤波器.4伺服电动机的三相电枢线采用屏蔽线SIEMENS 驱动常用.通过以上办法一般可有效抑制干扰但要注意的是杭千扰器件应尽可能靠近干扰源其连接线的长度原则上不应大于20cm⑶抑制或减小供电线路L的干扰在某些电力不足或频率不稳的场合电压的冲击欠压频率和相位漂移.波形的失真 1 共模噪声及常模噪声等.将影响系统的正常工作.应尽可能减小线路上的此类干扰防止供电线路干扰的具体措施一般有以下几点1对于电网电压波动较大的地区应在输入电源上加装电子稳压器.2线路的容量必须满足机床对电源容量的要求3避免数控机床和电火花设备频繁起动停止的大功率设备共用同一干线4安装数控机床时应尽可能远离中频炉高频感应炉等变频设备故障分析的方法一常见故障及其分类1按故障发生的部位分类⑴主机故障数控机床的主机通常指组成数控机床的机械润滑冷却排屑液压气动与防护等部分主机常见的故障主要有1 因机械部件安装调试操作使用不当等原因引起的机械传动故障2 因导轨主轴等运动部件的干涉摩擦过大等原因引起的故障3 因机械零件的损坏联结不良等原因引起的故障等等.主机故障主要表现为传动噪声大加工精度差运行阻力大机械部件动作不进行机械部件损坏等等润滑不良液压气动系统的管路堵塞和密封不良是主机发生故障的常见原因数控机床的定期维护保养.控制和根除三漏现象发生是减少主机部分故障的重要措施.⑵电气控制系统故障从所使用的元器件类型上.根据通常习惯电气控制系统故障通常分为弱电故障和强电故障两大类弱电部分是指控制系统中以电子元器件集成电路为主的控制部分数控机床的弱电部分包括CNCPLCMDIC RT以及伺服驱动单元输为输出单元等弱电故障又有硬件故障与软件故障之分.硬件故障是指上述各部分的集成电路芯片分立电子元件接插件以及外部连接组件等发生的故障软件故障是指在硬件正常情况下所出现的动作出锗数据丢失等故障常见的有.加工程序出错系统程序和参数的改变或丢失计算机运算出错等强电部分是指控制系统中的主回路或高压大功率回路中的继电器接触器开关熔断器电源变压器电动机电磁铁行程开关等电气元器件及其所组成的控制电路这部分的故障虽然维修诊断较为方便但由于它处于高压大电流工作状态发生故障的几率要高于弱电部分.必须引起维修人员的足够的重视2.按故障的性质分类⑴确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件数控机床必然会发生的故障这一类故障现象在数控机床上最为常见但由于它具有一定的规律因此也给维修带来了方便确定性故障具有不可恢复性故障一旦发生如不对其进行维修处理机床不会自动恢复正常.但只要找出发生故障的根本原因维修完成后机床立即可以恢复正常正确的使用与精心维护是杜绝或避免故障发生的重要措施⑵随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽很难找出其规律性故常称之为软故障随机性故障的原因分析与故障诊断比较困难一般而言故障的发生往往与部件的安装质量参数的设定元器件的品质软件设计不完善工作环境的影响等诸多因素有关.随机性故障有可恢复性故障发生后通过重新开机等措施机床通常可恢复正常但在运行过程中又可能发生同样的故障加强数控系统的维护检查确保电气箱的密封可靠的安装连接正确的接地和屏蔽是减少避免此类故障发生的重要措施3.按故障的指示形式分类⑴有报带显示的故障数控机床的故障显示可分为指示灯显示与显示器显示两种情况1指示灯显示报警指示灯显示报警是指通过控制系统各单元上的状态指示灯一般由 LED发光管或小型指示灯组成显示的报警.根据数控系统的状态指示灯即使在显示器故障时仍可大致分析判断出故障发生的部位与性质因此.在维修排除故障过程中应认真检杳这些状态指示灯的状态2显示器显示报警.显示器显示报警是指可以通过 CNC 显示器显示出报警号和报警信息。
数控机床常见故障的诊断与排除数控机床在加工过程中常常会遇到各种故障,这些故障会影响加工质量和生产效率。
因此,及时准确地诊断和排除故障是数控机床的关键。
下面将结合常见的数控机床故障,介绍诊断与排除的方法。
一、机床无法开机或无法正常运行故障1.检查电源输入:检查电源线是否插好,电源是否正常供电。
2.检查断路器和保险丝:检查机床的断路器和保险丝,确保其正常工作。
3.检查电源板:检查电源板上的指示灯是否正常亮起,如发现异常则可能是电源板故障。
4.检查控制器:检查控制器连接线是否插好,如有需要则重新插拔控制器连接线。
