100个历史上最有名的数学难题
- 格式:doc
- 大小:43.00 KB
- 文档页数:26
鸡兔同笼《孙子算经》卷下第31题叫“鸡兔同笼”问题,也是一道世界数学名题。
“有一群野鸡和兔子关在同一个笼子里,头数是35,脚数是94。
问野鸡和兔子的数目各是多少?”这个题目编得很有趣,如果35只动物全是鸡,就应该有70只脚;如果全是兔,就应该有140只脚,而题中却说共有94只脚,给人一种左右为难的印象。
其实,解题关键也正在这里,假设35只动物全是鸡,则共有70只脚,与题中“脚数是94”相比较,还差24只脚,将1只兔看作是鸡,脚数就会相差2,有多少只兔被看作是鸡了呢?24 2=12。
算到这里,答案也就呼之欲出了。
清朝时,作家李汝珍把这类问题写进了小说《镜花缘》中。
书中有这样一个情节,一座楼阁到处挂满了五彩缤纷的大小灯球,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个。
一位才女把大灯看作是头,小灯看作是脚;把一种灯球看作是鸡,把另一种看作是兔,运用“脚数的一半减头数得兔数,头数减兔数得鸡数”的算法,很快就算出了一大二小的灯是120盏,一大四小的灯是240盏,赢得了一片喝彩声。
伴随古代中外文化交流,鸡兔同笼问题很快就漂洋过海流传到了日本。
不过到了日本之后,鸡变成了仙鹤,兔变成了乌龟,鸡兔同笼变成了赫赫有名的“鹤龟算”。
狗跑与兔跳行程问题是中小学里常见的一类数学应用题,也是一类很古老的数学问题。
在我国古代数学名著《九章算术》里,收集了很多这方面的题目如书中第6章第14题:“狗追兔子。
兔子先跑100步,狗只追了250步便停了下来,这时它离兔子只有30步的距离了。
问如果狗不停下来,还要跑多少步才能追上兔子?”这道追及问题编得很有趣,它没有直接告诉狗与兔的“速度差”,反而节外生枝地让狗在追及过程中停了下来,数量关系显得扑朔迷离。
2000年前,我们的祖先解决这类问题已经很有经验了,所以书中只是简单地说,用(250 30)作除数,用(100-30)作被除数,即可算出题目的答案。
世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公世界七大数学难题:1、P/NP问题(P versus NP)2、霍奇猜想(The Hodge Conjecture)3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。
4、黎曼猜想(The Riemann Hypothesis)5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)所谓世界七大数学难题,其实是美国克雷数学研究所于2000年5月24日公布的七大数学难题。
也被称为千年奖谜题。
根据克莱数学研究所制定的规则,所有难题的解答都必须在数学期刊上发表,并经过各方验证。
只要他们通过两年的验证期,每解决一个问题的求解者将获得100万美元的奖金。
这些问题与德国数学家大卫·希尔伯特在1900年提出的23个历史数学问题遥相呼应。
一百年过去了,很多问题都解决了。
千年奖谜题的解决很可能带来密码学、航空航天、通信等领域的突破。
一:P/NP问题P/NP问题是世界上最难的数学题之一。
在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。
P/NP问题中包含了复杂度类P 与NP的关系。
1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。
复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。
世界七大数学难题黎曼假设世界七大数学难题,它们就像一道道亮丽的风景,吸引着世界各国的数学家的注意。
世界七大数学难题分别是:NP 完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想,这七个问题都被悬赏一百万美元。
今天我们来介绍一下黎曼假设。
世界七大数学难题:黎曼假设1、黎曼假设简介有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。
这样的数称为素数;它们在纯数学及其应用中都起着重要作用。
在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。
著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。
这点已经对于开始的1,500,000,000个解验证过。
证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
2、黎假设的背景黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。
希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。
现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。
3、黎曼猜想的描述与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。
黎曼猜想是当今数学界最重要的数学难题。
目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。
历史上关于黎曼猜想被证实的闹剧时常传出,近日所谓黎曼猜想被尼日利亚籍教授证明的网文中并没有说明克雷数学研究所已经承认并授予奖金,克雷数学研究所官网目前并无任何表态,而学界专业评价趋于消极。
世界十大数学难题数学是科学中最古老和最重要的学科,它是科学技术进步的基础,更是人类发现和理解自然规律的重要工具。
在各种数学领域中,学者们发现不少难题,它们对现代数学的发展至关重要。
接下来,我们将介绍世界十大数学难题:第一,毕达哥拉斯假设(Pythagorean Hypothesis):毕达哥拉斯假设指的是被认为是十分重要的几何定理。
该定理认为,任意一个三角形的直角边上的两条边之和,等于对角线的平方。
在古希腊,人们却怀疑这一定理是否成立,故而未能得出证据证明它,而到了现代,也仍未能有效地证明它,因此它被认为是当之无愧的世界十大数学难题之一。
第二,泛函分析中的Riemann猜想(Riemann Hypothesis):Riemann猜想是一个有关质数的函数的重要问题。
它指的是质数的分布可以用函数ζ(s)=1/1^s+1/2^s+1/3^s+……来表示。
Riemann猜想认为,当s=1/2时,该函数为无穷,其图形右半部分具有零点。
至今,这一猜想仍未能令人满意地证明,被认为是数学史上最重要的问题之一,由此也成为世界十大数学难题之一。
第三,卡尔贝-比尔金猜想(Goldbach Conjecture):卡尔贝-比尔金猜想是指,任意一个大于2的偶数,都可以由两个质数之和构成。
这一猜想已经有约两个世纪的历史,至今仍未能得到证明。
这一猜想的证明将引发数学史上最重大的突破,因此也被认为是当之无愧的世界十大数学难题之一。
第四,维度理论(Dimension Theory):维度理论是指研究拓扑空间中每一点的特性所组成的理论,这些特性决定了空间的维度,如空间中存在环路则维度为一,存在平面则维度为二,存在立体则维度为三等。
这一理论至今尚未能得到有力的证明,因此也成为世界十大数学难题之一。
第五,米勒假说(Mills Conjecture):米勒假说指的是,当10的一次幂次数的形式为n+1时,其中n为一个素数,那么n也为一个素数。
世上最难数学题
1、哥德巴赫猜想
2、费玛大定理——内容:他断言当整数n \ue2时,关于x, y, z的方程x +-y = z 没有正整数解。
3、四色问题——又称四色悖论、四色定理,就是世界近代三小数学难题之-。
地图四色定理最先就是由一
位毕业于伦敦大学叫格里斯的英国大学生提出来的。
1、哥德巴赫猜想
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7; 再任取一个奇数,比如,可以表示成=+7+5,也是三个素数之和,还可以写成++5,仍然是三个素数之和。
例子多了,即发现“任何大于5的奇数都是三个素数之和。
2、费玛小定理
简述:费玛大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶德费玛提出。
费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在年,英国数学家安德鲁怀尔斯宣布自己证明了费马大定理。
3、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。
地图四色定理最先是由一
位毕业于伦敦大学叫做格里斯的英国大学生明确提出去的。
内容:任何一-张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
也就是说在不
引发混为一谈的情况下一-张地图只需四种颜色去标记就行及。
用数学语言则表示:将平面任一地细分为
不相重叠的区域,每一个区域总可以用这四个数字之- 来标记而不会使相邻的两个区域
获得相同的数字。
世界近代三大数学难题1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
终于在1994年被安德鲁〃怀尔斯攻克。
古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+y^n =z^n 是不可能的(这里n大于2;a,b,c,n都是非零整数)。
此猜想后来就称为费尔马大定理。
费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。
一般公认,他当时不可能有正确的证明。
猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。
其惊人的魅力,曾在最后时刻挽救自杀青年于不死。
他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限19 08-2007年。
无数人耗尽心力,空留浩叹。
最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。
1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱〃瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想” 之中。
童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。
终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。
立刻震动世界,普天同庆。
不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。
这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。
中外经典数学名题集锦1.鸡兔同笼。
今有鸡兔同笼,上有35个头,下有94只脚。
鸡兔各几只?2.韩信点兵。
今有物,不知其数。
三三数之剩二,五五数之剩三,七七数之剩二。
问物几何。
这是我国古代名著《孙子算经》中的一道题。
意思是:一个数除以3余2,除以5余3,除以7余2。
求适合这些条件的最小自然数。
3.三阶幻方。
把1—9这九个自然数填在九空格里,使横、竖和对角在线三个数的和都等于15。
4.兔子问题。
十三世纪,意大利数学家伦纳德提出下面一道有趣的问题:如果每对大兔每月生一对小兔,而每对小兔生长一个月就成为大兔,并且所有的兔子全部存活,那么有人养了初生的一对小兔,一年后共有多少对兔子?想:第一个月初,有1对兔子;第二个月初,仍有一对兔子;第三个月初,有2对兔子;第四个月初,有3对兔子;第五个月初,有5对兔子;第六个月初,有8对兔子……。
把这此对数顺序排列起来,可得到下面的数列:1,1,2,3,5,8,13,……观察这一数列,可以看出:从第三个月起,每月兔子的对数都等于前两个月对数的和。
根据这个规律,推算出第十三个月初的兔子对数,也就是一年后养兔人有兔子的总对数。
5.求碗问题。
我国古代《孙子算经》中有一道著名的“河上荡杯”题(注:荡杯即洗碗)。
题目意思是:一位农妇在河边洗碗。
邻居问:“你家里来了多少客人,要用这么多碗?”她答道:“客人每两位合用一只饭碗,每三位合用一只汤碗,每四位合用一只菜碗,共享65只碗。
”她家里究竟来了多少位客人?6.三女归家。
今有三女,长女五日一归,中女四日一归,少女三日一归。
问三女何日相会?这道题也是我国古代名著《孙子算经》中为计算最小公倍数而设计的题目。
意思是:一家有三个女儿都已出嫁。
大女儿五天回一次娘家,二女儿四天回一次娘家,小女儿三天回一次娘家。
三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?想:从刚相会到最近的再一次相会的天数,是三个女儿间隔回家天数的最小公倍数。
7.有女善织。
世界十大数学难题难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三:庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨—米尔斯(Yang-Mills)存在性和质量缺口难题”之六:纳维叶—斯托克斯(Navier-Stokes)方程的存在性与光滑性难题”之七:贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题”之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个千僖年数学难题”的每一个悬赏一百万美元。
以下是这七个难题的简单介绍。
干僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文考克(StephenCook)于1971年陈述的。
干僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
100个历史上最有名的数学难题第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
世界近代三大数学难题世界近代三大数学难题---本文来源网络1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
终于在1994年被安德鲁·怀尔斯攻克。
古希腊的丢番图写过一本著名的"算术",经历中世纪的愚昧黑暗到文艺复兴的时候,"算术"的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在"算术"的关于勾股数问题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;x,y,z,n都是非零整数)。
此猜想后来就称为费尔马大定理。
费尔马还写道"我对此有绝妙的证明,但此页边太窄写不下"。
一般公认,他当时不可能有正确的证明。
猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库木尔创立"代数数论"这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。
其惊人的魅力,曾在最后时刻挽救自杀青年于不死。
他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。
无数人耗尽心力,空留浩叹。
最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。
1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在"谷山丰-志村五朗猜想"之中。