5.检查电气元件:检查机床内部的电气元件,如接触器、继电器等是否正常工作。
二、机床加工精度降低故障1.检查刀具:检查刀具的磨损情况,如需要则更换或修复刀具。
2.检查导轨:检查导轨是否清洁,如有需要则清洗或润滑导轨。
3.检查轴承:检查轴承是否正常工作,如发现异常则可能是轴承损坏。
4.检查螺杆:检查螺杆是否正常工作,如发现异常则可能是螺杆松动或严重磨损。
5.检查编码器:检查编码器是否工作正常,如发现异常则可能是编码器损坏。
三、机床运行过程中发生振动故障1.检查紧固件:检查机床的各个紧固件是否松动,如需要则重新紧固。
2.检查传动装置:检查传动装置(如皮带、链条等)是否松动或磨损,如发现异常则需要更换或修复。
3.检查电机:检查电机是否正常工作,如发现异常则可能是电机轴承磨损或电机不平衡。
4.检查工件夹持装置:检查工件夹持装置是否正确安装,如发现异常则重新安装。
四、机床液压系统故障1.检查液压油:检查液压系统的液压油是否充足,如不足则需要添加。
2.检查滤芯:检查滤芯是否清洁,如发现污垢则需要更换滤芯。
3.检查液压泵:检查液压泵是否正常工作,如发现异常则可能是泵的密封件损坏。
4.检查液压阀:检查液压阀是否正常工作,如发现异常则可能是阀门堵塞或密封件损坏。
以上仅是数控机床常见故障的诊断与排除的方法的简要介绍,实际上每种故障都需要具体分析具体情况。
数控机床的故障诊断、处理数控机床,是一种技术含量很高的机、电、仪一体化的高效复杂的自动化机床,机床在运行过程中,零部件不可避免地会发生不同程度、不同类型的故障,因此,熟悉机械故障的特征,掌握数控机床机械故障诊断的常用方法和手段,对确定故障的原因和排除有着重大的作用。
一、数控机床故障诊断原则与基本要求1.1排障原则。
主要包括以下几个方面:1)充分调查故障现象,首先对操作者的调查,详细询问出现故障的全过程,有些什么现象产生,采取过什么措施等。
然后要对现场做细致的勘测;2)查找故障的起因时,思路要开阔,无论是集成电器,还是和机械、液压,只要有可能引起该故障的原因,都要尽可能全面地列出来。
然后进行综合判断和优化选择,确定最有可能产生故障的原因;3)先机械后电气,先静态后动态原则。
在故障检修之前,首先应注意排除机械性的故障。
再在运行状态下,进行动态的观察、检验和测试,查找故障。
而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。
1.2故障诊断要求。
除了丰富的专业知识外,进行数控故障诊断作业的人员需要具有一定的动手能力和实践操作经验,要求工作人员结合实际经验,善于分析思考,通过对故障机床的实际操作分析故障原因,做到以不变应万变,达到举一反三的效果。
完备的维修工具及诊断仪表必不可少,常用工具如螺丝刀、钳子、扳手、电烙铁等,常用检测仪表如万用表、示波器、信号发生器等。
除此以外,工作人员还需要准备好必要的技术资料,如数控机床电器原理图纸、结构布局图纸、数控系统参数说明书、维修说明书、安装、操作、使用说明书等。
二、故障处理的思路不同数控系统设计思想千差万异,但无论那种系统,它们的基本原理和构成都是十分相似的。
因此在机床出现故障时,要求维修人员必须有清晰的故障处理的思路:调查故障现场,确认故障现象、故障性质,应充分掌握故障信息,做到“多动脑,慎动手”避免故障的扩大化。
根据所掌握故障信息明确故障的复杂程度,并列出故障部位的全部疑点。
O U TIO N 文/蔡子远数控机床是以数控技术为代表的新技术对传统制造产业和新兴机械加工制造业的渗透形成的机电一体化产品。
若在出现故障后不及时维修排除故障,就会造成较大的经济损失。
笔者在此主要对数控机床故障的诊断与排除进行探讨。
一、数控机床的常见故障分析1.故障故障是指数控机床全部或部分丧失原有的功能。
数控机床发生故障一般有一定的规律。
如图所示可分为3个区域:初期运行区T1,系统的故障率较高,故障的曲线呈上升趋势,发生的故障大多数是由于设计制造和装配缺陷造成的;正常运行区T2,曲线趋近水平,故障率低,发生的故障一般是由操作和维护不良造成的;衰老区T3,故障率最大,曲线上升快,主要是运行过久,机件老化和损耗过度造成的。
设备使用寿命———故障频率曲线如下图。
2.数控机床的常见故障分析根据数控机床的构成,工作原理和特点,结合实际中的经验,常见的故障部位及故障现象如下。
(1)位置环。
由于工作频率高,又与外设相联接,所以易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路、系统损坏或者位控单元内部损坏;②不发指令就运动:可能是漂移过高或者测量元件损坏;③测量元件故障。
(2)伺服驱动系统。
由于伺服系统处于频繁的启动和运行状态,又与电源、机械系统相联,因此易发生故障。
伺服系统的故障一般都是由伺服控制单元、伺服电机、测速电机、编码器等出现问题引起的。
(3)电源部分。
电源是维持数控机床正常运行的能源供给部分,电源的故障可能直接造成停机、数据丢失或系统毁坏。
主要由电磁波的干扰和供电线路、电压等引起。
一台采用西门子SINUMER IK 810的数控机床,在自动加工过程中,系统突然掉电,测量其24V 直流供电电源,发现只有22V 左右。
经确认为整流变压器匝间短路,造成容量不够。
更换新的整流变压器后,故障排除。
(4)可编程序控制器逻辑接口。
数控机床的运行控制,如刀库管理等,主要由PLC 来实现,它需采集各控制点的状态信息,如断电器、伺服阀等。
数控机床典型故障诊断与维修一、数控机床典型故障1. 伺服电机故障:伺服电机是数控机床的主要驱动元件,如伺服电机出现故障,会导致机床无法正常工作。
常见的伺服电机故障包括:电机运行异常、电机发热、电机无法正常启动等。
2. 数控系统故障:数控系统是数控机床的核心,一旦出现故障,会导致整个数控机床无法正常工作。
常见的数控系统故障包括:程序执行错误、操作界面死机、通讯故障等。
3. 传感器故障:传感器在数控机床中起着重要的作用,它能够感知机床状态并将信息反馈到数控系统。
常见的传感器故障包括:传感器信号异常、传感器损坏等。
4. 润滑系统故障:数控机床在工作过程中需要进行润滑,以减少摩擦、降低磨损。
润滑系统故障会导致机床零部件磨损加剧,影响加工精度和机床寿命。
5. 电气元件故障:数控机床中包含大量的电气元件,如断路器、接触器、继电器等。
这些元件一旦出现故障,会直接影响机床的正常运行。
1. 故障现象分析:当数控机床出现故障时,首先要对故障现象进行分析。
包括故障出现的时间、频率、程度等方面,有助于确定故障的性质和范围。
2. 信息收集:通过观察、询问、检测等方式,收集与故障相关的信息,包括数控系统显示的报警信息、机床运行时的异常声音、异味等。
3. 故障检测:根据故障现象和信息收集的结果,对机床进行检测,包括物理检测和电气检测。
物理检测可以发现机床结构的故障,电气检测可以发现电气元件的故障。
4. 故障定位:通过检测结果,确定故障发生的位置和原因,例如伺服电机故障、数控系统故障、传感器故障等。
5. 分析解决方案:根据故障定位结果,分析可能的解决方案,并进行相应的维修或调整。
1. 伺服电机维修:伺服电机故障通常需要专业的维修人员进行处理,首先要对电机进行检测和分析,确定故障原因,然后进行修复或更换。
2. 数控系统维修:数控系统故障可能是软件问题或硬件问题,软件问题可以通过重新设置参数、升级或更换软件来解决,硬件问题则需要更换故障部件。
数控机床常见故障的诊断与排除范文数控机床是一种通过预先编程的方式自动进行加工的机械设备。
在使用过程中,经常会遇到各种故障,影响机床的正常运行。
本文将针对数控机床常见的故障进行诊断与排除范文,帮助读者更好地了解和解决故障。
一、机床电源故障1. 问题现象:数控机床不能正常上电。
2. 故障原因:电源线接触不良、电源开关故障等。
3. 排除方法:(1) 检查机床电源线是否插紧,是否有松动现象。
(2) 检查机床电源开关是否正常,可用万用表测量开关上的电压。
(3) 若电源开关故障,需要更换新的电源开关。
二、机床启动故障1. 问题现象:数控机床不能正常启动。
2. 故障原因:主轴电机不启动、运动系统不正常等。
3. 排除方法:(1) 检查主轴电机供电线路是否正常,检查主轴电机是否有断路、短路等故障。
(2) 检查驱动电机的运动控制器是否故障,可使用示波器检查输出脉冲信号是否正常。
(3) 若发现问题,需要检修主轴电机或更换运动控制器。
三、伺服系统故障1. 问题现象:伺服系统运行不稳定。
2. 故障原因:伺服电机反馈信号异常、伺服控制器故障等。
3. 排除方法:(1) 检查伺服电机反馈信号线路是否正常,检查编码器是否正常工作。
(2) 检查伺服控制器参数设置是否正确,可使用示波器检查控制信号是否稳定。
(3) 若发现问题,需要修复或更换伺服电机或控制器。