童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。
终于在1993年6月23日剑桥大学牛顿研究所的"世纪演讲"最后,宣布证明了费尔马大定理。
世界数学难题——哥尼斯堡七桥问题18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。
将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题………… 这就是哥尼斯堡七桥问题,一个著名的图论问题。
1727年在欧拉20岁的时候,被俄国请去在圣彼得堡(原列宁格勒)的科学院做研究。
他的德国朋友告诉了他这个曾经令许多人困惑的问题。
欧拉并没有跑到哥尼斯堡去走走。
他把这个难题化成了这样的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就等价于下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。
经过研究,欧拉发现了一笔画的规律。
他认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的,这道题中的图就是连通图。
但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
那么什么叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。
如下图中的①、④为奇点,②、③为偶点。
1.凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
例如下图都是偶点,画的线路可以是:①→③→⑤→⑦→②→④→⑥→⑦→①2.凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
例如下图的线路是:①→②→③→①→④3.其他情况的图都不能一笔画出。
聪明的博友们,想必你们已经知道哥尼斯堡七桥问题的答案了吧!留一道作业:下面的五环标志可否一笔画成?如何画?数学长联前几天在网上发现一个数学长联,写的非常好,可以说是对数学的一个简单概括,并且还加了注释,对了解古今数学的发展很有帮助,现转载如下:宏著传中外,但以立言,心灵独得。
以下是8个顶级数学难题:1. 科拉茨猜想(Collatz Conjecture):取任意自然数,如果它是偶数,则将它除以2;如果它是奇数,则将它乘以3再加1。
得到的结果再按照上述规则重复操作,最终都会得到1。
尽管该猜想在某些情况下已经被验证成立,但目前还没有一个完整的证明。
2. 孪生素数猜想(Twin Primes Conjecture):这个猜想是关于孪生素数的分布。
所谓孪生素数,是指两个素数之间的差值为2,比如(3, 5)。
尽管已经找到了一些孪生素数,但这个猜想至今未被证明或反证。
3. 哥德巴赫猜想(Goldbach's Conjecture):任何一个大于2的偶数都可以表示为两个素数之和。
这个猜想是数学中最著名的问题之一,但至今仍未被证明或反证。
4. Riemann猜想(Riemann's Conjecture):这是关于Riemann zeta函数的零点分布的问题。
Riemann猜想认为,在复平面上,除了位于实轴上的那些零点外,其他零点都分布在一条对数密度曲线周围。
这个猜想至今仍未被证明或反证。
5. Navier-Stokes存在性和光滑性(Navier-Stokes Existence and Smoothness):这是关于流体动力学的一个基本问题。
Navier-Stokes方程描述了流体速度和压力的变化规律,但这个方程在某些情况下会出现混沌现象,使得其解的存在性和光滑性难以确定。
这个问题的解决对于流体动力学的发展具有重要意义。
6. P vs NP问题(P vs NP Problem):P问题是指可以在多项式时间内解决的问题,NP问题是指可以在非多项式时间内找到最优解的问题。
P vs NP问题关注的是,NP问题是否一定需要比P问题更长的时间来解决。
这个问题是计算机科学中最重要的未解决问题之一。
7. 圆周率π的精确表达式(Exact Expression for π):尽管圆周率π在数学中有着广泛的应用,但它的精确表达式至今仍是一个谜。
H 100个著名初等数学问题第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的¼+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+¼;黑牛数是全体花牛数¼+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight P roblem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Proble m of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷* * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgi rl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bern oulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Proble m of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Bi nomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theor em求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x 无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Ser ies将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's L ogarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's D erivation of the Secant and T angent Series 在n个数1,2,3,…,n的一个排列c1,c2,…,c n中,如果没有一个元素ci的值介于两个邻近的值ci-1和c i+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tan gent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Proble m在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Pri me Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gau ss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamenta l Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Li ndemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Probl em of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-dou bling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Deter mination of the Number Pi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是b v、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of th e Chord-T angent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Pro blem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conj ugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Pa rallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Fo ur Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four P oints.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Pro blem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet -Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelo pe从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-poi nted Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Mo st Nearly Circular Ellipse Circumscribing a Quadril ateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbol a确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabol a确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desar gues' Homology Theorem (Theorem of Homologo us Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Doubl e Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagr am Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Secti on from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Divisi on of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Pro blem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Di stance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscri bing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwar tz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamenta l Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stere ographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Lo xodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Posi tion of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Pr oblem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知***球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synod ic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prole m借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Prob lem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Prob lem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向T acking Under a Headwi nd帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomonta nus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightne ss of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Probl em在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Proble m在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Probl em在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面。
世界数学难题——哥尼斯堡七桥问题18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。
将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题………… 这就是哥尼斯堡七桥问题,一个著名的图论问题。
1727年在欧拉20岁的时候,被俄国请去在圣彼得堡(原列宁格勒)的科学院做研究。
他的德国朋友告诉了他这个曾经令许多人困惑的问题。
欧拉并没有跑到哥尼斯堡去走走。
他把这个难题化成了这样的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就等价于下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。
经过研究,欧拉发现了一笔画的规律。
他认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的,这道题中的图就是连通图。
但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
那么什么叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。
如下图中的①、④为奇点,②、③为偶点。
1.凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
例如下图都是偶点,画的线路可以是:①→③→⑤→⑦→②→④→⑥→⑦→①2.凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
例如下图的线路是:①→②→③→①→④3.其他情况的图都不能一笔画出。
聪明的博友们,想必你们已经知道哥尼斯堡七桥问题的答案了吧!留一道作业:下面的五环标志可否一笔画成?如何画?数学长联前几天在网上发现一个数学长联,写的非常好,可以说是对数学的一个简单概括,并且还加了注释,对了解古今数学的发展很有帮助,现转载如下:宏著传中外,但以立言,心灵独得。
数学家提出的趣味数学题:
1.洛伊德谜题:有一个长方形的箱子,长40厘米,宽25厘米,
高10厘米。
箱子里装满了水。
现在要把水倒入一个长30厘米、宽15厘米、高20厘米的玻璃缸中,水能溢出来吗?