四、刀具系统故障1. 问题现象:刀具不能进行换刀或更换刀具失败。
2. 故障原因:刀库卡死、刀具传感器故障等。
3. 排除方法:(1) 检查刀库传感器是否损坏,可使用万用表测量传感器开关的正常状态。
(2) 检查刀库机械结构是否有卡滞现象,需要进行清洁和润滑。
(3) 若发现问题,需要修复或更换刀库传感器或机械结构。
五、液压系统故障1. 问题现象:液压系统无法正常工作。
2. 故障原因:液压泵故障、液压阀故障等。
3. 排除方法:(1) 检查液压泵是否正常工作,可测量泵的出口压力和流量。
(2) 检查液压阀是否正常工作,可使用万用表检查阀的电气信号。
数控机床常见故障诊断及排除方法不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。
1、数控机床故障诊断原则在故障诊断时应掌握以下原则:(1)先外部后内部数控机床是集机械、液压、电气和光学为一体的机床,故其故障的发生也会由这四者综合反映出来。
维修人员应先由外向内逐一进行排查。
尽量避免随意地启封、拆卸机床,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
2、数控机床的故障诊断技术数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。
随着微处理器的不断发展。
诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。
诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。
目前所使用的各种CNC系统的诊断技术大致可分为以下几类:1. 启动诊断(Start Up Diagnostics)启动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。
诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。
只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。
否则,将在CRT画面或发光二极管用报警方式指示故障信息。
此时启动诊断过程不能结束,系统无法投入运行。
数控机床故障诊断八大办法数控机床故障诊断八大办法数控机床故障诊断方法数控机床电气故障诊断有故障检测、故障判断及隔离和故障定位三个阶段。
第一阶段的故障检测就是对数控机床进行测试,判断是否存在故障;第二阶段是判定故障性质,并分离出故障的部件或模块;第三阶段是将故障定位到可以更换的模块或印制线路板,以缩短修理时间。
为了立即发现系统出现的故障,快速确定故障所在部位并能立即排除,要求故障诊断应尽可能少且简便,故障诊断所需的时间应尽可能短。
为此,可以采用以下的诊断方法:一、直观法利用感觉器官,注意发生故障时的各种现象,如故障时有无火花、亮光产生,有无异常响声、何处异常发热及有无焦味等。
仔细观察可能发生故障的每块印制线路板的表面状况,有无烧毁和损伤痕迹,以进一步缩小检查范围,这是一种最基本、最常用的方法。
二、CNC系统的自诊断功能依靠CNC 系统快速处理数据的能力,对出错部位进行多路、快速的信号采集和处理,然后由诊断程序进行逻辑分析判断,以确定系统是否存在故障,立即对故障进行定位。
现代CNC系统自诊断功能可以分为以下两类:(1) 开机自诊断开机自诊断是指从每次通电开始至进入正常的运行准备状态为止,系统内部的诊断程序自动执行对CPU、存储器、总线、I/O 单元等模块、印制线路板、CRT 单元、光电阅读机及软盘驱动器等设备运行前的功能测试,确认系统的主要硬件是否可以正常工作。
(2) 故障信息提示当机床运行中发生故障时,在CRT 显示器上会显示编号和内容。
根据提示,查阅有关维修手册,确认引起故障的原因及排除方法。
一般来说,数控机床诊断功能提示的故障信息越丰富,越能给故障诊断带来方便。
但要注意的是,有些故障根据故障内容提示和查阅手册可直接确认故障原因;而有些故障的真正原因与故障内容提示不相符,或一个故障显示有多个故障原因,这就要求维修人员必须找出它们之间的内在联系,间接地确认故障原因。
三、数据和状态检查CNC系统的自诊断不但能在CRT 显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的`数据和状态检查有参数检查和接口检查两种。
排除数控机床故障的六种方法数控机床故障的六种排解方法:一、直观法:修理人员通过故障发生时的各种光、声、味等特别现象的观看,仔细察看系统的各个部分,将故障范围缩小到一个模块或一块印刷线路板。
例1 :数控机床加工过程中,突然消失停机。
打开数控柜检查发觉Y轴电机主电路保险管烧坏,经认真观看,检查与Y轴有关的部件,最终发觉Y轴电机动力线外皮被硬物划伤,损伤处遇到机床外壳上,造成短路烧断保险,更换Y轴电机动力线后,故障消退,机床恢复正常。
二、自诊断功能法:数控系统的自诊断功能,已经成为衡量数控系统性能特性的重要指标,数控系统的自诊断功能随时监视数控系统的工作状态。
一旦发生特别状况,马上在CRT上显示报警信息或用发光二极管指示故障的大致起因,这是修理中最有效的一种方法。
例2 :AX15Z数控车床,配置FANUC1 0TEF系统,故障显示:FS10TE1399BROM TEST:ENDRAM TEST:CRT的显示表明ROM测试通过,RAM测试未能通过。
RAM测试未能通过,不肯定是RAM故障,可能是RAM中参数丢失或电池接触不良一起的参数丢失,经检查故障缘由是由于更换电池后电池接触不良,所以一开机就消失上述故障现象。
三、功能程序测试法:功能程序测试法就是将数控系统的常用功能和特别功能用手工编程或自动编程的方法,编制成一个功能测试程序,送入数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的精确性和牢靠性,进而推断出故障发生的可能缘由。
例4:TH63 50加工中心旋转工作台抬起后旋转不止,且无减速,无任何报警信号消失。
对这种故障,可能是由于旋转工件台的简易位控器故障造成的,为进一步证明故障部位,考虑到该加工中心的刀库的简易位控器与转台的基本一样。
于是采纳交换法进行检查,交换刀库与转台的位控器后,并按转台位控器的设定对刀库位控器进行了重新设定,交换后,刀库则消失旋转不止,而转台运行正常,证明了故障的确出在转台的位控器上。
数控机床故障排除的一般方法1.故障现象观察与分析:首先需要仔细观察故障机床出现的现象,包括声音、震动、烟雾、闪光等,以及机床运行时出现的报警信息。
根据这些观察到的现象和报警信息,结合操作记录及运行记录,分析故障可能的原因。
2.系统维护与检修:检查机床系统的各个部分,包括机床主控系统、电气系统、液压系统、气动系统等,查看是否有松动、损坏、磨损等。
同时,进行各个系统的维护工作,如清洁润滑、紧固连接、调整等,检查电缆接头和接地情况,确保系统的正常工作。
3.设备操作与参数调整:如果故障是由于操作失误或参数设置错误引起的,需要对设备的操作进行检查和调整。
比如检查和修改机床的各项参数设置,包括工件坐标系、工具半径补偿、刀补偿等;检查设备的操作程序是否正确,如设备的启动、停止、循环等。
4.故障诊断与维修:如果通过以上步骤无法解决故障,需要进行更深层次的故障诊断和维修。
这需要运用专业的故障诊断设备和工具,如万用表、示波器等,对机床进行电气、液压、气动等方面的测试与检查,找出故障的具体原因所在。
然后根据故障原因进行维修,可能需要更换零部件、修复损坏的部件,或者调整、校准相应的设备参数。
5.故障记录与改进:在故障排除过程中,需要对故障的详细信息进行记录,包括故障现象、分析过程、解决方法等。
这样可以为以后的维护工作提供参考依据,并在类似故障出现时更快地找到解决方案。
同时,还可以根据故障记录进行设备的改进和加强,提高机床的可靠性和稳定性。
总之,数控机床故障排除需要综合运用故障观察、系统维护、设备操作与参数调整、故障诊断与维修等多个方面的方法,并及时记录和改进。
这样才能更好地发现和解决故障,确保机床的正常运行。
数控机床常见故障诊断及维修数控机床是一种集自动控制、计算机、微电子、伺服驱动、精密机械等技术于一身的高技术产物。
一旦系统的某些部分出现故障,就势必使机床停机,影响生产。
所以,如何正确维护设备和出现故障时迅速诊断,确定故障部位,及时排除解决,保证正常使用,是保障生产正常进行的必不可少的工作。
1 数控机床故障诊断原则1.1 先外部后内部数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。
维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
1.2 先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
1.3 先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
1.4 先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
2 数控机床常见故障分析根据数控机床的构成,工作原理和特点,将常见的故障部位及故障现象分析如下。
2.1 数控系统故障2.1.1 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。
它具有很高的工作频度,并与外部设备相联接,容易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。
②不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。
③测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警的可能原因是光栅或读头脏了;光栅坏了。
2.1.2 电源部分电源是维持系统正常工作的能源支持部分,它失效或故障的直接结果是造成系统的停机或毁坏整个系统。
OCCUPATION2011 3122数控机床系统故障诊断与维修文/许新伟 王庆民当数控机床发生故障时,要能够迅速定位,进行维修,尽快恢复生产。
如何维护好这些设备,是摆在每位维修人员面前的难题。
维修工作人员应具备高度的责任心与良好的职业道德,经过相关培训,掌握数控、驱动及PLC原理,懂得CNC编程和编程语言,并且具有较强的操作能力。
在维修手段上,应备好常用备品、配件。
一、数控系统的故障诊断1.报警处理(1)系统报警。
数控系统发生故障时,一般在操作面板上给出故障信号和相应的信息。
通常系统相关手册中都有详细的报警号、报警内容和处理方法,维修人员可根据警报后面给出的信息与处理办法自行处理。
(2)机床报警和操作信息。
根据机床的电气特点,应用PLC程序,将一些能反映机床接口电气控制方面的故障或操作信息以特定的标志,通过显示器给出,并可通过特定键,看到更详尽的报警说明。
2.故障诊断(1)仪器测量法。
系统发生故障后,采用常规电工检测仪器、工具,按系统电路图及机床电路图对故障部分的电压、电源、脉冲信号等进行实测判断故障所在,用可编程控制器进行PLC中断状态分析,或者检查接口信号。
(2)诊断备件替换法。
电路的集成规模越来越大,技术越来越复杂。
有时,很难把故障定位到一个很小的区域,可以根据模块的功能与故障现象,用诊断备件替换。
(3)利用系统的自诊断功能。
现代数控系统,尤其是全功能数控,具有很强的自诊断能力,通过实施监控系统各部分的工作,及时判断故障,给出报警信息,做出相应的动作,避免事故发生。
3.用诊断程序进行故障诊断所谓诊断程序,就是对数控机床各部分包括数控系统本身进行状态或故障检测的软件。
当数控机床发生故障时,可利用该程序诊断出故障源所在范围或具体位置。
二、数控系统的常见故障分析1.位置环常见故障包括:位控环报警,可能是测量回路开路;测量系统损坏,位控单元内部损坏;不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了;光栅坏了。
数控机床常见故障的诊断与排除数控机床是一种高精度、高自动化程度的机床,由于其工作环境复杂,操作人员技术水平不一,常常会出现各种故障。
本文将介绍数控机床常见故障的诊断与排除方法,帮助用户更好地解决问题。
一、数控系统故障的诊断与排除数控系统是数控机床的核心部分,常见故障包括系统启动失败、程序执行错误、轴运动异常等。
以下是一些常见故障的诊断与排除方法。
1. 系统启动失败故障现象:数控系统无法启动,开机后没有显示屏或显示屏闪烁。
故障原因及处理方法:- 检查电源是否连接正常,检查电源开关是否打开,如果有问题及时修复。
- 检查电源线是否损坏,如有问题及时更换。
- 检查控制柜内部的接线是否松动,如有问题及时重新插拔。
2. 程序执行错误故障现象:数控机床按照程序执行时出现偏差、停止或报错。
故障原因及处理方法:- 检查程序是否正确,查看程序中是否有错误的指令或参数。
- 检查刀具长度和半径是否正确,如不正确需要重新设置。
- 检查工件坐标系和机床坐标系是否正确对应,如出现错位需要修正。
3. 轴运动异常故障现象:数控机床的轴运动不正常,包括速度不稳定、动作迟滞等。
故障原因及处理方法:- 检查伺服系统是否正常,包括伺服驱动器是否损坏、伺服电机是否接触不良等。
如有问题需要修复或更换。
- 检查伺服参数是否正确,如伺服增益、速度环参数等。
如不正确需要重新调整。
- 检查传感器是否正常,如位置传感器或速度传感器是否损坏。
如有问题需要修复或更换。
二、传动系统故障的诊断与排除传动系统是数控机床实现各种运动的关键部分,常见故障包括传动带断裂、滚珠丝杠卡滞等。
以下是一些常见故障的诊断与排除方法。
1. 传动带断裂故障现象:机床的轴无法运动,传动带松动或断裂。
故障原因及处理方法:- 检查传动带是否过紧或过松,如过紧需要调整松度,如过松需要重新调整紧度。
- 检查传动带是否损坏,如发现传动带断裂需要及时更换。
2. 滚珠丝杠卡滞故障现象:机床的轴运动不顺畅,有卡滞现象。
数控机床故障诊断及排除方法
发表时间:2012-01-20T10:02:09.953Z 来源:《时代报告(学术版)》2011年10月供稿作者:高攀[导读] 例如:日本的FANUC系统的诊断指导专家系统是由知识库、推理计算机和人工控制器组成。
高攀
(重庆工贸职业技术学院邮编400800)
中图分类号:TP29
【摘要】数控机床是一种高效的自动化机床,涵盖了计算机技术、自动化技术、伺服驱动、精密测量和传感器技术等各个领域的新的技术成果,是一门新兴数字程序控制机床。
【关键词】数控机床;故障;排除方法;
不同的数控机床,其结构和性能有很大的区别,但在故障诊断上有它的共性。
通过对这些共性的分析得出一些对数控机床故障诊断原则、方法及故障排除方法。
以下逐一介绍:
一、数控机床故障诊断原则
1. 先外部后内部
数控机床是机械、液压、电气一体化的机床,所以故障的发生必然要从这三者之间综合反映出来。
所以要求维修人员掌握先外部后内部的原则,即当数控机床发生故障后,维修人员应采用望、闻、听、问等方法,由外向里逐一进行检查。
例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。
即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。
否则,可能发生撞车事故。
所以,每天加工完后,最好把机床的轴移到安全位置。
此时再操作或断电后就不会出现问题。
外部硬件操作引起的故障是数控修理中的常见故障。
一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。
这类故障有些可以通过报警信息查找故障原因。
对一般的数控系统来讲都有故障诊断功能或信息报警。
维修人员可利用这些信息手段缩小诊断范围。
而有些故障虽有报警信息显示,但并不能反映故障的真实原因。
这时需根据报警信息和故障现象来分析解决。
例如:台立式加工中心采用FANUC-OM控制系统。
机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。
此报警是速度控制OFF和X轴伺服驱动异常。
由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。
经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。
2. 先机械后电气
由于数控机床是一种自动化程度高,技术复杂的先进机械加工设备。
机械故障较易发现,而系统故障诊断难度要大一些。
3. 先静后动
维修人员要做到先静后动,不可盲目动手,应先询问操作人员故障发生的过程及状态,查看说明书、资料后方可动手查找故障原因,继而排除故障,
4. 先公用后专用
公用性问题会影响到全局,而专用性问题只影响局部。
5. 先简单后复杂
当出现多种故障相互交织掩盖、一时无从下手时,应先解决容易的问题,后解决较大的问题。
常常在解决简单的故障的过程中,难度大的问题也可能变的容易,理清思路,将难度较大的变得容易一些。
6. 先一般后特殊
在排除某一故障时,要先考虑最常见的可能原因,然后再分析很少发生的特殊原因。
二、数控系统自诊断技术及故障排除方法
所谓系统诊断技术,就是利用数控装置中的计算机及相关运行诊断软件进行各种测试。
1. 自诊断技术
1) 开机自诊断:数控系统通电后,设备内部诊断软件会自动对系统中各种元件如CPU、RAM及各应用软件进行逐一检测并将检测结果显示出来,如检测发现问题,系统会显示报警信息或发出报警信号。
开机自诊断通常会在开机一分钟之内完成。
有时开机诊断会将故障原因定位到电路板或模块上,但也经常仅将故障原因定位在某一范围内,这时维修人员需查找相关维修手册根据提示找到真正故障原因并加以排除。
2) 运行自诊断:运行自诊断也称在线自诊断,是指数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其它外部装置进行自动测试、检查,并显示有关信息,这种诊断一般会在系统工作时反复进行。
3) 脱机诊断:当系统出现故障时,首先停机,然后使用随机的专用诊断纸带对系统进行脱机诊断。
诊断时先要将纸带上的程序读入RAM系统中,计算机运行程序进行诊断,从而判定故障部位,这种诊断在早期的数控系统中应用较多。
2. 人工诊断技术
数控系统的故障种类很多,而自诊断往往不能对系统的所有部件进行测试,也不能将故障原因定位到具体确定的元器件上,这时要迅速查明原因就需要采用人工诊断方法。
人工诊断方法有很多种,最常用的有:功能程序测试法、参数检查法、备件置换法、直观法、原理分析法等,现简介如下:
1) 功能程序测试法:这种方法将数控系统中的G、M、S、T、功能的全部指令编成一个测试程序,穿成纸带或存储到软盘上在进行诊断时运行这个程序,可快速判定哪个功能出现问题,这种方法一般在机床出现随机性故障时使用,也可用于设备闲置时间较长重新投入使用时测试用。
2) 参数检查法:一般系统的参数是存放在RAM中的,一旦出现干扰或其它原因会造成参数丢失或混乱,从而使系统不能正常工作,这时应根据故障特征,检查和核对有关参数,在排除某些故障时,有时还需对某些参数进行调整。
3) 备件置换法:是将系统中型号完全相同的电路板、模块、集成电路或其它零部件进行互相交换比较,或利用备用的元器件替换有疑点的部件,从而快速有效地确定故障部位。
4) 直观法:直观法是利用维修中常用的“先外后内”的原则,利用观察零部件的工作状态、听声音、摸发热等方法,进行逐个检查,如利用视觉可观察内部器件或外部连接的形状上的变化;利用听觉可查寻器件发出的异常声音;利用嗅觉或触觉可查寻过载、高温等现象;等等。
5) 原理分析法:当采用其它检查方法难以奏效时,可以从电路基本原理出发,一步一步用万用表、逻辑表、示波器等工具对测点进行检查对照,最终查明故障原因。
3. 高级诊断技术
1) 在高级诊断中,常用的方法主要有以下几种方法:
2) 自修复诊断:自修复诊断一般是指在系统内设置不参与运行的备用模块。
自修复程序在控制系统每次开机运行,当发现某模块有问题时,系统会把故障信息显示在屏幕上,同时自动查寻备用模块,故障模块的工作即被备用模块取代,维修人员可根据提示更换下一故障模块。
自修复诊断方法需要较多的备用模块,这会使系统体积增大,价格提高。
3) 诊断指导专家系统:近年来,随着图像识别、声音识别、自动翻译和智能工业机器人等技术的发展,这些技术越来越多地被应用到数控机床上。
诊断专家系统以专家知识、经验为基础,自动模仿专家利用知识解决复杂问题的思维活动,这就使普通工作人员同样能对故障做出具有专家级水平的诊断结论。
例如:日本的FANUC系统的诊断指导专家系统是由知识库、推理计算机和人工控制器组成。
知识库内存储了专家分析、故障判断和如何消除故障的经验知识。
这些知识用于读出数控系统的状态信息,通过人工控制器,编程员可用简捷的记述把专家的知识编成程序,并把程序变成知识库目标形式,再存储到知识库中。
推理机通过运行程序进行推理,操作者也可通过显示单位,用简单的人机对话的方式选择故障状态,必要时回答系统的提问,以补充为得出结论所需的其它信息。
4) 通讯诊断系统:该诊断方法又称海外诊断,是由中央维修站通过电话线路,甚至国际电话系统向用户设备发送诊断程序所进行的一种遥控诊断。
通讯诊断系统除可用于故障发生后的诊断外,还可以为用户作定期的预防性诊断,设备生产厂家的维修工不必亲临现场,只需按预定的时间对机床进行系列试运行检查,在中央维修站分析诊断数据,即可发现可能存在的故障隐患。
【参考文献】
[1] 周兰陈少艾.数控机床故障诊断与维修[M].北京:人民邮电出版社,2007..
[2] 杨中力.数控机床故障诊断与维修[M].大连:大连理工出版社,2006..
[3] 王侃夫.数控机床故障诊断及维护[M].北京:机械工业出版社,2005..。