2.莫比乌斯带:莫比乌斯带是一个单侧、不可定向的曲面,由德
国数学家莫比乌斯和约翰·李斯丁发现。
将一根纸条扭转180°后,两头粘接起来做成的纸带圈,具有魔术般的性质。
3.柯克曼的女学生问题:柯克曼的女学生问题是一个经典的数学
问题,由英国数学家爱达·柯克曼在1850年提出。
问题涉及到一组女学生,这些学生按照特定的规则排队,最终形成一个数学模式。
4.哥德巴赫猜想:哥德巴赫猜想是一个著名的数学问题,由德国
数学家哥德巴赫在1742年提出。
问题是指:任何一个大于2的偶数都可以表示成两个质数之和。
5.费马大定理:费马大定理是数学史上的一个著名难题,由法国
数学家费马在1637年提出。
定理指出不存在整数x、y、z和n,满足x^n + y^n = z^n。
100个历史上最有名的数学难题第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
第07题欧拉关于多边形的剖分问题euler's problem of polygon division 可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题lucas' problem of the married couples n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式omar khayyam's binomial expansion 当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂。
第10题柯西的平均值定理cauchy's mean theorem 求证n个正数的几何平均值不大于这些数的算术平均值。
第11题伯努利幂之和的问题bernoulli's power sum problem 确定指数p为正整数时最初n个自然数的p次幂的和s=1p+2p+3p+…+np。
第12题欧拉数the euler number 求函数φ(x)=(1+1/x)x及φ(x)=(1+1/x)x+1当x无限增大时的极限值。
第13题牛顿指数级数newton's exponential series 将指数函数ex 变换成各项为x的幂的级数。
第14题麦凯特尔对数级数nicolaus mercator's logarithmic series 不用对数表,计算一个给定数的对数。
第15题牛顿正弦及余弦级数newton's sine and cosine series 不用查表计算已知角的正弦及余弦三角函数。
第16题正割与正切级数的安德烈推导法andre's derivation of the secant and tangent series 在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列。
试利用屈折排列推导正割与正切的级数。
第17题格雷戈里的反正切级数gregory's arc tangent series 已知三条边,不用查表求三角形的各角。
第18题德布封的针问题buffon's needle problem 在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理the fermat-euler prime number theorem 每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示。
第20题费马方程the fermat equation 求方程x2-dy2=1的整数解,其中d为非二次正整数。
第21题费马-高斯不可能性定理the fermat-gauss impossibility theorem 证明两个立方数的和不可能为一立方数。
第22题二次互反律the quadratic reciprocity law (欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2]第23题高斯的代数基本定理gauss' fundamental theorem of algebra 每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根。
第24题斯图谟的根的个数问题sturm's problem of the number of roots 求实系数代数方程在已知区间上的实根的个数。
第25题阿贝尔不可能性定理abel's impossibility theorem 高于四次的方程一般不可能有代数解法。
第26题赫米特-林德曼超越性定理the hermite-lindemann transcedence theorem 系数a不等于零,指数α为互不相等的代数数的表达式a1eα1+a2eα2+a3eα3+…不可能等于零。
第27题欧拉直线euler's straight line 在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线-欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离。
第28题费尔巴哈圆the feuerbach circle 三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上。
第29题卡斯蒂朗问题castillon's problem 将各边通过三个已知点的一个三角形内接于一个已知圆。
第30题马尔法蒂问题malfatti's problem 在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切。
第31题蒙曰问题monge's problem 画一个圆,使其与三已知圆正交。
第32题阿波洛尼斯相切问题the tangency problem of apollonius 画一个与三个已知圆相切的圆。
第33题马索若尼圆规问题macheroni's compass problem 证明任何可用圆规和直尺所作的图均可只用圆规作出。
第34题斯坦纳直尺问题steiner's straight-edge problem 证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出。
第35题德里安倍立方问题the deliaii cube-doubling problem 画出体积为一已知立方体两倍的立方体的一边。
第36题三等分一个角trisection of an angle 把一个角分成三个相等的角。
第37题正十七边形the regular heptadecagon 画一正十七边形。
第38题阿基米德π值确定法archimedes' determination of the number pi{/color] 设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项。
假如已知初始两项,利用这个规则便能计算出数列的所有项。
这个方法叫作阿基米德算法。
第39题富斯弦切四边形问题fuss' problem of the chord-tangent quadrilateral 找出半径与双心四边形的外接圆和内切圆连心线之间的关系。
(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题annex to a survey 利用已知点的方位来确定地球表面未知但可到达的点的位置。
第41题阿尔哈森弹子问题alhazen's billiard problem 在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形。
第42题由共轭半径作椭圆an ellipse from conjugate radii 已知两个共轭半径的大小和位置,作椭圆。
第43题在平行四边形内作椭圆an ellipse in a parallelogram 在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点。
第44题由四条切线作抛物线a parabola from four tangents 已知抛物线的四条切线,作抛物线。
第45题由四点作抛物线a parabola from four points 过四个已知点作抛物线。
第46题由四点作双曲线a hyperbola from four points 已知直角(等轴)双曲线上四点,作出这条双曲线。
第47题范·施古登轨迹题van schooten's locus problem 平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题cardan's spur wheel problem 一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题newton's ellipse problem 确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹。